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Abstract

In this paper we study the aggregation of fuzzy preferences on non-necessarily finite societies. We characterize in terms
of possibility and impossibility a family of models of strongly-connected preferences in which the transitivity is defined
for any t-norm. For that purpose, we have described each model by means of some crisp binary relations and we have
applied the results obtained by Kirman and Sondermann about ultrafilters and Arrovian models.

Keywords: Mathematical social choice, fuzzy preferences, Arrovian models in the fuzzy setting, strongly-connected
preferences, defuzzification, coalitions, ultrafilters, infinite agents.

1 Introduction

In the middle of the past century, Joseph Kenneth Arrow proved his impossibility theorem [2] modifying economists and
social scientists’ paradigm. His contribution triggered a considerable amount of research looking for functions which
aggregate individual preferences in a single social preference representing the society.

From the Arrow’s contribution, many alternative models have been developed (e.g. [10, 20, 31]). Some of them
aggregate preferences in some specific situations, but no one has found a satisfactory model with universal pretensions
as the Arrovian one.

In the seventies, the first articles applying fuzzy sets in the resolution of Arrow paradox were published [14, 18]. The
main problem addressed in this literature is the generalization of the axioms of the Arrovian model (which is grounded
on (crisp) set theory) to fuzzy set theory and finding the aggregation functions that satisfy these new conditions in the
fuzzy environment.

It turns out that there are very many possible generalizations of the Arovian model to the fuzzy environment. Many
authors have discussed which types of generalizations fit better to the economic or behaviour sciences purposes and
have considered some generalizations more suitable than others (see e.g. [7]).
Despite all this variety of models, we will focus on one of the most widespread families of extensions (used e.g. in
[3, 12, 21]). This family of models is characterized by a t-norm modelling the juxtaposition (intersection) and a
t-conorm modelling the conjunction (union) in the fuzzy set framework.

In this framework, when setting some combination of t-norms and t-conorms, there could appear some possibility
results (e.g. [28, Theorem 4.4] or [21, Theorem 4.43]) and setting other combinations may lead to impossibility results
(e.g. [3, Proposition 3.5], [13, Corollary 8] or [29, Theorem 5]). Moreover, there are general results classifying all these
models in terms of possibility and impossibility, but isolated results studying single combinations (e.g. [14, 21]) or,
exceptionally, a result about some subfamilies (e.g. [12, 17]).

It is important to remark that equivalent problems are faced by fuzzy extensions of other social problems as, for ex-
ample, group identification [1, 11, 16], rationalization of choice functions [15, 19] or representation of binary relations [9].
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In this article, we will prove an impossibility result for a subfamily of Arrovian fuzzy models. We understand the
study of this subfamily as an intermediate step towards the characterization of the whole family. In this subfamily of
models, the t-conorm generalizing the union has no 1-divisors (i.e. strongly-connected preferences), whereas the t-norm
generalizing the intersection can be anyone.

As we have said, we do not consider this work a conclusion of our research in the field. Our goal is to classify
the whole family of models defined by t-norms and t-conorms. However, the following particularities of our work are
relevant per se and we consider that the scientific community may be interested in them:

First, we have been able to implement the applying defuzzification technique we started in [28] and used in [29].
This new technique is based on controlling fuzzy preferences using crisp preferences. It is important to remark that
we developed this technique in models where the transitivity was not defined by a t-norm (for the definition of weak
transitivity, see [21, Definition 3.32]). So, applying the technique on the preferences defined by a t-norm requires a
few adjustments. Besides, we must say that Billot in [7] remarks the deep difference between weak transitivity and
transitivities defined by t-norms because of their contrast in terms of ordinality and cardinality. Fortunately, in this
article, we have overcome this difference by adjusting the aforementioned technique to preferences in which a t-norm
defines the transitivity instead of the weak transitivity.

Second, we have seen that strongly-connected fuzzy preferences have some exceptional properties. That is, we can
use them as if they were a total preorder with a degree associated with every pair of elements. We use these properties
as the cornerstone of our main theorem; however, they are interesting by themselves. We think that under this new
light, they could acquire a new role in other models.

The article is structured as follows: After the introduction, we include a preliminaries section where we introduce
the Arrovian fuzzy models. In Section 3, we analyze the properties of the strongly-connected preferences, and we discuss
how they can be interpreted. In Section 4, we study the aforementioned subfamily of fuzzy Arrovian models and prove
the corresponding theorems for non-necessarily finite societies, and we study finite societies as a particular case. Finally,
there is a section of conclusions.

2 Preliminaries

In this paper, X will denote a set containing 3 or more elements. Before introducing the fuzzy Arrovian models, we
need to state some definitions from classic Set Theory.

A total preorder % in X is a reflexive (x % x for every x ∈ X), transitive (if x % y and y % z, then x % z for all
x, y, z ∈ X) and complete (x % y or y % x for all x, y ∈ X) binary relation on X.
The asymmetric part � of a preorder % is a binary relation in X defined for every x, y ∈ X as x � y if x % y and not
y % x. The symmetric part ∼ of % is defined for every x, y ∈ X as x ∼ y if x % y and y % x. In particular, ∼ is an
equivalence relation (reflexive, symmetric and transitive) and � is an asymmetric and negatively transitive (if x � z,
then x � y or y � z for all x, y, z ∈ X) binary relation (see [8, Proposition 1.1.7]).
If x % y, we say that x is at least as good as y. Moreover, if x � y (resp. x ∼ y), we say that x is preferred over y
(resp. equally preferred to). For that reason, we also name % as a weak preference relation, � as a strict preference
relation and ∼ as an indifference relation.

Definition 2.1. A fuzzy binary relation in X is a function R : X → [0, 1].

Definition 2.2. A triangular norm ( t-norm for short) is a function T : [0, 1]× [0, 1] −→ [0, 1] satisfying the following
properties:

(i) Boundary conditions: T (x, 0) = T (0, x) = 0, and T (x, 1) = T (1, x) = x, for every x ∈ [0, 1].

(ii) Monotonicity: T is non-decreasing with respect to each variable, that is if x1 ≤ x2 and y1 ≤ y2, then T (x1, y1) ≤
T (x2, y2) holds true.

(iii) T is commutative: T (x, y) = T (y, x) holds for every x, y ∈ [0, 1].

(iv) T is associative: T (x, T (y, z)) = T (T (x, y), z) holds for any x, y, z ∈ [0, 1].

Definition 2.3. A triangular conorm ( t-conorm for short) is a function S : [0, 1] × [0, 1] −→ [0, 1] satisfying the
monotonicity, commutative and associative properties above and additionally the property below:

Boundary conditions: S(x, 0) = S(0, x) = x, and S(x, 1) = S(1, x) = 1, for every x ∈ [0, 1].
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Definition 2.4. Let R be a fuzzy binary relation on a set X. We say that:

- R is reflexive if R(x, x) = 1 for every x ∈ X,

- R is T -transitive if R(x, z) ≥ T (R(x, y), R(y, z)) for every x, y, z ∈ X,

- R is S-connected1 if S (R(x, y), R(y, x)) = 1 for every x, y ∈ X.

If S has no 1-divisors2, for every x, y ∈ X R(x, y) = 1 or R(y, x) = 1 and we say that R is strongly-connected.

Definition 2.5. Let R be a relation in X and Y a subset of X. The restriction of R in Y , ReY , is the fuzzy binary
relation defined in Y as ReY (x, y) = R(x, y) for every x, y ∈ Y .

A binary relation on X is a preference if it is reflexive, T -transitive and S-connected (for any t-norm and t-conorm).
We deffer to Definition 2.8 the proper definition of the preferences we will use in the following sections.

A preference R plays the role of a binary relation % but in the fuzzy setting, we need the equivalent of the strict
preference � in the fuzzy setting. There are many definitions of the strict preference PR derived from R (see [17, 21, 27]).
However, in this article we do not require those amount of analysis and precision. So, we will suppose we have set a
strict preference definition satisfying the following properties:

(i) If R(x, y) = 1 and R(y, x) = 0, then PR(x, y) = 1,

(ii) PR(x, y) > 0 if and only if, R(x, y) > R(y, x),

(iii) If R(x, y) ≥ R′(a, b) and R(y, x) ≤ R′(b, a), then PR(x, y) ≥ PR′(a, b),

for every x, y, a, b ∈ X and every pair of preferences R and R′.

Example 2.6. Most of the strict binary relations on the literature satisfy the properties above. For example PR(x, y) =
R(x, y) if R(x, y) > R(y, x) and PR(x, y) = 0 otherwise [27], or PR(x, y) = max{0, R(x, y)−R(y, x)} [14].

Let N be a non-empty set representing a society of individuals. A profile of preferences for the society N in a set
of preferences FP is a function R : N → FP. Besides, we denote the preference of the individual i ∈ N as Ri instead
of R(i). If N is finite, a profile is usually represented by the n-tuple (R1, . . . , Rn) where n = |N |. We denote the set of
all profiles in FP as FPN .

Definition 2.7. Let FP be a set of fuzzy preferences. An aggregation function in FP is a function f : FPN → FP.
We say that:

- f is weak Paretian if, for every profile R ∈ FPN and pair of alternatives x, y ∈ X, PRi(x, y) > 0 for all i ∈ N
implies that Pf(R)(x, y) > 0,

- f is strong Paretian if, for every profile R ∈ FPN and pair of alternatives x, y ∈ X, Pf(R)(x, y) ≥ infi∈N PRi
(x, y)

holds3,

- f satisfies independence of irrelevant alternatives (IIA) if, for every pair of profiles R,R′ ∈ FPN and pair of
alternatives x, y ∈ X, if Rie{x,y} = R′ie{x,y} for every i ∈ N implies that f(R)e{x,y} = f(R′)e{x,y},

- f is dictatorial if there is a k ∈ N such that for every profile R ∈ FPN and pair of alternatives x, y ∈ X,
PRk

(x, y) > 0 implies that Pf(R)(x, y) > 0,

- f is strongly dictatorial if there is a k ∈ N such that for every profile R ∈ FPN , pair of alternatives x, y ∈ X
and α ∈ [0, 1), PRk

(x, y) > α implies that Pf(R)(x, y) > α.

These are some of the generalizations of the axioms proposed in [2] by Arrow to the fuzzy setting. They are not
new in the literature (see e.g. [7, 14, 21]). Perhaps, the least widespread is the strong dictator [3].
In this paper, we will focus on the study of the aggregation functions in the sets of linear preferences defined below:

1The S-connected property generalizes other properties in the literature. For example, if S L(x, y) = min{1, x+y} denotes the  Lukasiewicz
t-conorm, S L-connected is equivalent to the connectedness property in [21, 30]. Or, if SD is the drastic t-conorm, SD-connectedness is the
connectedness in [12].

2A number a ∈ (0, 1) is a 1-divisor of S if there exist a b ∈ (0, 1) such that S(a, b) = 1 (see [5, Definition 3.17]).
3Notice that if f is strong Paretian, then it is also weak Paretian.
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Definition 2.8. Let T be a t-norm. We say that a fuzzy preference in X is T -linear if it is reflexive, strongly-connected
and T -transitive. We denote the set of T -linear preferences by LPT .

In the next sections, we will study the properties of the sets LPT
4, their preferences and how to aggregate them.

Since the given arguments work for any t-norm, we set here any t-norm T , and we will denote LPT by LP irrespective
of the chosen t-norm T and, consequentially, the aggregation functions as f : LPN → LP.

3 Linear fuzzy preferences

A linear preference R ∈ LP is a special case of fuzzy preference. The fact that for every pair of alternatives x, y ∈ X
R(x, y) = 1 or R(y, x) = 1 holds (strongly-connectedness), furnish R with some properties that make it different from
non-linear preferences.

This section is mainly devoted to prove that a linear preference is equivalent to a total preorder which has been
enriched with extra structure. That is, each pair of alternatives x, y ∈ X have a number (degree) from [0, 1] associated
to them. In addition, the distribution of the degrees among the pairs of alternatives satisfy certain properties. First,
we have to start with some definitions.

Definition 3.1. For every preference R ∈ LP, we associate to R a binary relation %R in X defined as x %R y if
R(x, y) = 1 (for every x, y ∈ X).

Proposition 3.2. For every R ∈ LP, %R is indeed a total preorder.

Proof. It is immediate to check that %R is reflexive as well as total. If x %R y and y %R z, then x %R z because
R(x, z) ≥ T (R(x, y), R(y, z)) = 1.

Remark 3.3. The associated preorder %R of a linear preference R motivates a new terminology. When we mention
the qualitative behavior or properties of R, we are pointing to the properties of %R, whereas when we use the word
quantitative, we are pointing to the degrees of R. For example, the fact x %R y is qualitative, whereas R(x, y) = 0.3 is
quantitative. We will use these concepts to frame some propositions in the next section.

The next result states an important relation between the degrees of a linear preference and its associated preorder.

Lemma 3.4. Let R ∈ LP be a linear preference and x, y, a, b ∈ X four alternatives. If x %R a %R b %R y, then
R(y, x) ≤ R(b, a).

Proof. If x %R a %R b %R y, then R(b, y) = R(x, a) = 1. We can deduce that

R(b, a) ≥ T (R(b, y), R(y, a)) = R(y, a) ≥ T (R(y, x), R(x, a)) = R(y, x).

The previous lemma has a nice interpretation. It says that if a and b are between x and y, then a and b are more
equivalent between them than x and y. In the following example we illustrate how to visualize a linear preference as a
total preorder with an extra structure. This representation has been used in most of the proofs.

Example 3.5. The figure below is a good representation of how we can imagine a linear preference R.
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Figure 1: R1 is not a linear preference whereas R2 ∈ LPT L
and R3 ∈ LPmin.

4Clearly the sets LPT are different depending on the t-norm T , as the Example 3.5 explicitly shows.
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Here, the three alternatives are ranked as x �R y �R z. In the second case, R2(y, x) = 0.7, R2(z, y) = 0.3 and
R2(z, x) = 0.2. Since y is between x and z, R2(y, x) ≥ R2(z, x). It can be interpreted as the degree of equivalence of
x and y is greater than the degree of equivalence of x and z. However, R1 is not a linear preference because of the
inequality R1(z, y) < T (R1(z, x), R1(x, y)) = R1(z, x).
In general, applying the inequality from Lemma 3.4 twice, we can deduce that min{R(z, y), R(y, x)} ≥ R(z, x) ≥
T (R(z, y), R(y, x)). So, there is a constrain coming from being a linear preference and another from the t-norm itself.
In particular, notice that R2 does not belong to LPmin but to LPT L

5. From that, we deduce that the sets of linear
preferences LPT are different depending on the t-norm T .
Finally, for every R ∈ LPmin R(z, x) = min{R(z, y), R(y, x)}. So, we can state that the degrees between consecutive
alternatives determine the whole preference R.

Finally we need a technical lemma that allows us to extend linear preferences in the same way that it is commonly
done with total preorders. In many situation in classical Social Choice (e.g. [?, Chapter 8]), the reasoning is applied on
three alternatives instead of the whole set X. These types of arguments are feasible because any preorder over a subset
of X can be trivially extended to the whole set X. The next lemma proves that we can make an equivalent extension
in sets of linear preferences.

Lemma 3.6. Let Z ⊆ X and R̃ be a reflexive, T -transitive and strongly-connected preference defined on Z. Then,
there is an extension R of R̃. That is, a reflexive, T -transitive and strongly-connected preference such that ReZ = R̃.

Proof. Given R̃ defined on Z, define R for every α, α′ ∈ Z and β, β′ ∈ X r Z as R(α, α′) = R̃(α, α′), R(α, β) =
R(β, β′) = 1 and R(β, α) = 0.

It is clear that R is reflexive and strongly-connected. It remains to see that it is T -transitive.
If we suppose that R is not T -transitive, there are x, y, z ∈ X such that R(x, z) < T (R(x, y), R(y, z)). From this

inequality we obtain that R(x, z) < 1, 0 < R(x, y) and 0 < R(y, z). Using the definition of R we deduce that: if z ∈ Z
then y ∈ Z, if y ∈ Z then x ∈ Z and if x ∈ Z, then z ∈ Z. In other words, the three alternatives belong or not to Z
together. This is a contradiction, because if they belong, they do not satisfy the inequality by hypothesis of R̃, but if
they do not belong, R(x, y) = R(y, z) = R(x, z) = 1 and the inequality is not satisfied.

Remark 3.7. Notice that the same proof can be used to non-strongly-connected fuzzy preferences since every strongly-
connected preference is S-connected for any t-conorm S.

Finally, we need the following definition for a technical purpose. Mainly, it will be useful when we need to reduce
the degree of indifference to 0 in order to obtain a linear preference with values in {0, 1}. That is, a crisp preference or
a total preorder.

Definition 3.8. Let R be a preference. We define R0 as the fuzzy preference taking values in {0, 1} defined as R0(x, y) =
1 if and only if R(x, y) = 1 and R0(x, y) = 0 otherwise. In the same way, given a profile R, R0 is the profile defined
as R0

i = Ri
0.

Definition 3.9. Let % be a total preorder on X. We define R% as the fuzzy preference satisfying R%(x, y) = 1 if x % y
and R%(x, y) = 0 otherwise.

It is a routine to check that R% and R0 are linear preferences.

Example 3.10. In the definition above, we have the most basic type of linear preferences. Another type of simple linear
preferences which will be used in this article are the ones whose degrees between alternatives are constant. That is, there
is an α ∈ [0, 1] and a total preorder % such that for every x, y ∈ X R(x, y) = 1 if x % y and R(x, y) = α if y �R x.
In the case in which α = 1, the preference shows indifference between all alternatives, whereas when α = 0 we are in
the situation of Definition 3.9.

The linear preferences explained in the previous example will play a central role in the next section. They, along
with Lemma 3.6, will facilitate the writing of the proofs.

5T L denotes the  Lukasiewicz t-norm defined as T L(x, y) = max{0, x + y − 1}.
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4 Aggregating linear preferences

This section will study the aggregation functions that satisfy the properties from Definition 2.7. We will follow a
similar strategy to the used in [22, 25] for aggregating total preorders. However, those arguments can not be applied
straightforwardly. After proving Propositions 4.1, 4.2 and Corollary 4.3, we will be able to use ultrafilters in order to
describe the aggregation function which we are interested in and prove the main results of this article.

The proposition below states that, under the IIA assumption, if the preference between a pair of alternatives is
equal to another pair, then the social preference between these pairs have to coincide. This type of properties is usually
named in the literature as neutrality. That is, the aggregation function is invariant with respect to permutations of
alternatives.

Proposition 4.1. Let f be an aggregation function satisfying the independence of irrelevant alternatives and weakly
Paretian. Then, for every pair of profiles R,R′ ∈ LPN and alternatives a, b, x, y ∈ X the following holds: If for every
i ∈ N Ri(x, y) = R′i(a, b), Ri(y, x) = R′i(b, a) and min{Ri(x, y), Ri(y, x)} < 1, then f(R)(x, y) = f(R′)(a, b) and
f(R)(y, x) = f(R′)(b, a).

Proof. We can suppose without loss of generality that x %f(R) y. We define R∗ using the Lemma 3.6 as the extension

of the profile R̃∗ defined on {x, y, a, b} as R̃∗ie{x,y} = Rie{x,y} and R̃∗ie{a,b} = R′ie{a,b}. Moreover, we define R̃∗i (a, x) =

R̃∗i (y, b) = 1, R̃∗i (x, a) = R̃∗i (b, y) = ai and if x �Ri y we define R̃∗i (a, y) = R̃∗i (x, b) = 1 and R̃∗i (y, a) = R̃∗i (b, x) = ai,
on the contrary, if y �Ri

x we define R̃∗i (a, y) = R̃∗i (x, b) = ai and R̃∗i (y, a) = R̃∗i (b, x) = 1. Using independence of
irrelevant alternatives and weak Pareto condition, we obtain that a �f(R∗) x %f(R∗) y �f(R∗) b. Moreover, if we apply
Lemma 3.4, we obtain that f(R∗)(y, x) ≥ f(R∗)(b, a). Finally, using independence of irrelevant alternatives, we obtain
that f(R)(y, x) ≥ f(R)(b, a)
We can use a similar argument in order to prove that f(R)(y, x) ≤ f(R)(b, a). It is only necessary to define R∗i (x, a) =
R∗i (b, y) = 1, R∗i (a, x) = R∗i (y, b) = ai.

The next proposition and corollary state that if the qualitative behaviour of two profiles coincide, then its aggregation
also have to coincide.

Proposition 4.2. Let f be an aggregation function satisfying the independence of irrelevant alternatives and weakly
Paretian, and x, y ∈ X. If for every i ∈ N a profile R satisfies x �Ri

y or y �Ri
x, then %f(R)e{x,y}=%f(R0)e{x,y}.

Proof. Set a profile R satisfying the conditions of the proposition. We can suppose without loss of generality that
x %f(R) y. We choose a third alternative z ∈ X and we define a profile R′ satisfying for every i ∈ N Rie{x,y} = R′i{x,y},

R′i(z, y) = Ri(x, y), R′i(y, z) = Ri(y, x) and defined for the other pairs according to Lemma 3.6. Proposition 4.1
guarantees that z %f(R′) y. We define the profile R′′ for every i ∈ N R′′ie{x,y} = R0

ie{x,y}, R
′′
ie{z,y} = R0

ie{z,y},

R′′i (z, x) = 0, R′′i (x, z) = 1 and the remaining pairs according to Lemma 3.6. Applying the independence of irrelevant
alternatives, we obtain that z %f(R) y. Applying the weak Paretian property we obtain that x �f(R′′) z, and we obtain
x �f(R′′) y. Applying the independence of irrelevant alternatives again, we obtain that x �f(R0) y.
Moreover, notice that x ∼f(R) y is not possible. If it were the case, we could apply again the same procedure as above
but starting from y %f(R) x. In that way, we would obtain that y �f(R0) x too. However, it is a contradiction. We
state that x �f(R) y or y �f(R) x, and this way we can conclude that %f(R)e{x,y}=%f(R0)e{x,y}.

Corollary 4.3. Let f be an aggregation function satisfying the independence of irrelevant alternatives and weakly
Paretian. For every pair of profiles R,R′ and alternatives x, y ∈ X such that %Rie{x,y}=%R′ie{x,y} and x 6∼Ri

y for
every i ∈ N , then %f(R)e{x,y}=%f(R′)e{x,y}.

Proof. If R and R′ satisfies the previous conditions, for every i ∈ N , Ri
0
e{x,y} = R′i

0
e{x,y} holds. Then, applying the

previous proposition, we obtain that

%f(R)e{x,y}=%f(R0)e{x,y}=%f(R′)e{x,y} .
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Remark 4.4. It is important to remark that the ultrafilter approach could not be applied in this Arrovian model without
Propositions 4.1, 4.2 and Corollary 4.3. In other models [4, 29], the defuzzification and the IIA are compatible enough
to avoid using auxiliary results as the three above. In the latter cases, the authors can straightforwardly apply the classic
results from the Arrovian literature. We defer a complete discussion about this topic to the Section 5.

Finally, we can proceed studying the aggregation functions using ultrafilters. First, we need to recall what is a filter
and an ultrafilter:

Definition 4.5. Let A be a set and F a family of subsets of A. We say that F is a filter if for every U, V ⊆ A the
following conditions are satisfied:

(i) ∅ /∈ F,

(ii) if U ∈ F and U ⊆ V , then V ∈ F,

(iii) if U, V ∈ F, then U ∩ V ∈ F.

Moreover, we say that a filter U is an ultrafilter if it is a maximal filter, that is, if for every filter F satisfying U ⊆ F,
we obtain that U = F.

Proposition 4.6. Let F be a filter on a set A. F is an ultrafilter if and only if for every V ⊆ A, V ∈ F or V c ∈ F.

Proof. See, for example, [32, Theorem 12.11].

We will see that the locally decisive coalitions with respect to an aggregation functions define, in fact, an ultrafilter
on the society. First, we have to give a formal definition for the locally decisive coalitions:

Definition 4.7. Let f be an aggregation function in LP in the society N . A coalition C ⊆ N is locally decisive if for
every pair x, y ∈ X and profile R ∈ LPN the following condition is satisfied:

[∀i ∈ Cx �Ri y and ∀i ∈ Ccy �Ri x]⇒ x �f(R) y.

In this article, we will use the term decisive instead of locally decisive because of economizing the language (see
different types of decisiveness in [23, Chapter 2]). Hence, we denote the set of all decisive coalitions of f as Df .

Now, we have all the requirements to prove that Df is an ultrafilter. As we have said, the arguments below are
inspired by the ones used by Kirman and Sondermann in [25]. There, they proved that the set of coalitions for a crisp
aggregation function is an ultrafilter. If we do the exercise of comparing the proofs of the remaining parts of this section
with the ones in [25], we will see that the previous propositions are the key to the adaptations we have made in the proofs.

First, the next proposition provides us with three equivalent definitions of decisive coalitions.

Proposition 4.8. Let f be an aggregation function satisfying the independence of irrelevant alternatives as well as
weak Pareto property. Then the following three sets are equal:

D′′f = {C ⊆ N : ∃ x, y ∈ X ∃R x �RC
y and y �RCc x and x �f(R) y}.

D′f = {C ⊆ N : ∃ x, y ∈ X ∀R x �RC
y and y �RCc x⇒ x �f(R) y}.

Df = {C ⊆ N : ∀ x, y ∈ X ∀R x �RC
y and y �RCc x⇒ x �f(R) y}.

Proof. It is straightforward to check that Df ⊆ D′f ⊆ D′′f . To prove that D′′f ⊆ D′f , using Corollary 4.3 is enough.
Finally, to prove that D′f ⊆ Df , we use Proposition 4.1.

The next proposition shows, finally, that the set of decisive coalitions is an ultrafilter.

Proposition 4.9. Let f be an aggregation function satisfying the independence of irrelevant alternatives as well as
weak Pareto property. Then Df is an ultrafilter.

Proof. First, since f is weakly Paretian, ∅ /∈ Df .
Secondly, if U,W ∈ Df and we want to prove that U ∩W ∈ Df , we set three different alternatives x, y, z ∈ X and
define a profile R as:



52 A. Raventós-Pujol

- for every i ∈ U ∩W , Ri(x, z) = Ri(x, y) = Ri(z, y) = 1 and Ri(z, x) = Ri(y, x) = Ri(y, z) = 0 (x �Ri z �Ri y
holds),

- for every i ∈ U rW , Ri(z, x) = Ri(z, y) = Ri(y, x) = 1 and Ri(z, x) = Ri(y, z) = Ri(x, y) = 0 (z �Ri
y �Ri

x
holds),

- for every i ∈ W r U , Ri(y, x) = Ri(y, z) = Ri(x, z) = 1 and Ri(x, y) = Ri(z, y) = Ri(z, x) = 0 (y �Ri
x �Ri

z
holds),

- for every i /∈ W ∪ U , Ri(y, x) = Ri(y, z) = Ri(z, x) = 1 and Ri(x, y) = Ri(z, y) = Ri(x, z) = 0 (y �Ri
z �Ri

x
holds).

We complete the definition of R over the remaining pairs of alternatives as in Lemma 3.6.
Since U ∈ Df , we obtain that z �f(R) y and from W ∈ Df we obtain x �f(R) y. Using the transitivity of �f(R), we
obtain that x �f(R) y. This proves that U ∩W ∈ D′′f = Df .
Now, we will prove that for every U ⊆ N , U ∈ Df or U c ∈ Df holds. We set an alternative z ∈ X and a total preorder
% in X r {z} without indifferences. We define a profile R as:

- for every i ∈ N , RieXr{z} = R%,

- for every i ∈ U and every s ∈ X r {z}, Ri(s, z) = 1 and Ri(z, s) = 0,

- for every i ∈ U c and every s ∈ X r {z}, Ri(z, s) = 1 and Ri(s, z) = 0.

Notice that this profile is well defined because it is crisp. Set two alternatives x, y ∈ X r {z}. We can suppose without
loss of generality that x � y, and by weak Pareto property we state that x �f(R) y. If we use that � is negatively
transitive, we obtain that x �f(R) z or z �f(R) y. Then U ∈ D′′f = Df or U c ∈ D′′f = Df .
Finally, we suppose that U ∈ Df and U ⊆ W . If W /∈ Df , then W c ∈ Df , and this implies that ∅ = U ∩W c ∈ Df .
However, at the beginning of the proof we have proved that this is not possible. We conclude that W ∈ Df .

We consolidate the proposition with the following theorem. It shows that we can assign a unique ultrafilter to every
aggregation function.

Theorem 4.10. Let f be an aggregation function in the society N . If f is weakly Paretian and satisfies the independence
of irrelevant alternatives, then there is a unique ultrafilter U such that for every profile R ∈ LPN and every pair of
alternatives x, y ∈ X, the following holds for every coalition U ∈ U:

if for every i ∈ U x �Ri
y, then x �f(R) y.

Moreover, if f is strongly Paretian, the following inequality is satisfied:

Pf(R)(x, y) ≥ inf
i∈U

PRi(x, y).

Proof. Using Proposition 4.9 we obtain that Df is an ultrafilter. First, we will check that it satisfies the statements of
this theorem and later that it is unique.
Given a U ∈ Df , we consider a profile R and a pair of alternatives x, y ∈ X with x �Ri y for every i ∈ U . We define a
partition of N = N1 ∪N2 ∪N3 as N1 = {i ∈ N : x �Ri

y}, N2 = {i ∈ N : y %Ri
x} and N3 = {i ∈ N : x ∼Ri

y}. After,
we set a third alternative z ∈ X and we define another profile R′ as:

- R′i(x, y) = R′i(x, z) = R′i(z, y) = 1 and R′i(y, x) = R′i(z, x) = R′i(y, z) = Ri(y, x) for every i ∈ N1,

- R′i(y, x) = R′i(z, x) = R′i(y, z) = 1 and R′i(x, y) = R′i(x, z) = R′i(z, y) = Ri(x, y) for every i ∈ N1,

- R′i(x, y) = R′i(y, x) = R′i(x, z) = R′i(y, z) = 1 and R′i(z, x) = R′i(z, y) = 0 for every i ∈ N3

and defined over the remaining pairs as in Lemma 3.6. Since U ⊆ N1, N1 ∈ Df . Using the decisiveness of N1, we
conclude that z �f(R′) y. Applying the same argument on N1 ∪N3, we obtain that x �f(R′) z. We can conclude that
x �f(R′) y, and applying the independence of irrelevant alternatives we obtain that x �f(R) y.
To prove the uniqueness, consider two different ultrafilters U and U′ satisfying the conditions of the theorem. Then,
there exist a coalition U ∈ UrU′. Then, we can see that U c ∈ U′. We can consider a profile R and a pair of alternatives
x, y ∈ X satisfying x �RU

y and y �RUc x. However, since both of them satisfy the conditions of the theorem, we
obtain that x �f(R) y �f(R) x, and it is a contradiction. We can conclude that the ultrafilter of the theorem is unique.
Finally, in order to prove the last inequality, it is enough to prove that if x �f(R) y, then f(R)(y, x) ≤ supi∈U Ri(y, x).
First, we can suppose that for every i ∈ U x �Ri

y. Set an alternative z ∈ X and define the profile R′ as:
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- R′ie{x,y} = Rie{x,y},

- R′i(x, z) = R′i(z, y) = 1 and R′i(z, x) = R′i(y, z) = Ri(y, x) if i ∈ U ,

- R′i(x, z) = R(y, z) = 1 and R′i(z, x) = R′i(z, y) = 0 if i /∈ U .

and the image over the remaining pair of alternatives as in Lemma 3.6. First, since U is decisive, we obtain that
x �f(R) z �f(R) y. If we apply Lemma 3.4 we obtain that f(R)(y, x) ≤ f(R)(z, x). Hence, if we apply the strong
Pareto criterion, we obtain that f(R)(z, x) ≤ supi∈N Ri(z, x) = supi∈U Ri(z, x) = supi∈U Ri(y, x).

The theorem below studies the opposite direction. It shows that every ultrafilter comes from an aggregation function.
However, we do not have any insight about the uniqueness. That is, different aggregation functions may induce the
same ultrafilter.

Theorem 4.11. Let N be a society and U an ultrafilter in N . There is an aggregation function f satisfying the
independence of irrelevant alternatives and strong Paretian whose set of decisive coalitions is Df = U.

Proof. Set an ultrafilter U and define the aggregation function f as:

f(R)(x, y) =


1 if {i ∈ N : x �Ri

y} ∈ U,

0 if {i ∈ N : y �Ri x} ∈ U,

1 otherwise.

It is straightforward to check that f(R) is reflexive and strongly-connected for every R ∈ LPN . If f(R) were not
transitive, then there would be three alternatives x, y, z ∈ X such that f(R)(x, y) < T (f(R)(x, z), f(R)(z, y)), so
f(R)(x, y) = 0 and f(R)(x, z) = f(R)(z, y) = 1. Then {i ∈ N : y �Ri x} ∈ U and {i ∈ N : z �Ri x}, {i ∈ N :
y �Ri z} /∈ U, and we can state that {i ∈ N : z -Ri x}, {i ∈ N : y -Ri z} ∈ U. Finally, we can conclude that
{i ∈ N : y -Ri

x} ∈ U because {i ∈ N : y -Ri
x} ⊇ {i ∈ N : z -Ri

x} ∩ {i ∈ N : y -Ri
z}. This is a contradiction

because {i ∈ N : y -Ri
x} = {i ∈ N : y �Ri

x}c.
Finally, to prove that U = Df , it is enough to see that U ⊆ D′′f . Given an U ∈ U, consider a profile R and a pair of
alternatives x, y ∈ X such that x �Ri y if i ∈ U and y �Ri x otherwise. It is clear that 1 = f(R)(x, y) > f(R)(y, x) = 0.
Then U ∈ D′′f = Df .

In most of the literature, the results of aggregation are applied over finite societies. Next, we will see the consequences
of the previous theorems in finite societies.

Corollary 4.12. Let be f an aggregation function on LP and N finite. If f is weakly Paretian and satisfies the
independence of irrelevant alternatives, then f is dictatorial. Besides, if f is strongly Paretian, f is strongly dictatorial.

Proof. If N is finite, every ultrafilter U in N is generated by a single element, that is, there is an i ∈ N that U = {V ⊆
N : i ∈ V }6. By Theorem 4.10, Df is an ultrafilter in N , then Df = {k} for some k ∈ N . Clearly, k is a dictator.
Moreover, if f is strongly Paretian, by the same theorem, Pf(R) ≥ PRk

for every profile R ∈ LP, this implies that k is
a strong dictator.

5 Conclusions

The main achivements of this paper are the Theorem 4.10 characterizing the imposibility of a family of Arrovian models
as well as the propositions that allows us to use arguments from Kirman and Sonderman paper in these fuzzy models.
In this work, we have described a new fuzzy model by means of crisp binary relations similarly as it has been done
in other works with the same spirit (e.g. [4, 6, 29]). We decided to focus on strongly-connected preferences instead
of general S-connected preferences as a starting point of a more general study. Indeed, strongly-connected preferences
have allowed us to define an associated preorder and use techniques from crisp literature. A priory, the same arguments
can not be applied over more general sets of preferences.
Propositions 4.1, 4.2 and Corollary 4.3 show that the strongly-connectedness condition is really strong. First, these
intermediate results are the keystone of Theorem 4.10 in which the model’s impossibility is proved. However, we can

6It is easy to check from the definition: If it were not the case, then for all j ∈ N {j} /∈ U. Then, for all of them, {j}c ∈ U. However,
since N is finite, ∅ =

⋂
j∈N{j}c ∈ U. But this contradicts the definition of a filter.



54 A. Raventós-Pujol

deduce two additional properties of the model; one of them is proper from classical Social Choice, and the second one
from fuzzy modelization.
The first one is the neutrality; that is, the aggregation function has a symmetry with respect to the alternatives. Al-
though neutrality is not imposed as an axiom in the standard fuzzy literature, most of the aggregation fuzzy functions
are neutral (e.g. [12, Lemma 4], [14, Proposition 3.9] or [21, Theorem 4.43]). This fact raises the question of whether we
could derive the neutrality from the axioms in most of the cases as it happens in the Arrovian model or in Proposition
4.1.
Second, Proposition 4.2 proves that two profiles with the same qualitative behaviour have the same aggregation in
qualitative terms. This is quite surprising because the independence of irrelevant alternatives is defined in quantitative
terms. Notice that other models in the literature use qualitative formulations of the independence of irrelevant alter-
natives property (see [7, 26]). In these models, it is quite natural to build associated preorders compatible with the IIA
property and use them to describe the aggregation function. It is the case, for example, of the model studied by Basile
and Scalzo [4]. There, the IIA property chosen (different from the one in this article) defines an equivalence relation
on the set of preferences, and it is in bijection with the set of crisp binary relations defined by a defuzzification method
(different from here). In our case, such bijection does not arise and, for that reason, we need Propositions 4.1, 4.2 and
Corollary 4.3 in order to guarantee that some non-equivalent (with respect IIA) preferences behave equally once defuzzi-
fied. In this paper, we have called the last ”equally behave” as qualitative IIA, and it is a consequence of the quantitative
IIA (in Definition 2.7) and the strongly-connectedness. It will be interesting to study the relations between the exten-
sions of IIA deeply. As far as we know, there is not extended studies about the relations between distinct IIA properties.

We have studied the role of strong dictators. This type of dictators appears in some papers (e.g. [3]), but their
study is not widespread. We should ask ourselves the reason behind the importance of being strictly greater than 0
(PR(x, y) > 0) and the lack of importance of being grater than other numbers (PR(x, y) > α, α ∈ [0, 1)). In a fuzzy
model, where the concept of vagueness is the central point, which is the difference between, for example, the degree
α = 0 and the degree α = 10−50?

Finally, we need to make some comments about Theorem 4.11. This theorem shows that every ultrafilter has at least
one associated aggregation function, but it is not necessarily unique. In the proof, we define an aggregation function
whose image only contains preferences with values in {0, 1}; in other words, they are crisp functions. However, other
aggregation rules which take into account intermediate degrees may exist.
In addition, there is a little confusion in some papers in the literature about the qualitative behaviour of the rules
defined using ultrafilters. For instance, consider an ultrafilter U ⊆ P(N). Given a pair of alternatives x, y ∈ X and a
profile R ∈ LP, since we expect to be U = Df , {i ∈ N : x �Ri

y} ∈ U has to imply that x �f(R) y. However, when
{i ∈ N : x �Ri y}, {i ∈ N : y �Ri x} /∈ U7, then we can define the image of f without any constraint coming from
U, that is, the three cases x �f(R) y, y �f(R) x or x ∼f(R) y may be feasible. In Theorem 4.11, the third option (i.e.
f(R)(x, y) = f(R)(y, x) = 1) have been chosen for all situations of indeterminacy.
If we were to characterize all aggregation functions compatible with a given ultrafilter, we would have to consider the
quantitative and the qualitative indeterminacies explained above to create a good classification.

6 Future research

In the future, we will study the sets of non-strongly-connected S-connected preferences. We will try to extrapolate
the same technique used in this article to a more general case. The main drawback of such application relies on the
properties of the binary relation %R. When %R is defined from a T -transitive and S-connected fuzzy relation R (for
an arbitrary T t-norm and S t-conorm), it might not be a total preorder8 and, as a consequence, it is not immediate
to apply the defuzzification method we have used in the present article. Taking this into account, we think about using
other types of order binary relations (for instance, quasi-transitive binary relations or interval orders), or we could
associate a family of binary relations to every fuzzy preference instead of a single one.
Using one of these adjustments, we could try to describe the qualitative behaviour of fuzzy preferences as we have made
in this article using total preorders.

7It can be proved that this condition is equivalent to say that {i ∈ N : x ∼Ri
y} ∈ U.

8Fono and Andjiga [17] characterized when a T -transitive and S-connected fuzzy binary relation defines a total preorder.
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[29] A. Raventós-Pujol, M. J. Campión, E. Induráin, Decomposition and arrow-like aggregation of fuzzy preferences,
Mathematics, 8(3) (2020), 436.

[30] G. Richardson, The structure of fuzzy preferences: Social choice implications, Social Choice and Welfare, 15(3)
(1998), 359-369.

[31] M. A. Satterthwaite, Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems for voting
procedures and social welfare functions, Journal of Economic Theory, 10(2) (1975), 187-217.

[32] S. Willard, General topology, Dover Publications, Mineola, N.Y, 2004


	Introduction
	Preliminaries
	Linear fuzzy preferences
	Aggregating linear preferences
	Conclusions
	Future research

