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Abstract—Grouping functions and their dual counterpart,
overlap functions, have drawn the attention of many authors,
mainly because they constitute a richer class of operators com-
pared to other types of aggregation functions. Grouping functions
are a useful theoretical tool to be applied in various problems, like
decision making based on fuzzy preference relations. In pairwise
comparisons, for instance, those functions allow one to convey
the measure of the amount of evidence in favor of either of two
given alternatives. Recently, some generalizations of grouping
functions were proposed, such as (i) the n-dimensional grouping
functions and the more flexible general grouping functions, which
allowed their application in n-dimensional problems, and (ii)
n-dimensional and general interval-valued grouping functions,
in order to handle uncertainty on the definition of the mem-
bership functions in real-life problems. Taking into account
the importance of interval-valued fuzzy implication functions in
several application problems under uncertainty, such as fuzzy
inference mechanisms, this paper aims at introducing a new
class of interval-valued fuzzy material implication functions. We
study their properties, characterizations, construction methods
and provide examples.

Index Terms—Grouping functions, general interval-valued
grouping functions, fuzzy material implication functions

I. INTRODUCTION

Bustince et al. introduced the concept of overlap functions
[1], which are a type of aggregation function [2] not requiring
the associativity property, aimed at the application in image
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processing. The main idea was to measure the degree of
overlapping between two classes or objects. The “dual” notion
of overlap functions, also introduced by Bustince et al. [3], are
the grouping functions. The gist of those functions is to convey
the measure of the amount of evidence in favor of either of two
alternatives whenever one performs pairwise comparisons [4]
in decision making problems based on relations of fuzzy pref-
erence [5]. Likewise, grouping functions have been adopted
as the disjunction operator in a variety of situations, e.g., in
image thresholding technique [6] and for the development of
a class of implication functions to construct fuzzy subsethood
measures and entropy [7].

Taking as reference the well-known operators like t-norms
and t-conorms [8], overlap and grouping functions are indeed
much richer classes, respectively. Those functions do present
the self-closeness feature with respect to the convex sum
and the aggregation by generalized composition of overlap
and/or grouping functions [9], [10], whereas t-norms and t-
conorms do not respect analogous properties. Moreover, the
maximum t-conorm, for instance, is known to be the only
idempotent t-conorm and the unique homogeneous t-conorm.
On the other hand, one can find numberless idempotent, as
well as, homogeneous grouping functions [9], [10].

Now, observe that overlap and grouping functions are bi-
variate functions. Since they may be non associative, they
can only be applied in bi-dimensional problems (when only
a pair of classes/objects are considered). Therefore, some
ideas came up to tackle that issue. In Gómez et al. [11], n-
dimensional overlap functions were proposed and applied to
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fuzzy rule based classification systems (FRBCSs), which are
usually applied in n-ary problems. Additionally, those func-
tions were applied in decomposition strategies [12]. Gómez
et al. [13] also presented the idea of n-dimensional grouping
functions, applying them as an alternative method to quantify
the quality of a fuzzy community detection output based on
n-dimensional operators.

Among the works in the n-dimensional context, it is im-
portant to point out the one by De Miguel et al. [14], who
introduced the concept of general overlap functions, which
are n-ary functions with less restrictive boundary conditions,
applied to identify the matching degree in the fuzzy reasoning
method of FRBCSs. Then, Santos et al. [15] introduced
the theoretical basis of general grouping functions, which
is a resource that allows more flexibility to n-dimensional
grouping functions and can be interpreted, for example, as
the quantity of evidence in favor of one alternative among
multiple ones when performing n-ary comparisons in multi-
criteria decision making based on n-ary fuzzy heterogeneous,
incomplete preference relations [16].

A. What is the importance of general interval-valued over-
lap/grouping functions?

Modelling fuzzy systems involves challenging tasks such
as the definition of adequate membership functions. In the
literature, it is common to deal with the underlying uncertainty
in this process, usually associated with the linguistic terms
[17], by applying interval-valued fuzzy sets (IVFSs) [18]. As
addressed by several authors [19]–[21], those sets can model
not only uncertainty (regarding the membership function) but
also vagueness (soft class boundaries), and so, they have had
great performance in various applications, such as game theory
[22], pest control [23] and classification problems [24].

Independent contributions given by Bedregal et al. [21]
and Qiao and Hu [25] presented the notion of interval-
valued overlap functions. More recently, general interval-
valued overlap functions were proposed by Asmus et al.
[19], who also introduced interval-valued overlap indices, with
applications to interval-valued FRBCS. Moreover, Asmus et
al. [24] presented the concept of n-dimensional admissibly
ordered interval-valued overlap functions, which are increasing
functions concerning a total order, addressing their relevance
in interval-valued FRBCS.

Despite the introduction of interval-valued grouping func-
tions by Qiao and Hu [25] in 2017, their proposal is limited to
problems of two classes, which is an obstacle to be overcome
in problems with n classes, as previously discussed. In 2020,
Asmus et al. [26] introduced the concepts of n-dimensional
and general interval-valued grouping functions, in such a way
that the latter offers more flexibility than the former.

B. Which would be the role of interval-valued fuzzy material
implication functions?

The usage of if-then clause/rule in fuzzy rule-based systems
turns the process of representing inferential knowledge very
intuitive, and, so, it has been commonly used in several works.

It is possible to construct implication-like operators in various
and distinct ways. In the fuzzy logic setting, implication
functions have been deeply studied throughout years, both in
applied and theoretical fields [27].

Classic logical operators ∧ (and), ∨ (or) and ∼ (not) can
be generalized, to the unit interval [0, 1], by t-norms T , t-
conorms S and fuzzy negations N , respectively [8]. These
fuzzy operators can be used to construct fuzzy implica-
tion functions, such as the sub-classes of material implica-
tions known as (S,N)-implication functions, the residual or
intuitionistic-logic implications (R-implication functions), the
quantum logic implications (QL-implication functions), and
also the Dishkant implications or implications of orthomodular
lattices (D-implication functions) [27]. Several definitions in
the interval-valued context were also presented, e.g. [28].

Notwithstanding the foregoing implications functions, other
studies appeared fetching less restrictive and more flexible
operators than t-norms and t-conorms. For instance, we can
mention works adopting uninorms under some conditions by
Mas et al. [29], or aggregation functions, by Ouyang [30].

Thus, in order to introduce classes of fuzzy implication
functions based on richer operators than t-norms and t-
conorms (namely, overlap O and grouping G functions, re-
spectively) and which have features of flexibility and less
restrictiveness, Dimuro et al. [31] have presented some rel-
evant concepts, such as the material implications known as
(G,N)-implication functions, RO-implication functions (the
residual implications), QL-implication functions derived from
tuples (O,G,N) (the quantum logic implications), and D-
implication functions derived from grouping functions (the
Dishkant implications). Several other works on this subject
may be found in the literature [32], some of them considering
interval-valued approaches [33].

In particular, in this paper we are going to explore a
more flexible approach by introducing interval-valued material
implication functions derived from general interval-valued
grouping functions and interval-valued fuzzy negations. That
is, we use general interval-valued grouping functions in order
to generalize the Boolean implication p → q ≡∼ p ∨ q,
studying their properties and characterizations.

C. The objective and the organization of this paper

The objective of the present work is to introduce a new
and more flexible class of fuzzy material implications in the
interval-valued context, namely the (GG,N )-implication func-
tions derived from general interval-valued grouping functions
GG, studying properties and providing their characterization
(Section III). Moreover, Section II presents some preliminary
concepts and Section IV is the Conclusion.

II. PRELIMINARIES

Let L([0, 1]) be the set of closed subintervals of the unit
interval [0, 1], L([0, 1]) = {[x1, x2]|0 ≤ x1 ≤ x2 ≤ 1}.
Denote x = (x1, . . . , xn) ∈ [0, 1]n and X = (X1, . . . , Xn) ∈
L([0, 1])n. For any X = [x1, x2], the left and right end-
points of X are represented, respectively, by X = x1 and



X = x2. For any X ∈ L([0, 1])n, X = (X1, . . . , Xn) and
X = (X1, . . . , Xn). In this work, we adopt the product order
in L([0, 1])n , given by X ≤Pr Y ⇔ X ≤ Y ∧ X ≤
Y , for all X,Y ∈ L([0, 1]). An interval-valued mapping
F : L([0, 1])n → L([0, 1]) is said to be ≤Pr-increasing if
it is increasing with respect to the product order ≤Pr, i.e.,
X1 ≤Pr Y1, . . . , Xn ≤Pr Yn ⇒ F (X) ≤Pr F (Y) is
satisfied, for all X,Y ∈ L([0, 1])n.

Let F be an interval-valued mapping. F is Moore-
continuous if it is continuous with respect to the Moore
metric [34] dM : L([0, 1])2 → R, given, for all
X,Y ∈ L([0, 1]), as follows: dM (X,Y ) = max(|X −
Y |, |X − Y |). It is possible to generalize the Moore-metric
to L([0, 1])n, for all X,Y ∈ L([0, 1])n: dnM (X,Y) =√
dM (X1, Y1)2 + . . .+ dM (Xn, Yn)2.
Given two functions f, g : [0, 1]n → [0, 1] such that f ≤ g,

the mapping f̂, g : L([0, 1])n → L([0, 1]) is defined, for all
X ∈ L([0, 1])n, by f̂, g(X) = [f(X), g(X)].

Definition 2.1: [35] A mapping F : L([0, 1])n → L([0, 1])
is an ≤Pr-increasing interval-valued function that is called
representable if there are increasing functions f, g : [0, 1]n →
[0, 1] such that f ≤ g and F = f̂, g. f and g are said to be
the representatives of the interval-valued function F

When F = f̂, f , we simply represent by f̂ .
Next, we provide some interval operations used in this paper

[34], for all X,Y ∈ L([0, 1]):

Supremum: sup(X,Y ) = [max(X,Y ),max(X,Y )];

Sum: X + Y = [X + Y ,X + Y ];

Limited Sum: X+̇Y = [min(1, X + Y ),min(1, X + Y )];

Subtraction: X − Y = [X − Y ,X − Y ];

Power: Xp = [Xp, X
p
], p > 0.

Definition 2.2: [36] N : L([0, 1])→ L([0, 1]) is an interval-
valued (iv) fuzzy negation if, for all X,Y ∈ L([0, 1]):

(N 1) N is decreasing, i.e. N (X) ≤Pr N (Y ) whenever
Y ≤Pr X;

(N 2) N ([0, 0]) = [1, 1] and N ([1, 1]) = [0, 0].
Moreover, N is strict if

(N 3) N is Moore continuous and
(N 4) N (X) <Pr N (Y ) whenever Y <Pr X .

It is strong if
(N 5) N (N (X)) = X , for each X ∈ L([0, 1]).

It is crisp if
(N 6) N (X) ∈ {[0, 0], [1, 1]}, for all X ∈ L([0, 1]).

Proposition 2.1: [36] Every strong iv-fuzzy negation N is
also strict.

Definition 2.3: [28] A mapping I : L([0, 1])2 → L([0, 1]) is
said to be an interval-valued (iv) fuzzy implication function
on 〈L([0, 1]),≤Pr〉 if the following properties hold by I, for
all X,Y, Z ∈ L([0, 1]):

(I1) If X ≤Pr Y then I(Y, Z) ≤Pr I(X,Z) ;
(I2) If Y ≤Pr Z then I(X,Y ) ≤Pr I(X,Z);
(I3) I([0, 0], Y ) = [1, 1];

(I4) I(X, [1, 1]) = [1, 1];
(I5) I([1, 1], [0, 0]) = [0, 0].
Remark 2.1: A similar definition to Def. 2.3 is obtained

whenever one respectively permutes (I3) and (I4) by:
(I3)* I([0, 0], [0, 0]) = [1, 1];
(I4)* I([1, 1], [1, 1]) = [1, 1].
Definition 2.4: [9], [27] The following properties may be

studied for an iv-fuzzy implication function I : [0, 1]2 → [0, 1],
for all X,Y, Z ∈ L([0, 1]):
(NP) Left neutrality property: I(1, Y ) = Y ;
(EP) Exchange principle: I(X, I(Y,Z)) = I(Y, I(X,Z));
(IB) Iterative Boolean property: I(X, I(X,Y )) = I(X,Y );
(CP) Law of contraposition (or, the contrapositive symmetry)

with respect to an iv-fuzzy negation N : I(X,Y ) =
I(N (Y ),N (X));

(L-CP) Left contraposition law with respect to an iv-fuzzy
negation N : I(N (X), Y )=I(N (Y ), X);

Definition 2.5: The natural iv-fuzzy negation of an iv-fuzzy
implication function I : L([0, 1])2 → L([0, 1]) is defined as
the function NI : L([0, 1]) → L([0, 1]), such that NI(X) =
I(X, [0, 0]), for all X ∈ L([0, 1]).

A function % : L([0, 1]) → L([0, 1]) is an interval-valued
(iv) automorphism if it is bijective and increasing with respect
to the product order (≤Pr). Thus, for an interval-valued
function F : L([0, 1])n → L([0, 1]), we define the interval-
valued function F % by [36]:

F %(X1, . . . , Xn) = %−1(F (%(X1), . . . , %(Xn))). (1)

Proposition 2.2: [36] Let % : L([0, 1]) → L([0, 1]) be an
iv-automorphism. Then %−1 is also an iv-automorphism.

Proposition 2.3: [35] Let % : L([0, 1]) → L([0, 1]). % is an
iv-automorphism if and only if % is Moore-continuous, strictly
increasing, %([0, 0]) = [0, 0] and %([1, 1]) = [1, 1].

Theorem 2.1: [36] Let N be an iv-(strict,strong) fuzzy
negation and let % be an iv-automorphism. Then N % is also
an iv-(strict,strong) fuzzy negation.

Definition 2.6: [37] An interval-valued mapping
A : L([0, 1])n → L([0, 1]) is called an n-dimensional
interval-valued (iv)aggregation function if the following
conditions hold:

(A1) A([0, 0] . . . , [0, 0])=[0, 0], A([1, 1] . . . , [1, 1])=[1, 1];
(A2) A is ≤Pr-increasing: for each i ∈ {1, . . ., n}, if

Xi ≤Pr Y then

A(X1, . . . , Xn)≤PrA(X1, . . . , Xi−1, Y,Xi+1, . . . , Xn).

Definition 2.7: [35] A mapping S : L([0, 1])2 → L([0, 1]) is
an interval-valued triangular conorm (iv-t-conorm, for short)
if, for all X,Y, Z ∈ L([0, 1]), the following properties hold:

(S1) S(X,Y ) = S(Y,X);
(S2) S(X,S(Y,Z)) = S(S(X,Y ), Z);
(S3) If X ≤Pr Y then S(X,Z) ≤Pr S(Y,Z);
(S4) S(X, [0, 0]) = X .



Definition 2.8: [26] A Gn : L([0, 1])n → L([0, 1]) is an n-
dimensional interval-valued (iv) grouping function if it satisfies
the following properties, for all X ∈ L([0, 1])n:

(Gn1) Gn is commutative;
(Gn2) Gn(X) = [0, 0] if and only if X1=. . .=Xn=[0, 0];
(Gn3) Gn(X) = [1, 1] if and only if there exists i ∈

{1, . . . , n} with Xi = [1, 1];
(Gn4) Gn is ≤Pr-increasing in the first component:

Gn(X1, . . . , Xn) ≤Pr Gn(Y,X2, . . . , Xn) when
X1≤Pr Y ;

(Gn5) Gn is Moore continuous.

Observe that sup(X) = [0, 0] if and only if X1 = . . . =
Xn = [0, 0]. Besides, sup(X) = [1, 1] if and only if there
exists i ∈ {1, . . . , n} with Xi = [1, 1].

Example 2.1: The following functions are some examples
of n-dimensional iv-grouping functions:

1. GnS(X) = sup(X);

2. Gnp(X) = [1, 1]−
n∏

i=1

([1, 1]−Xp
i ), for p > 0;

Theorem 2.2: [26] Take Gn1 and Gn2 as n-dimensional
grouping functions such that Gn1 ≤ Gn2. So, the mapping
̂Gn1, Gn2 is an n-dimensional iv-grouping function.
Definition 2.9: [26] Let a mapping Gn : L([0, 1])n →

L([0, 1]) be an n-dimensional iv-0-grouping function if and
only if the property (Gn2) from Definition 2.8 is replaced by:
(Gn2′) If X1 = . . . = Xn = [0, 0], then Gn(X) = [0, 0], for
all X ∈ L([0, 1])n. Similarly, let a mapping Gn : L([0, 1])n →
L([0, 1]) be an n-dimensional iv-1-grouping function if and
only if the property (Gn3) from Definition 2.8 is replaced by:
(Gn3′) If there exists i ∈ {1, . . . , n} with Xi = [1, 1], then
Gn(X) = [1, 1], for all X ∈ L([0, 1])n.

Example 2.2: Consider the n-dimensional interval-valued
limited sum, defined, for all X ∈ L([0, 1])n, by GnS(X) =
X1+̇ . . . +̇Xn. GnS is an n-dimensional iv-1-grouping func-
tion. However, GnS is not an n-dimensional iv-grouping
function, since (Gn3) does not hold.

Definition 2.10: [26] A function GG : L([0, 1])n →
L([0, 1]) is said to be a general interval-valued (iv) grouping
function if, for all X ∈ L([0, 1])n:

(GG1) GG is commutative;
(GG2) If X1 = . . . = Xn = [0, 0], then GG(X) = [0, 0];
(GG3) If there exists i ∈ {1, . . . , n} with Xi = [1, 1], then

GG(X) = [1, 1];
(GG4) GG is ≤Pr-increasing in the first component:

GG(X1, . . . , Xn) ≤Pr GG(Y,X2, . . . , Xn), when
X1≤Pr Y ;

(GG5) GG is Moore continuous.

Example 2.3: The function given, for all X∈L([0, 1])n, by

GGL(X) =


[0, 0] if m ≤ 1

n ,

[0,min(1, n ·m)] if min(1,m) ≤ 1
n

and min(1,m) > 1
n ,

n · (X1+̇ . . . +̇Xn) otherwise,

with m = min

(
1,

n∑
i=1

Xi

)
and m = min

(
1,

n∑
i=1

Xi

)
,

is a general iv-grouping function, which is neither an n-
dimensional iv-0-grouping function, nor an n-dimensional
iv-1-grouping function. Consequently, it is neither an n-
dimensional iv-grouping function.

Proposition 2.4: [26] If F : L([0, 1])n → L([0, 1]) is
a mapping that is either an n-dimensional iv-grouping, or
an n-dimensional iv-0-grouping and an n-dimensional iv-1-
grouping function, then F is also said to be a general iv-
grouping function.

Theorem 2.3: [26] Take two general grouping functions
GG1 and GG2, such that GG1 ≤ GG2. So, the mapping

̂GG1, GG2 is a general iv-grouping function.
Taking into account the results obtained in Theorem 2.3

and Prop. 2.4, it is possible to get a representable general
iv-grouping function. One may construct it by using n-
dimensional grouping functions (which, in turn, is called a
g-representable general iv-grouping function) or any of their
generalizations, such as 0-grouping, 1-grouping or general
grouping functions. Nevertheless, if a general iv-grouping
function is representable, then its representatives must be
general grouping functions.

Example 2.4: Let GGB be the general grouping func-

tion defined by GGB(x) = min

(
1, n−

n∑
i=1

(1− xi)
2

)
. So,

the representable general iv-grouping function GGB can be
given by taking GGB as both its representatives, given by
GGB(X) = ĜGB(X), for all X ∈ L([0, 1])n.

III. MATERIAL IV-FUZZY IMPLICATIONS DERIVED FROM
GENERAL IV-GROUPING FUNCTIONS

In this section, we introduce interval-valued implication
functions constructed by means of a bivariate general interval-
valued grouping function (or simply, general iv-grouping func-
tion) and an iv-fuzzy negation, called (GG,N )-implication
functions.

Let GG : L([0, 1])2 → L([0, 1]) be a general iv-grouping
function and let N : L([0, 1])→ L([0, 1]) be an iv-fuzzy nega-
tion. Define the iv-function IGG,N : L([0, 1])2 → L([0, 1]), for
all X,Y ∈ L([0, 1]), by:

IGG,N (X,Y ) = GG(N (X), Y ). (2)

Theorem 3.1: IGG,N : L([0, 1])2 → L([0, 1]) is an iv-fuzzy
implication, entitled (GG,N )-implication function.

Proof: Indeed, for all X,Y, Z ∈ L([0, 1]), it holds that:

(I1) X ≤Pr Y
(N1)⇒ N (Y ) ≤Pr N (X)

(GG4)⇒
GG(N (Y ), Z) ≤Pr GG(N (X), Z). So, IGG,N (Y, Z) ≤Pr

IGG,N (X,Z).

(I2) Y ≤Pr Z
(GG4)⇒ GG(N (X), Y ) ≤Pr GG(N (X), Z). So,

IGG,N (X,Y ) ≤Pr IGG,N (X,Z).

(I3) IGG,N ([0, 0], Y ) = GG(N ([0, 0]), Y )
(N2)
=

GG([1, 1], Y )
(GG3)
= [1, 1].

(I4) IGG,N (X, [1, 1]) = GG(N (X), [1, 1])
(GG3)
= [1, 1].

(I5) IGG,N ([1, 1], [0, 0]) = GG(N ([1, 1]), [0, 0])
(N2)
=



GG([0, 0], [0, 0]) (GG2)
= [0, 0].

Therefore, IGG,N is an iv-fuzzy implication function.
Example 3.1: Take the general grouping function GGB

defined by GGB(x, y) = min{1, 2− (1−x)2− (1− y)2}. By
Ex. 2.4, GGB(X,Y ) = ĜGB(X,Y ) is a general iv-grouping
function. Moreover, let N (X) =

[
1−X, 1−X

]
be the iv-

fuzzy negation. Hence, IGGB,N : L([0, 1])2 → L([0, 1]) is a
(GG,N )-implication given, for all X,Y ∈L([0, 1]), by:

IGGB,N (X,Y )

=
[
min

{
1, 2−X2−(1−Y )2

}
,min

{
1, 2−X2−(1−Y )2

}]
Next proposition presents some properties of (GG,N )-

implication functions.
Proposition 3.1: Let GG be a general iv-grouping func-

tion, N be an iv-fuzzy negation and IGG,N be a (GG,N )-
implication function. Then:

(i) IGG,N satisfies (NP) if and only if [0, 0] is the neutral
element of GG;

(ii) IGG,N satisfies R-CP(N );
(iii) If IGG,N satisfies (NP), then NIGG,N = N ;
(iv) If [0, 0] is the neutral element of GG, then NIGG,N = N ;
(v) If GG is associative, then IGG,N satisfies (EP);

(vi) If N is strong and IGG,N satisfies (EP), then GG is
associative;

(vii) If N is strong, then IGG,N satisfies L-CP(N );
(viii) If [0, 0] is the neutral element of GG and IGG,N satisfies

L-CP(N ), then N is strong;
(ix) If N is strong, then IGG,N satisfies CP(N );
(x) If IGG,N satisfies CP(N ) and [0, 0] is the neutral element

of GG, then N is strong,
where NIGG,N is the natural iv-fuzzy negation of IGG,N .

Proof: Indeed, one has that:
(i) for all Y ∈ L([0, 1]), IGG,N ([1, 1], Y ) = Y ⇔
GG(N ([1, 1]), Y ) = Y

(N2)⇔ GG([0, 0], Y ) = Y ⇔ [0, 0] is
the neutral element of GG.
(ii) For all X,Y ∈ L([0, 1]), IGG,N (X,N (Y )) =

GG(N (X),N (Y ))
(GG1)
= GG(N (Y ),N (X)) =

IGG,N (Y,N (X)). Therefore, IGG,N satisfies R-CP(N ).
(iii) By item (ii), for all X ∈ L([0, 1]),
NIGG,N (X) = IGG,N (X, [0, 0]) = IGG,N (X,N ([1, 1]))

(ii)
=

IGG,N ([1, 1],N (X))
(NP)
= N (X).

(iv) It is straightforward from items (i) and (iii).
(v) Since GG is associative, for all X,Y, Z ∈ L([0, 1]):

IGG,N (X, IGG,N (Y, Z))

= GG(N (X),GG(N (Y ), Z))
Assoc.
= GG(GG(N (X),N (Y )), Z)

(GG1)
= GG(GG(N (Y ),N (X)), Z)

Assoc.
= GG(N (Y ),GG(N (X), Z))

= IGG,N (Y, IGG,N (X,Z)).

Therefore, IGG,N satisfies (EP).

(vi) For all X,Y, Z ∈ L([0, 1]):

GG(X,GG(Y, Z))
(GG1)
= GG(X,GG(Z, Y ))

N strong
= GG(N (N (X)),GG(N (N (Z)), Y ))

= IGG,N (N (X), IGG,N (N (Z), Y ))
(EP)
= IGG,N (N (Z), IGG,N (N (X), Y ))

N strong
= GG(Z,GG(X,Y ))

(GG1)
= GG(GG(X,Y ), Z).

Therefore, GG is associative.
(vii) Since N is a strong iv-fuzzy negation, for all X,Y ∈
L([0, 1]):

IGG,N (N (X), Y )

= GG(N (N (X)), Y ) = GG(X,Y )
(GG1)
= GG(Y,X)

= GG(N (N (Y )), X) = IGG,N (N (Y ), X).

Therefore, IGG,N satisfies L-CP(N ).
(viii) Since [0, 0] is the neutral element of GG, we have that,
for all X ∈ L([0, 1]),

X = GG([0, 0], X)
(N2)
= GG(N (N ([0, 0])), X)

= IGG,N (N ([0, 0]), X)
(L-CP)
= IGG,N (N (X), [0, 0])

= GG(N (N (X)), [0, 0]) = N (N (X)).

Therefore, N is strong.
(ix) Since N is strong, then:

IGG,N (N (Y ),N (X)) = GG(N (N (Y )),N (X))

= GG(Y,N (X))
(GG1)
= GG(N (X), Y )

= IGG,N (X,Y ).

Therefore, IGG,N satisfies CP(N ).
(x) Since IGG,N satisfies CP(N ), we have for all Y ∈ L([0, 1])
and X = [1, 1], IGG,N (N (Y ),N ([1, 1])) = IGG,N ([1, 1], Y ),
i.e., GG(N (N (Y )),N ([1, 1])) = GG(N ([1, 1]), Y ), thus, by
(N 2), GG(N (N (Y )), [0, 0]) = GG([0, 0], Y ). Since [0, 0] is
the neutral element of GG, N (N (Y )) = Y , for all Y ∈
L([0, 1]). Hence, N is strong.

Proposition 3.2: Let GG be an associative general iv-
grouping function and let GG[0,0] : L([0, 1]) → L([0, 1]) be
given by GG[0,0](Y ) = GG([0, 0], Y ), for all Y ∈L([0, 1]).
Then, GG[0,0] is a surjective function if and only if GG is
an iv-t-conorm.

Proof: Assume that GG[0,0] is surjective. By (GG1) and
(GG4), (S1) and (S3) are satisfied, respectively. Since GG is
associative, we have that (S2) is verified. Again, by the asso-
ciativity of GG, for all Z ∈ L([0, 1]), GG([0, 0],GG([0, 0], Z))
= GG(GG([0, 0], [0, 0]), Z). So, by (GG2):

GG([0, 0],GG([0, 0], Z)) = GG([0, 0], Z), (3)



for all Z ∈ L([0, 1]). Now, given any Y ∈ L([0, 1]),
as GG[0,0] is surjective, there exists Z ∈ L([0, 1])
such that GG([0, 0], Z) = Y . So, GG([0, 0], Y ) =

GG([0, 0],GG([0, 0], Z))
Eq.(3)
= GG([0, 0], Z) = Y . Thus, (S4)

is also satisfied. Therefore, GG is an iv-t-conorm. The fact that
if GG is an iv-t-conorm, then GG[0,0] is a surjective function
follows straight from (S4).

Next, we present some results considering that N is a
crisp iv-fuzzy negation. We ensure, e.g., that one of the
most important properties of fuzzy implication, the Exchange
principle (EP), is satisfied by (GG,N )-implication functions.

Proposition 3.3: Let IGG,N : L([0, 1])2 → L([0, 1]) be a
(GG,N )-implication function where N : L([0, 1])→ L([0, 1])
is a crisp iv-fuzzy negation. Then: (i) NIGG,N = N ; (ii) IGG,N
satisfies (EP); (iii) If [0, 0] is the neutral element of GG, then
IGG,N satisfies (IB).

Proof: Take IGG,N (X,Y ) = GG(N (X), Y ). (i) Since
N is crisp, then, N (X) = [0, 0] or N (X) = [1, 1]. If
N (X) = [0, 0], then NIGG,N (X) = IGG,N (X, [0, 0]) =

GG(N (X), [0, 0]) = GG([0, 0], [0, 0]) (GG2)
= [0, 0] =

N (X). Now, if N (X) = [1, 1], therefore NIGG,N (X) =

IGG,N (X, [0, 0]) = GG(N (X), [0, 0]) = GG([1, 1], [0, 0]) (GG3)
=

[1, 1] = N (X).
(ii) For all X,Y ∈ L([0, 1]), since N is crisp, we have
that N (X),N (Y ) ∈ {[0, 0], [1, 1]}. So, one can consider the
following two cases:
(1) Let N (X) = N (Y ). So, for all Z ∈ L([0, 1]):

IGG,N (X, IGG,N (Y,Z)) =

= GG(N (X),GG(N (Y ), Z))

= GG(N (Y ),GG(N (X), Z))

= IGG,N (Y, IGG,N (X,Z)).

(2) Let N (X) 6= N (Y ). In this case, N (X) = [1, 1] or
N (Y ) = [1, 1]. So, by (GG3), for N (X) = [1, 1],

IGG,N (X, IGG,N (Y,Z)) =

= GG(N (X),GG(N (Y ), Z))

= GG([1, 1],GG(N (Y ), Z))

= [1, 1]

= GG(N (Y ), [1, 1])

= GG(N (Y ),GG([1, 1], Z))

= GG(N (Y ),GG(N (X), Z))

= IGG,N (Y, IGG,N (X,Z)).

For N (Y ) = [1, 1], it can be similarly demonstrated.
Therefore, for any case, IGG,N satisfies (EP).
(iii) Again, since N is a crisp iv-fuzzy negation, then N (X) =
[0, 0] or N (X) = [1, 1]. If N (X) = [0, 0], then, since [0, 0] is

the neutral element of GG,

IGG,N (X, IGG,N (X,Y )) = GG(N (X),GG(N (X), Y ))

= GG([0, 0],GG([0, 0], Y ))

= GG([0, 0], Y )

= GG(N (X), Y )

= IGG,N (X,Y ).

On the other hand, if N (X) = [1, 1], then

IGG,N (X, IGG,N (X,Y )) =

= GG(N (X),GG(N (X), Y ))

= GG([1, 1],GG([1, 1], Y ))
(GG3)
= [1, 1]

= GG([1, 1], Y )

= GG(N (X), Y )

= IGG,N (X,Y ).

Therefore, in any case, IGG,N satisfies (IB).
Lemma 3.1: Let I : L([0, 1])2 → L([0, 1]) be a Moore

continuous iv-fuzzy implication function. If NI : L([0, 1]) →
L([0, 1]) is a strong iv-fuzzy negation and I satisfies L-
CP(NI), then, for all X,Y ∈ L([0, 1]):

GGI (X,Y ) = I(NI(X), Y ) (4)

is a general iv-grouping function.
Proof: For all X,Y, Z ∈ L([0, 1]),

(GG1) GGI (X,Y ) = I(NI(X), Y )
(L-CP)
= I(NI(Y ), X) =

GGI (Y,X).

(GG2) GGI ([0, 0], [0, 0]) = I(NI([0, 0]), [0, 0])
(N2)
=

I([1, 1], [0, 0]) (I5)
= [0, 0].

(GG3) GGI ([1, 1], Y )= I(NI([1, 1]), Y )
(N2)
= I([0, 0], Y )

(I3)
=

[1, 1] and

GGI (X, [1, 1])=I(NI(X), [1, 1])
(I4)
= [1, 1].

(GG4) If X ≤Pr Y , then, by (N 1), NI(Y ) ≤Pr NI(X)
(I1)⇒

I(NI(X), Z) ≤Pr I(NI(Y ), Z) ⇒ GGI (X,Z) ≤Pr

GGI (Y,Z).
(GG5) It follows from the Moore continuity of I and NI .
Therefore, GGI is a general iv-grouping function.

Example 3.2: Take the iv-fuzzy implication
IL : L([0, 1])2 → L([0, 1]) defined, for all X,Y ∈ L([0, 1]),
by IL(X,Y ) =

[
min

(
1, 1−X + Y

)
,min

(
1, 1−X + Y

)]
.

By the continuity of the real functions (minimum, sum and
subtraction), IL is clearly Moore continuous. Besides,

NIL(NIL(X)) =
[
1− (1−X), 1− (1−X)

]
= X and

IL(NIL(X), Y ) =
[
min (1, X + Y ) ,min

(
1, X + Y

)]
=

[
min (1, Y +X) ,min

(
1, Y +X

)]
= IL(NIL(Y ), X),

i.e., NIL is a strong iv-fuzzy negation and IL satisfies L-
CP(NIL ). Thus, GGIL is a general iv-grouping function given
by GGIL(X,Y ) =

[
min (1, X + Y ) ,min

(
1, X + Y

)]
.



The next proposition provides a characterization for the
class of (GG,N )-implication functions.

Theorem 3.2: Take a function I : L([0, 1])2 → L([0, 1]). So,
the following statements are equivalent:

(i) I = IGG,N is a (GG,N )-implication function, where N
is strong iv-fuzzy negation and [0, 0] is a neutral element
of the general iv-grouping function GG;

(ii) I is Moore continuous and satisfies (I1), (NP) and L-
CP(NI), where NI is a strong iv-fuzzy negation.
Proof: (i) ⇒ (ii) By Prop. 3.1, I satisfies (I1). Since

N is strong, we have, by Prop. 2.1, that N is strict, thus N is
Moore continuous. So, it follows from the Moore continuity
of GG and N that I is also Moore continuous. Since [0, 0]
is a neutral element of GG, by Prop. 3.1(i), IGG,N satisfies
(NP), and for all X ∈ L([0, 1]),

NI(X) = I(X, [0, 0]) = GG(N (X), [0, 0]) = N (X).

Therefore, NI is a strong iv-fuzzy negation, since N is a
strong iv-fuzzy negation. So, by item (vii) of Prop. 3.1, L-
CP(NI) holds.
(ii) ⇒ (i) By (N 2), we have that, if Y ≤Pr Z then
NI(Z) ≤Pr NI(Y ). So,

I(X,Y )
NIstrong

= I(NI(NI(X)), Y )
(L-CP)
= I(NI(Y ),NI(X))

(I1)

≤Pr I(NI(Z),NI(X))
(L-CP)
= I(NI(NI(X)), Z)

NIstrong
= I(X,Z).

So, I satisfies (I2). Now, since I satisfies (NP),
I([1, 1], [1, 1]) = [1, 1] and I([1, 1], [0, 0]) = [0, 0]. There-
fore I verifies (I4)* and (I5), respectively. Moreover, since
NI is strong and I satisfies L-CP(NI), I([0, 0], [0, 0]) =

I(NI(NI([0, 0])), [0, 0])
(L-CP)
= I(NI([0, 0]),NI([0, 0])) =

I([1, 1], [1, 1]) = [1, 1]. Thus, I satisfies (I3)*. Therefore,
I is an iv-fuzzy implication function and since, by Prop. 2.1,
NI is Moore continuous, then I is also Moore continuous.
In addition, by Lemma 3.1, GGI(X,Y ) = I(NI(X), Y ) is a
general iv-grouping function. So, for all X,Y ∈ L([0, 1])

IGGI ,NI
(X,Y )

= GGI(NI(X), Y )=I(NI(NI(X)), Y )
NIstrong

= I(X,Y ).

Hence, I is a (GG,N )-implication. By Prop. 3.1(i), [0, 0] is
a neutral element of GGI , since I satisfies (NP), and so, by
Prop. 3.1(iv), N = NI is a strong iv-fuzzy negation.

Considering an iv-automorphism %, in order to obtain the
result proposed in Prop. 3.4 ahead, we need GG% and N % to
be a general iv-grouping function and an iv-fuzzy negation,
respectively. By Theorem 2.1, N % is an iv-fuzzy negation. So,
in the next lemma, we show an analogous result for GG%.

Lemma 3.2: Let GG : L([0, 1])2 → L([0, 1]) be a general
iv-grouping function and let % : L([0, 1]) → L([0, 1]) be an
iv-automorphism. Then GG% : L([0, 1])2 → L([0, 1]) is also a
general iv-grouping function.

Proof: Let us verify if GG% satisfies all conditions of
Def. 2.10. Since GG is a general iv-grouping function and,
by Prop. 2.2, %−1 is an iv-automorphism, for all X,Y, Z ∈
L([0, 1]): (GG1) GG%(X,Y ) = %−1(GG(%(X), %(Y )))

(GG1)
=

%−1(GG(%(Y ), %(X))) = GG%(Y,X).
(GG2) If X = Y = [0, 0], therefore GG%(X,Y ) =

%−1(GG(%(X), %(Y )))
Prop.2.3
= %−1(GG([0, 0], [0, 0])) (GG1)

=
%−1([0, 0]) = [0, 0].
(GG3) Let X = [1, 1] or Y = [1, 1]. If X =

[1, 1], then GG%(X,Y ) = %−1(GG(%(X), %(Y )))
Prop.2.3
=

%−1(GG([1, 1], %(Y )))
(GG3)
= %−1([1, 1]) = [1, 1]. For Y =

[1, 1], it is analogous.
Since GG, % and %−1 are ≤Pr-increasing and Moore contin-

uous (Prop. 2.2 and 2.3), then GG% satisfies (GG4) and (GG5),
respectively. Thus, GG% is a general iv-grouping function.

Now, we are able to generate a new interval-valued
(GG,N )-implication function, from an iv-automorphism % and
an interval-valued (GG,N )-implication function.

Proposition 3.4: Let I : L([0, 1])2 → L([0, 1]) be an iv-
fuzzy implication function and % : L([0, 1])→ L([0, 1]) an iv-
automorphism. Then, the following statements are equivalent.

(i) I is an interval-valued (GG,N )-implication function.
(ii) I% is an interval-valued (GG,N )-implication function.

Proof: (i) ⇒ (ii) Consider I = IGG,N , where GG is
a general iv-grouping function and N an iv-fuzzy negation.
Then, for all X,Y ∈ L([0, 1]),

I%(X,Y )

= I%
GG,N

(X,Y ) = %−1(IGG,N (%(X), %(Y )))

(i)
= %−1(GG(N (%(X)), %(Y )))

= %−1(GG(%(%−1(N (%(X)))), %(Y )))
Eq.(1)
= GG%(%−1(N (%(X))), Y ) = GG%(N %(X), Y )

= IGG%,N% (X,Y ).

Therefore, since N % is an iv-fuzzy negation and, by Lemma
3.2, GG% is a general iv-grouping function, then I% is a
(GG,N )-implication function.
(ii) ⇒ (i) Consider I% = IGG,N , where GG is a general iv-
grouping function and N is an iv-fuzzy negation. Then, for
all X,Y ∈ L([0, 1]),

I(X,Y )

= %(%−1(I(%(%−1(X), %(%−1(Y ))))))
Eq.(1)
= %(I%(%−1(X), %−1(Y )))
(ii)
= %(IGG,N (%−1(X), %−1(Y )))

= %(GG(N (%−1(X)), %−1(Y )))

= %(GG(%−1(%(N (%−1(X)))), %−1(Y )))
Eq.(1)
=

= GG%
−1

(N %−1

(X), Y ) = I
GG%−1

,N%−1 (X,Y ).

So, I = I
GG%−1

,N%−1 , once N %−1

is an iv-fuzzy negation

and, by Lemma 3.2, GG%
−1

is a general iv-grouping function.
Hence, I is a (GG,N )-implication function.



IV. CONCLUSIONS

In this work, considering the contributions of grouping
functions to several application areas, we focused on the devel-
opment of a more flexible class of fuzzy implication functions,
which also consider the modeling of uncertainty, namely, the
interval-valued fuzzy material implications, called (GG,N )-
implication functions. We also studied several properties and
provided the characterization.

Ongoing work consider the study of the other implication
functions derived from general iv-overlap and grouping func-
tions, e.g., the residual, the quantum logic and the Dishkant
implication functions, and their intersections.
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