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Experimental evidence that rill‑bed 
morphology is governed 
by emergent nonlinear spatial 
dynamics
Savannah Morgan 1, Ray Huffaker 1*, Rafael Giménez 2, Miguel A. Campo‑Bescos 2, 
Rafael Muñoz‑Carpena 1 & Gerard Govers 3

Past experimental work found that rill erosion occurs mainly during rill formation in response to 
feedback between rill‑flow hydraulics and rill‑bed roughness, and that this feedback mechanism 
shapes rill beds into a succession of step‑pool units that self‑regulates sediment transport capacity 
of established rills. The search for clear regularities in the spatial distribution of step‑pool units 
has been stymied by experimental rill‑bed profiles exhibiting irregular fluctuating patterns of 
qualitative behavior. We hypothesized that the succession of step‑pool units is governed by 
nonlinear‑deterministic dynamics, which would explain observed irregular fluctuations. We tested 
this hypothesis with nonlinear time series analysis to reverse‑engineer (reconstruct) state‑space 
dynamics from fifteen experimental rill‑bed profiles analyzed in previous work. Our results support 
this hypothesis for rill‑bed profiles generated both in a controlled lab (flume) setting and in an 
in‑situ hillside setting. The results provide experimental evidence that rill morphology is shaped 
endogenously by internal nonlinear hydrologic and soil processes rather than stochastically forced; 
and set a benchmark guiding specification and testing of new theoretical framings of rill‑bed 
roughness in soil‑erosion modeling. Finally, we applied echo state neural network machine learning 
to simulate reconstructed rill‑bed dynamics so that morphological development could be forecasted 
out‑of‑sample.

Overland (sheet) flow of water can rapidly channel into concentrated paths (rills) in response to topography, 
flow discharge (e.g., precipitation), soil properties, and surface  cover1. Rill flow causes rapid surface incision 
due to focused hydraulic power and erosive energy; and consequently, exceeds the sediment transport capacity 
of sheet  flow1, accounting for an estimated 80% of sediment eroded from bare  hillslopes2. Rill erosion is com-
mon on steep hillsides where vegetative cover has been compromised by human activities including  forestry1 
and periodic  cultivation3. Experimental work shows that rill erosion occurs mainly during rill  formation3 due 
to feedback between rill-flow hydraulics and rill-bed roughness that regulates the sediment transport capacity 
of established  rills3–6. As illustrated in Fig. 1, hillside slope and flow discharge increase rill flow velocity. Rill bed 
roughness increases with greater flow erosivity when flow and soil conditions combine so that bed geometry 
freely adjusts to flow hydraulics. The loop is completed as increased rill bed roughness creates hydraulic friction 
decreasing rill flow velocity, leading to reduced erosivity and sediment transport capacity of an established rill. 
This counteracts the initial increasing impact of hillside slope on rill flow velocity. Discovery of this feedback 
mechanism has cast doubt on the implicit assumption of the Universal Soil Loss Equation that sediment transport 
capacity in rills is well approximated by equations such as Manning’s which hold rill-bed roughness  constant6,7.

This feedback mechanism typically reshapes the rill-bed into a succession of shallow reaches (steps) and small 
depressions (pools) characterized by unidirectional and rapidly accelerating flow over steps, and multidirectional 
and highly turbulent flow that scours pools. The spatial arrangement of step-pool units is critical to rill hydraulics 
and ultimately rill  erosion1–3,8. Since conceptual modeling of step-pool units in streams demonstrates that step-
pool units evolve towards a maximum flow resistance condition when they are regularly  spaced9, past work has 
searched for regularities in the spatial arrangement of step-pool units in rills. No clear regularities have been 
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detected—a result attributed mainly to factors causing local variations in flow and bed resistance that prevent 
regular step-pool development including rock outcroppings, vegetation, or sudden bends in the rill  bed6,8.

Experimental rill-bed profiles—spatial series recording longitudinal elevation profiles along a rill bed—exhibit 
irregular fluctuating patterns of qualitative behavior that conceal underlying spatial  dynamics6. The conventional 
perspective is that irregular fluctuations are generated by linear-stochastic dynamics in which steady oscillations 
randomly shift in response to exogenous  shocks10. However, recent developments in nonlinear-deterministic 
dynamics raise an alternative perspective: Irregular fluctuations emerge endogenously in complex systems from 
nonlinear interactions of system covariates. Complex systems have the capacity for self-organization, from which 
emerges ordered collective dynamic behavior not exhibited by individual components on their own. Nonlinear 
dynamics is one of several approaches used to study emergent dynamics since they potentially evolve along a 
nonlinear attractor—a geometric object bounded within a low-dimensional subset of state  space11. We emphasize 
low-dimensionality as a valuable dimension-reducing property: If attractor dynamics of an n-dimensional non-
linear dynamic system are bounded within m <  < n dimensions, the problem of modeling long-term dynamics 
shrinks by the n − m inactive degrees of  freedom11. Long-term system dynamics can be captured with relatively 
few degrees of freedom regardless of overall system dimensionality without sacrificing essential information. 
Nonlinear attractors may exhibit irregular and aperiodic dynamic behavior, and thus remain undetected by 
searches limited to regular periodic behavior. Larsen et al. (2014) cite several examples of complex real-world 
environmental systems with emergent nonlinear-deterministic  dynamics12.

Rill development is a classic example of a complex system driven by an intricate network of interacting non-
linear climatic, hydrologic, and soil processes; consequently, we hypothesize that rill-bed morphology is driven 
by emergent nonlinear-deterministic dynamics. To test this hypothesis, we propose an empirical framework 
centered on a novel application of nonlinear time series  analysis13,14. Nonlinear time series analysis is designed 
to reverse-engineer (reconstruct) state-space dynamics from sequential data, and thus distinguish between 
linear-stochastic dynamics or emergent nonlinear-deterministic dynamics as the most likely source of observed 
irregular spatial fluctuation in rill-bed profiles. Distinguishing underlying dynamics correctly is essential for 
statistically reliable soil erosion modeling. Indiscriminately applying linear methods to model nonlinear data 
creates specification bias: A distorted version of nonlinear variation in the data passes through a linear model to 
structured residuals, which renders estimation of model coefficients statistically unreliable. The results will set 
a benchmark guiding specification and testing of new theoretical framings of rill-bed roughness in soil-erosion 
modeling by providing experimental evidence for whether rill morphology is shaped endogenously by internal 
nonlinear hydrologic and soil processes or stochastically forced. Our approach deviates from past work which 
takes measurements of detected step-pool units to identify ‘regular’ dimensional configurations against which 
candidate step-pool units can be  compared6,8,15. Alternatively, we reconstruct the spatial dynamics of rill-bed 
profiles to test whether irregular appearance of step-pool units in experimental profiles is due to internal non-
linear dynamics—not aberrations distorted by external random shocks. Finally, a novel application of echo state 
neural network machine  learning16 allows us to simulate empirically-reconstructed rill-bed profile dynamics 
so that morphological development can be forecasted out-of-sample. The length of short experimental rills can 
be expanded with machine learning to increase repetition of dominant spatial cycles as a potential remedy for 
spatial non-stationarity.

Data. We analyzed fifteen total rill-bed profiles, five resulting from in-situ experiments, and ten from experi-
ments conducted in a flume. The in-situ experiments—described in detail by Giménez et al., 2019—were con-
ducted on approximately 20 × 5 m rectilinear hillslope sections composed of a silt loam topsoil used for crops in 
Olite, (Navarre, Spain). Each section had a different slope gradient of 3%, 5%, or 15%. In preparation, the surface 
of each section was smoothed with a gentle central depression inserted so that eroded channels would be as 
straight as possible. The soil was moistened to saturation and left to drain to field capacity. Next, flow discharge 
varying from 160 to 5000  Lh−1  (Lh−1 = Liter per hour) was applied at the top of the slope until steady-state aver-
age flow velocity occurred. We label rill-bed profiles by slope and discharge rate, for example, 15 sl–160  Lh−1 
denotes a slope gradient of 15° and a flow discharge rate of 160  Lh−1. In situ rill lengths varied from 4.2 to 15 m 
(Table 1). The flume experiments—described in detail by Giménez and Govers (2001, 2004)—were formed from 
freely-developed rill replicas using two different agricultural topsoils: five loamy sand, and five silt loam. Flumes 

Figure 1.  Feedback between rill-flow hydraulics and rill-bed roughness regulate sediment transport capacity. 
Rill flow velocity increases with hillside slope and flow discharge; rill bed roughness increases due to greater 
flow erosivity; and rill flow velocity decreases due to greater hydrologic friction, thereby counteracting the 
initial increasing impact of hillside slope. This feedback mechanism results in reduced erosivity and sediment 
transport capacity of an established rill.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21500  | https://doi.org/10.1038/s41598-022-26114-0

www.nature.com/scientificreports/

were set at 8° and 12°. Creating the rill involved using a flume 4.50 m long, 0.4 m wide, and 0.45 m deep with 
a test section 2.3 m in length. The subsoil was simulated through manual compaction of the soil of choice (silt 
loam or loamy sand) in the lower 0.2 m of the flume and the fine seedbed conditions were simulated by adding 
the same soil type sieved at 20 mm to the upper 0.25 m of the test section. After simulating the subsoil and fine 
seedbed conditions, the surface of the plot was smoothed with a rake resulting in a 0.25–0.3 m wide and 50 mm 
deep longitudinal central depression with a flat bottom. The plot was then moistened to saturation and left to 
drain to field capacity. Flow discharge rates ranged from 1000 to 3600 lh, and rill lengths from 1.18 to 1.8 m 
(Table 1).

Data pre‑processing. We investigated whether rill-bed profiles resampled at longer sampling intervals 
along the rill would continue to express full ranges of dynamic behavior with the payoff being reduced computa-
tion cost of processing fewer observations. We used the Fourier power spectrum to ensure that resampling to 
longer intervals did not average out substantial variation. All in-situ and flume rill-bed profiles were resampled 
by averaging every 10 observations. We found that in-situ rill-bed profiles 5 sl–2500Lh−1 and 15 sl–160   Lh−1 
could be resampled at an interval of 8 mm. The resampling interval of the other three in-situ rill-bed profiles 
are as follows: 5 sl–5000  Lh−1 at 7 mm, 15 sl–780  Lh−1 at 21 mm, and 15 sl–900Lh−1 at 57 mm. We found that 
flume rill-bed profiles could be resampled at an interval of 20  mm. We standardized flume rill-bed profiles 
(by subtracting the profile mean from each observation and dividing by the profile standard deviation), which 
improved the performance of signal processing in isolating high-frequency oscillations expected to contain step-
pool units. Positive (negative) standardized values represent standard deviations above (below) the mean (the 
zero value). Finally, we filled in sporadic missing observations in rill-bed profiles with the R(imputeTS) package.

Workflow. The workflow followed to reconstruct spatial dynamics from experimental rill-bed profiles and 
forecast reconstructed dynamics with machine learning is summarized in Fig. 2. First, we applied singular spec-
trum  analysis17 to separate signal (structured variation) from noise (unstructured variation) in rill profiles so 
that we could remove low-frequency trend components from the signal and isolate higher-frequency cyclical 
components expected to contain step-pool units. Second, we screened for emergent nonlinear-deterministic 
dynamics in detrended rill signals by reverse-engineering (reconstructing) rill-bed shadow attractors from each 
detrended rill signal with time-delay  embedding18, and statistically testing whether apparent nonlinear structure 
in shadow attractors was likely mimicked by a linear-stochastic process with surrogate data  testing19. Third, we 
screened shadow attractors for nonlinear stationarity with space–time separation  plots20 to ensure that underly-
ing rill signals were long enough to adequately sample dominant low-frequency cycles isolated with singular 
spectrum analysis. Finally, we simulated and forecasted reconstructed nonlinear-deterministic dynamics with 
echo state neural  network16 machine learning. We used out-of-sample forecasts to increase profile length of rill 
signals screened to be non-stationarity and then re-tested for stationarity.

Table 1.  Experimental rill-bed profiles and signal processing with singular spectrum analysis. a The percent of 
total variation in the detrended rill-bed elevation profile accounted for by the detrended signal.

Rill profile Length (m) Detrended signal  strengtha Oscillatory components

In-situ rill profiles

5 sl–2500  Lh−1 11.23 28% 2.03 m (21%), 1.30 m (7%)

5 sl–5000  Lh−1 15.08 52% 4.26 m (24%), 5.66 m (28%)

15 sl–160  Lh−1 4.220 35% 0.68 m (18%), 0.65 m (10%), 0.61 m (7%)

15 sl–780  Lh−1 13.23 38% 0.80 m (15%), 0.50 m (23%)

15 sl–900  Lh−1 11.90 39% 0.80 m (25%), 0.20 m (13%)

Flume (loamy sand) profiles

8 sl–1000  Lh−1 1.78 77% 0.25 m (68%), 0.28 m (5%), 0.30 m (4%)

8 sl–2200  Lh−1 1.79 88% 0.24 m (73%), 0.18 m (11%), 0.30 m (3%)

8 sl–3600  Lh−1 1.80 73% 0.16 m (41%), 0.14 m (16%), 0.17 m (16%)

12 sl–1000  Lh−1 1.80 77% 0.18 m (37%), 0.13 m (40%)

12sl–2200Lh−1 1.80 80% 0.39 m (30%), 0.34 m (30%), 0.25 m (20%)

Flume (silt loam) profiles

8 sl–1000  Lh−1 1.18 85% 0.21 m (65%), 0.11 m (20%)

8 sl–3600  Lh−1 1.80 76% 0.40 m (64%), 0.66 m (12%)

12 sl–1000  Lh−1 1.20 73% 0.28 m (42%), 0.16 m (15%), 0.08 m (15%)

12 sl–2200  Lh−1 1.79 86% 0.70 m (43%), 0.25 m (29%), 0.19 m (15%)

12 sl–3600  Lh−1 1.79 92% 0.41 m (60%), 0.18 m (21%), 0.39 m (11%)
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Results
Signal processing. Table 1 shows that the strength of signals isolated in the detrended in-situ rill-bed pro-
files ranged from relatively low (28%) to moderate (52%) with four of the five profiles accounting for over a third 
of total variation in the corresponding detrended profiles. The strength of signals isolated from the ten flume 
rill-bed profiles were substantially higher (ranging from 73 to 92%) reflecting reduced presence of unstructured 
noise in a controlled laboratory setting. Signal processing components for in-situ profiles, flume (loamy sand) 
profiles, and flume (silt loam) profiles are plotted in Fig.  3. For each category, upper graphs plot detrended 
experimental rill-bed profiles (black curve) and isolated detrended signals (red curve) against rill length (m), 
and lower graphs plot oscillatory components dominating signals. We observe that filtering out the hillside-slope 
trend component from in-situ rill-bed profiles removes steps from step-pool units in the detrended plots as seen 
in Giménez et al., 2019 (compare their figures 1 and 10). Pools remain in the valleys of the detrended profiles. We 
also observe that the plots of signals isolated from in-situ and flume rill-bed profiles fluctuate irregularly without 
exhibiting clear regularities in the spatial distribution of pools. The detrended signals are composed of multiple 
high frequency oscillations (see also Table 1).

Screen for emergent rill‑bed profile dynamics. We reconstructed low-dimensional shadow attractors 
from all in-situ rill signals from eight of ten flume rill signals. The two failed reconstructions were associated 
with flume rill signals generated with the lowest discharge level of 1000  Lh−1 (8 sl–1000  Lh−1 (loamy sand) and 
12 sl–1000   Lh−1 (silt loam)). The failed shadow attractors had too few orbits to adequately sample an under-
lying attractor, possibly indicating failure of the associated rill profiles to develop step-pool units. All recon-
structed shadow attractors required from two to four embedding dimensions (Table 2), indicating presence of 
low-dimensional nonlinear dynamics. Three-dimensional projections of shadow attractors (black trajectories 
plotted in Fig. 4a) have a cyclical appearance composed of aperiodic non-repeating oscillations whose visual 
geometric structure stands out when compared to a random scattering of points reconstructed from a uniform 
random time series (Fig. 4b).

We tested the null hypothesis that apparent geometric regularity in shadow attractors reconstructed from 
rill signals is due to mimicking linear-stochastic dynamics. We selected nonlinear prediction skill—measured 
by Nash–Sutcliffe Efficiency (NSE)—and permutation entropy—measured by a modification of the Shannon H 
statistic—as discriminating statistics measuring hallmarks of nonlinear-deterministic dynamic behavior. We 
computed PPS surrogate data vectors testing for noisy linear dynamics in cyclical records. We specified an upper-
tailed test for nonlinear prediction skill since shadow attractors reconstructed from nonlinear-deterministic data 
should predict with more skill (larger NSE) than attractors reconstructed from 399 PPS surrogate data vectors. We 
formulated a lower-tailed test for permutation entropy since higher H values reflect more random behavior. We 
applied rank-order statistics with significance level α = 0.05 and summarize the results in Table 2. When nonlinear 
prediction skill is the discriminating statistic, we reject the null hypothesis for all shadow attractors reconstructed 
from rill signals since the NSE achieved by each surpasses the corresponding upper-threshold value exceeded 
by the top ranked surrogate attractors. When permutation entropy is the discriminating statistic, we reject the 
null hypothesis for ten of eleven shadow attractors since H computed for each falls below the corresponding 

Figure 2.  Workflow for reconstructing spatial dynamics from experimental rill-bed profiles. (a) We applied 
singular spectrum analysis to separate signal from noise in rill profiles and remove low-frequency trend 
components from the signal to isolate higher-frequency cyclical components expected to contain step-pool 
units and to promote nonlinear stationarity. (b) We screened for emergent nonlinear-deterministic dynamics 
in detrended rill signals with nonlinear time series methods. We reverse-engineered (reconstructed) rill-bed 
morphology dynamics from each detrended rill signal with time-delay embedding, and statistically tested 
whether apparent nonlinear structure in reconstructed dynamics was likely mimicked by a linear-stochastic 
process with surrogate data testing. (c) We used space–time separation plots to screen for nonlinear stationarity 
in reconstructed rill-bed dynamics to ensure that rill signals were long enough to adequately sample dominant 
low-frequency cycles isolated by singular spectrum analysis. (d) We applied echo state neural  network16 machine 
learning to simulate and forecast reconstructed nonlinear-deterministic dynamics. We used out-of-sample 
forecasts to increase profile length of rill signals screened to be non-stationarity and re-tested for stationarity.
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lower-threshold value bounding from above the bottom ranked surrogate attractors. The permutation entropy 
test was inconclusive only for the shadow attractor reconstructed from rill signal 15 sl–780  Lh−1 since H equals 
the lower-threshold value. Given the strength of these results, we confidently reject the null hypothesis that 
linear-stochastic dynamics are the most likely source of geometric regularity in shadow attractors reconstructed 
from rill signals. Nonlinear-deterministic dynamics remain a likelihood.

Screen for nonlinear stationarity. Nonlinear stationarity requires that the “duration of the measurement 
is long compared to the time scales of the systems”21. Consequently, an important implication of finding rill 

Figure 3.  Singular spectrum analysis (SSA) of experimental rill-bed profiles. Upper graphs in each category 
plot detrended rill-bed profiles (black curve) and the corresponding detrended signal (red curve) against rill 
length (m); and lower graphs plot corresponding dominant oscillatory components. Removing the hillside-slope 
trend component from in-situ rill-bed profiles removes steps from step-pool units in the detrended plots; pools 
remain in the valleys of the detrended profiles. SSA performed better to isolate high-frequency oscillations in 
flume rill-bed profiles when standardized by subtracting the profile mean from each observation and dividing 
by the profile standard deviation. Positive (negative) standardized values represent standard deviations above 
(below) the mean (the zero value). The plots of signals isolated from in-situ and flume rill-bed profiles fluctuate 
irregularly without exhibiting clear regularities in the spatial distribution of pools.
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signals to be stationarity is that they are long enough to adequately sample the dominant low-frequency cycles 
isolated by singular spectrum analysis. Space–time separation plots exhibiting contour cycles requiring large 
numbers of measurement steps for completion indicate that measurement distance between points on an attrac-
tor continues to affect their Euclidean distance—a sign of spatial non-stationarity of the signals from which the 
attractors were reconstructed. Contour cycles in the space–time separation plots for three flume shadow attrac-
tors reconstructed from 12 sl to 1000  Lh−1 (loamy sand), 12 sl–2200  Lh−1 (loamy sand), and 12 sl–3600  Lh−1 (silt 
loam), require large numbers of measurement steps for completion in contrast to contour cycles in the other 
plots oscillating with much higher frequency (Fig.  5). To address the possibility that these flume rill-profile 
signals were prone to non-stationarity because of their relatively short lengths (ranging from 1.18 to 1.80 m in 
Table 1), we increased profile length with out-of-sample machine-learning forecasts and retested for stationarity 
as reported below.

Model reconstructed rill‑bed dynamics with machine learning. Echo state neural networks (ESNN) 
learned shadow attractors reconstructed from three of five in-situ rill signals (15 sl–160  Lh−1, 15 sl–780  Lh−1, 
15 sl–900  Lh−1), and all shadow attractors reconstructed from flume rill signals. ESNN failed to learn recon-
structed dynamics from in-situ rill signals 5  sl–2500   Lh−1 and 5  sl–5000   Lh−1 since runs were explosive for 
wide ranges of sampled hyperparameter values. In Fig. 6a, we show performance plots for the successful ESNN 
simulations. The plots focus on rill signals as the first coordinate vector of shadow attractors reconstructed with 
time-delay embedding. Each plot shows the portion of the rill signal allocated to the training set (blue curve 
to left of shaded area), the portion remaining in the testing set (blue curve within the shaded area), ESNN 
in-sample predictions (orange curve within shaded area), and ESNN out-of-sample forecasts (orange curve to 
right of shaded area). The shaded area represents the testing interval in which ESNN skill in learning rill-signal 
dynamics is demonstrated by how close ESNN predictions (orange curve) track the rill signal in the testing set 
(blue curve). In each plot, ESNN predicts with almost-perfect skill (NSEs > 0.95) as evidenced by orange curves 
effectively covering the blue curves. We used the trained ESNN models to forecast each rill signal out-of-sample. 
Forecasts largely preserved oscillatory behavior observed in corresponding rill profile signals. Moreover, in a 
demonstration of dynamic correspondence, state-space trajectories reconstructed from ESNN out-of-sample 
forecasts (red trajectories) largely rest on shadow attractors reconstructed from in-sample rill signals (black 
trajectories) (Fig. 4).

We used ESNN forecasts to extend the lengths of the three flume rill signals detected to be non-stationarity 
above: 12 sl–1000  Lh−1 (loamy sand), 12 sl–2200  Lh−1 (loamy sand), and 12 sl–3600  Lh−1 (silt loam). We re-tested 
for stationarity with space–time separation plots, which revealed that the extended rill signals are now stationary 

Table 2.  Surrogate data results. a Embedding dimension; bembedding delay; cNash Sutcliffe Efficiency (NSE = 1 
denotes perfect prediction skill); dPPS surrogates test the null hypothesis that aperiodic cycling characterizing 
the empirically-reconstructed attractors is generated by randomly shifting periodic orbits characteristic of 
noisy linear dynamics. The significance level is set at α = 0.05% with 399 surrogates generated; ean upper-
tailed test rejects the null hypothesis if the NSE computed using the shadow attractor reconstructed from the 
signal rests above the floor of the upper extreme values computed from surrogate attractors; fRejection of the 
null hypothesis leaves the door open to nonlinear-deterministic dynamics; gmodified Shannon H measure; ha 
lower-tailed test rejects the null hypothesis if H computed using the shadow attractor reconstructed from the 
signal rests below the floor of the lower extreme values computed from surrogate attractors.

Embedding Nonlinear prediction test Permutation entropy test

Rill profile ma db Rill signal NSEc
PPS  surrogatesd 
upper  thresholde H0f

Rill signal 
entropy

PPS surrogates 
lower  thresholdg H0h

In-situ rill signals

5 sl–2500  Lh−1 2 20 0.996 − 0.385 Nonlinear 0.399 0.975 Nonlinear

5 sl–5000Lh−1 2 20 0.999 − 0.398 Nonlinear 0.310 0.977 Nonlinear

15 sl–160  Lh−1 4 14 0.912 − 0.183 Nonlinear 0.739 0.977 Nonlinear

15 sl–780  Lh−1 4 16 0.988 − 0.349 Nonlinear 0.97 0.97 Inconclusive

15 sl–900  Lh−1 4 5 0.975 − 0.25 Nonlinear 0.607 0.955 Nonlinear

Flume (loamy sand) rill signals

8 sl–2200  Lh−1 3 6 0.968 − 0.177 Nonlinear 0.567 0.91 Nonlinear

8 sl–3600  Lh−1 4 3 0.788 − 0.064 Nonlinear 0.757 0.91 Nonlinear

12 sl–1000  Lh−1 3 3 0.912 − 0.183 Nonlinear 0.739 0.909 Nonlinear

12 sl–2200  Lh−1 3 6 0.871 − 0.054 Nonlinear 0.599 0.905 Nonlinear

Flume (silt loam) rill signals

8 sl–1000  Lh−1 3 4 0.739 − 0.12 Nonlinear 0.73 0.847 Nonlinear

8 sl–3600  Lh−1 3 8 0.979 − 0.123 Nonlinear 0.674 0.909 Nonlinear

12 sl–2200  Lh−1 3 4 0.959 − 0.132 Nonlinear 0.703 0.852 Nonlinear

12 sl–3600  Lh−1 3 5 0.983 − 0.264 Nonlinear 0.46 0.945 Nonlinear
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(Fig. 6b). Extended rill lengths became long enough to more adequately sample the dominant low-frequency 
cycles isolated in signal processing.

Discussion
Past experimental work found that rill erosion occurs mainly during rill formation in response to feedback 
between rill-flow hydraulics and rill-bed roughness that creates a succession of step-pool units self-regulating 
the sediment transport capacity of established rills. Recent work has searched for clear regularities in the succes-
sion of step-pool units without success. The intuition that rill morphology might self-organize into systematic 
spatially dynamic behavior was on the right track, but the search needed to be broadened to enable detection of 
irregular and aperiodic nonlinear-deterministic spatial dynamics characteristic of complex systems. Our results 
provide compelling experimental evidence supporting the hypothesis that the succession of step-pool units is 
governed by emergent nonlinear-deterministic spatial dynamics; and consequently, that rill morphology is shaped 
endogenously by internal nonlinear hydraulic and soil processes rather than stochastically forced. We success-
fully reconstructed low-dimensional nonlinear shadow attractors from thirteen of fifteen rill signals investigated, 
all of which held up against surrogate data testing. We were unable to reconstruct shadow attractors from two 
flume rill signals generated by the lowest discharge level (1000  Lh−1)—likely because these slope and discharge 
levels precluded development of systematic step-pool units. Low estimated embedding dimensions provide 
justification for modeling long-term rill-bed dynamics with relatively few degrees of freedom regardless of the 
immense size and complexity of the real-world system generating experimental rill-bed profiles. This is good 
news for future efforts to replace constant rill-bed roughness coefficients in conventional soil erosion modeling 
with parsimonious spatially dynamic rill-bed models. Our results are robust across the rill-bed profiles inves-
tigated since emergent nonlinear spatial dynamics were detected in: (1) profiles generated both in a controlled 

Figure 4.  Screening for emergent nonlinear-deterministic dynamics in rill signals. (a) We reconstructed low-
dimensional shadow attractors from all five in-situ rill signals, and from eight of the ten flume rill signals whose 
flow discharge levels exceeded 1000  Lh−1 (black trajectories). The two failed shadow attractors had too few orbits 
to adequately sample an underlying attractor, possibly indicating failure of the associated flume rill profiles to 
develop step-pool units. All reconstructed attractors required at least from two to four embedding dimensions 
(Table 2), indicating low-dimensional nonlinear dynamics. The plots of shadow attractors have a cyclical 
appearance composed of aperiodic non-repeating oscillations. In a demonstration of dynamic correspondence, 
state-space trajectories reconstructed from echo state neural network out-of-sample forecasts (red trajectories) 
largely rest on shadow attractors reconstructed from in-sample rill signals (black trajectories). Echo state neural 
network models fit to in-situ rill signals 5 sl–2500  Lh−1 and 5 sl–5000  Lh−1 were explosive for wide ranges of 
sampled hyperparameter values, and thus not used for forecasting. (b) The visual geometric structure of shadow 
attractors stands out in contrast to a random scattering of points resulting from reconstruction of a uniform 
random time series. Surrogate data results soundly reject the null hypothesis that this geometric structure can be 
attributed to mimicking linear-stochastic dynamics (Table 2).
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Figure 5.  Screening for stationary nonlinear rill-bed dynamics with space–time separation plots. The plots 
indicate non-stationarity of three flume shadow attractors: 12 sl–1000  Lh−1 (loamy sand), 12 sl–2200  Lh−1 
(loamy sand), and 12 sl–3600  Lh−1 (silt loam) since contour cycles require many measurement steps to complete 
in contrast to contour cycles in the other plots oscillating with much higher frequency. Since these flume rill 
profiles may be non-stationarity due to relatively short lengths (ranging from 1.18 to 1.80 m in Table 1), we 
sought to remedy this by increasing profile length with out-of-sample machine-learning forecasts.
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lab (flume) setting and in an in-situ real-world hillside setting; and (2) flume profiles created in both silt-loam 
and loamy-sand soils. Compatible with Giménez and Govers (2001), this suggests that the spatial arrangement 
of step-pool units (macroroughness) is not largely conditioned by soil type so long as the soil is susceptible to 
erosion (erodible material).

Our results contribute more broadly to a growing literature demonstrating that many types of erosional 
landscapes (e.g., channel bed-steps in ephemeral reaches of boulder and bedrock  streams22, undulating canyon 
 walls23, bedrock  waterfalls24, and cyclic steps in erodable  surfaces25 including emphemeral  gullies26) are shaped 
by internal (autogenic) dynamics governing feedbacks among topographical, erosional, and sediment-transport 
processes. Zeng et al. (2021) found that gully erosion is characterized by cyclic steps that are comparable to 
step-pool units in rill erosion, except that “cyclic steps can form autogenically on homogeneous bed surfaces 
of uniform bed material.” We offer experiental evidence that step-pool units in rill erosion also form autogeni-
cally. We further address a critical research gap identified in a review by Scheingross et al. (2020)27. The authors 
concluded that, although autogenic dynamics are increasingly detected in depositional systems, understanding 
remains nascent because criteria are lacking to distinguish internal dynamics from external forcing. We con-
ceptualized rill erosion as a complex system in which system variables are internalized by an extensive web of 
nonlinear interactions. Each variable encodes its internal interactions with covariates, which famous naturalist 
John Muir intuited in the early nineteenth century when he observed that: “When we try to pick something up 
by itself, we find it hitched to everything else in the universe”28. This precludes the need to synthetically separate 
internal from external variables. Instead, we isolated structured variation (signal) in experimental rill profiles 
from unstructured variation (noise) with signal processing, and empirically detected emergent autogenic dynam-
ics in signals with nonlinear time series analysis.

There are important caveats in applying nonlinear time series analysis to reconstruct dynamics of real-
world systems from experimental datasets. Records are often noisy and short. Noise must be carefully filtered 
from records without unintentionally removing aperiodic nonlinear dynamic structure mistaken for noise. We 
applied singular spectrum analysis to remove noise from irregular appearing rill profiles because this method 
retains aperiodic oscillations in the isolated signal. Records that are too short to adequately sample the domi-
nant low-frequency cycles isolated by singular spectrum analysis violate nonlinear stationarity requirements. 

Figure 6.  Modeling shadow attractors with Echo State Neural Network (ESNN) machine learning. (a) Each 
performance plot shows the rill signal in the training set (blue curve to left of shaded area), the rill signal in the 
testing set (blue curve within the shaded area), ESNN in-sample predictions (orange curve within shaded area), 
and ESNN out-of-sample forecasts (orange curve to right of shaded area). The shaded area represents the testing 
interval in which ESNN predictions (orange curve) are plotted with the rill signal in the testing set (blue curve). 
In each plot, ESNN predicts with almost-perfect skill (NSEs > 0.95) as evidenced by orange curves overlapping 
blue curves in the shaded area. Forecasts largely preserved oscillatory behavior observed in corresponding rill 
profile signals. (b) We used ESNN forecasts to extend the lengths of three non-stationary flume rill signals and 
re-tested for stationarity with space–time separation plots. The plots show that the extended rill signals are now 
stationary.
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We tested rill-bed profiles for nonlinear stationarity with space–time separation plots. We mitigated detected 
non-stationarity in in-situ rill-bed profiles by filtering out inadequately sampled low-frequency trend cycles 
with multi-stage singular spectrum analysis, and in flume rill-bed profiles by extending rill lengths with out-of-
sample forecasts computed with machine learning. Even with these precautions, we cannot reasonably expect to 
reconstruct the complex folding and fractal patterns of real-world  attractors29, but must lower our expectations 
to reconstruct a sampling or skeleton of an  attractor30. We will fall short of reconstructing even a skeleton attrac-
tor if: (1) a low-dimensional real-world attractor does not exist; or (2) the data sample only transitory dynamics 
heading toward an attractor.

We emphasize that nonlinear time series analysis does not replace conceptual modeling of soil erosion based 
on first principles. Rather, the broader impact of our work is to provide a rigorous empirical benchmark guiding 
specification and testing of new theoretical framings of rill-bed roughness in next-generation modeling. This 
benchmark includes a geometric picture of rill-bed profile dynamics that conceptual models should reproduce, 
and an estimate of the minimum model dimensionality required to do so.

Methods
Signal processing. Singular spectrum analysis is a data-adaptive signal processing method accommodat-
ing highly anharmonic (aperiodic) oscillations in irregular  records14,17. It is used to separate structured varia-
tion (signal) composed of trend and oscillatory components from unstructured variation (noise). The strength 
of each component is based on its contribution to explaining total variation in the record. We searched for 
emergent nonlinear dynamics in the structured signal component of measured rill-bed profiles since including 
unstructured noise obscures detection. Singular spectrum analysis can be run in multiple stages to remove low-
frequency components that: (1) violate stationarity conditions requiring that the “duration of the measurement 
is long compared to the time scales of the systems”31; or (2) impede detection of fainter higher-frequency oscil-
latory behavior. We ran three-stage singular spectrum analysis on the in-situ rill-bed profiles to remove low-fre-
quency trend components. The  1st stage removed the dominant trend due to hillside slope, the  2nd stage removed 
lingering trend components driven by physical processes beyond hillside slope, and the  3rd stage isolated higher 
frequency components expected to capture finer structure in rill morphology containing step-pool units.

Time‑delay embedding. We applied time-delay  embedding18 to reconstruct a shadow attractor from each 
detrended rill signal. The matrix form of a shadow attractor (embedded data matrix) is composed of a first col-
umn containing the observed rill signal and remaining columns containing space-delayed copies of the observed 
signal which serve as surrogates for omitted system variables. The number of columns in the embedded data 
matrix is the embedding dimension, and the delay length between columns is the embedding delay. The columns 
of the embedded data matrix are coordinates axes in state space, and the rows are multidimensional points on a 
shadow attractor. Takens (1980) formally proved that time-delay embedding provides a 1–1 mapping of system 
dynamics from the original real-world state-space to the reconstructed shadow state space so long as the latter 
has sufficient dimensions to contain the original attractor. Since we do not directly observe the dimension of 
the real-world attractor, we followed convention in estimating the embedding dimension with the false near-
est neighbors  test32, and the embedding delay as the delay giving the first minimum of the mutual information 
 function32.

Surrogate data testing. We tested the shadow attractor reconstructed from each rill signal against surro-
gate data to provide a statistical safeguard against mistaking apparent geometric regularity in a shadow attractor 
for deterministic nonlinear dynamic structure when it is most likely mimicked by linear stochastic  dynamics19,33. 
First, we generated surrogate data vectors that destroyed the spatial structure of rill signals while preserving sta-
tistical properties compatible with a hypothesized stochastic dynamic structure. We computed PPS surrogates 
which test for noisy linear dynamics in cyclic  records34. Second, we reconstructed attractors from each surrogate 
data vector and compared them to the shadow attractor reconstructed from a rill signal based on two discrimi-
nating statistics conventionally measuring hallmarks of nonlinear-deterministic behavior: nonlinear predictive 
 skill35 and permutation  entropy36. In a conventional nonlinear prediction algorithm, the points on a shadow 
attractor are split into learning and testing sets, the last point in the training set is predicted one-step-ahead 
by taking a weighted average of the nearest neighboring points in the training set, and skill measured by how 
close the prediction is to the corresponding point on the attractor in the test  set35. We specified an upper-tailed 
hypothesis test for nonlinear predictive skill since nonlinear-deterministic structure should predict better with 
a nonlinear prediction algorithm than linear-stochastic surrogates measured by a goodness-of-fit measure such 
as the Nash–Sutcliffe Model Efficiency (NSE)37, which denotes perfect skill when NSE = 1. Permutation entropy 
modifies the classic Shannon H measure of the information in a time series for application to finite noisy data. 
When H = 0, the time series is perfectly predictable from past values. H achieves a maximum value when time 
series observations are independent and identically distributed. We adopted a lower-tailed hypothesis test for 
permutation entropy since larger values of H indicate more random behavior. Third, we applied rank-order sta-
tistics to test for significant difference in nonlinear  performance33. We generated an ensemble of S = (k/α) − 1 sur-
rogates, where α is the probability of false rejection and k controls the number of surrogates and the sensitivity 
of the test. We set α = 0.05 and k = 20 and accepted the null hypothesis of stochastic cycling dynamics if the NSE 
(H) taken from the attractor reconstructed from the rill signal did not fall in the upper (lower) k corresponding 
values taken from the ensemble of S = 399 surrogate attractors. If we reject the null hypothesis, untested dynamic 
structures (including nonlinear-deterministic dynamics) remain viable.
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Screen for nonlinear stationarity. We tested for nonlinear stationarity with space–time separation 
 plots20, which scatterplot the Euclidean distance (vertical axis) and the number of measurement steps (horizon-
tal axis) between each pair of points on a shadow attractor. Scatterplotted distances are conventionally reformat-
ted as equal-probability contour lines by plotting the percentage of pairs that are less than or equal to a given 
Euclidean distance and drawing curves through identical percentages. In the simplest plots, these contours satu-
rate, or in more complex plots, cycle. Contour cycles requiring large times for completion indicate that meas-
urement distance between points on an attractor continues to affect their Euclidean distance—an indication of 
non-stationarity.

Model reconstructed rill dynamics with machine learning. Echo state neural  network16 (ESNN) 
machine learning is a reservoir computing method comprised of a reservoir mapping each point on the attractor 
sequentially into a high-dimensional space, and a read-out providing reservoir predictions. Reservoir comput-
ing is fast-learning with low-training cost since the reservoir is fixed and only the readout is trained. The embed-
ded data matrix of a reconstructed attractor is divided into training and testing sets. In each iteration t of the 
training mode, a row of the training set (i.e., a point on the attractor) is inputted through an input coupler into a 
reservoir composed of N neurons, xi(t) , i = 1, 2, ...N . The scalar activation values are updated in each iteration 
and collected in a neuron activation matrix, X. The training set is regressed against X to estimate a coefficient 
matrix, Wout , used to formulate the read-out component. In each iteration of the testing mode, a row of the 
testing set is inputted into the reservoir, and the linear read out generates predicted values, y(t) = Woutx(t) , 
where x(t) is the vector of activations at iteration t. The neuron activations are updated at each iteration, and the 
updated predictions collected in prediction matrix Y. In sum, Y is the ESNN simulation of the portion of the 
embedded data matrix allocated to the testing set. Consequently, the first column of Y is the prediction of the 
rill profile signal contained in the first column of the embedded data matrix, and the rows of Y are predicted 
points on the testing portion of the reconstructed attractor. We measure how well each column of Y predicts 
its counterpart in the embedded data matrix with the Nash–Sutcliffe Efficiency  Index37. Since machine learning 
performance is highly sensitive to architectural  hyperparameters16, we run ESNN through a ‘tuning cycle’ that 
employs high-performance computing (HPC) and global sensitivity  analysis38 (GSA) to automate a large parallel 
grid search of architectural hyper-parameters. The tuning cycle first uniformly samples a hyper-parameter grid 
with option for sparse Morris or denser Sobol GSA sampling  methods38. Sampled machine learning configura-
tions are parallelized and batch run with HPC. Post-processing GSA identifies which hyper-parameters are most 
influential in driving machine learning performance, and consequently can be effectively adjusted in another 
tuning cycle. If we select the Morris sampling method, we compute Morris sensitivity measures; if we select 
the Sobol method, we compute first-order and total-sensitivity variance-decomposition  indices38. In generation 
mode, we use skillful parameterizations to forecast points on the attractor out-of-sample by feeding back in 
predicted values at each iteration.

Data availability
The data sets used and/or analyzed during the current study are available from the corresponding author.

Code availability
These R packages were used: imputeTS (fill in data gaps), RSSA (singular spectrum analysis); spacetime (space-
time separation plots); and tseriesChaos (mutual information function, false nearest neighbors test, time-delay 
embedding). These packages are downloaded from https:// cran.r- proje ct. org/ packa ge = *, where * is a package. 
Wrap-around R code facilitating the use of these packages is available in Huffaker et al. (2017). We used Origin 
 202239 for 3-D plotting in Fig. 4. We modified R Code developed by Lukosevicius (2012) to run ESNN and wrote 
additional code employing high-performance computing and global sensitivity analysis to automate a large 
parallel grid search of ESNN architectural hyperparameters.
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