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Experimental evidence that rill-bed
morphology is governed

by emergent nonlinear spatial
dynamics
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Past experimental work found that rill erosion occurs mainly during rill formation in response to
feedback between rill-flow hydraulics and rill-bed roughness, and that this feedback mechanism
shapes rill beds into a succession of step-pool units that self-regulates sediment transport capacity
of established rills. The search for clear regularities in the spatial distribution of step-pool units

has been stymied by experimental rill-bed profiles exhibiting irregular fluctuating patterns of
qualitative behavior. We hypothesized that the succession of step-pool units is governed by
nonlinear-deterministic dynamics, which would explain observed irregular fluctuations. We tested
this hypothesis with nonlinear time series analysis to reverse-engineer (reconstruct) state-space
dynamics from fifteen experimental rill-bed profiles analyzed in previous work. Our results support
this hypothesis for rill-bed profiles generated both in a controlled lab (flume) setting and in an
in-situ hillside setting. The results provide experimental evidence that rill morphology is shaped
endogenously by internal nonlinear hydrologic and soil processes rather than stochastically forced;
and set a benchmark guiding specification and testing of new theoretical framings of rill-bed
roughness in soil-erosion modeling. Finally, we applied echo state neural network machine learning
to simulate reconstructed rill-bed dynamics so that morphological development could be forecasted
out-of-sample.

Overland (sheet) flow of water can rapidly channel into concentrated paths (rills) in response to topography,
flow discharge (e.g., precipitation), soil properties, and surface cover’. Rill flow causes rapid surface incision
due to focused hydraulic power and erosive energy; and consequently, exceeds the sediment transport capacity
of sheet flow!, accounting for an estimated 80% of sediment eroded from bare hillslopes?. Rill erosion is com-
mon on steep hillsides where vegetative cover has been compromised by human activities including forestry’
and periodic cultivation®. Experimental work shows that rill erosion occurs mainly during rill formation® due
to feedback between rill-flow hydraulics and rill-bed roughness that regulates the sediment transport capacity
of established rills*-°. As illustrated in Fig. 1, hillside slope and flow discharge increase rill flow velocity. Rill bed
roughness increases with greater flow erosivity when flow and soil conditions combine so that bed geometry
freely adjusts to flow hydraulics. The loop is completed as increased rill bed roughness creates hydraulic friction
decreasing rill flow velocity, leading to reduced erosivity and sediment transport capacity of an established rill.
This counteracts the initial increasing impact of hillside slope on rill flow velocity. Discovery of this feedback
mechanism has cast doubt on the implicit assumption of the Universal Soil Loss Equation that sediment transport
capacity in rills is well approximated by equations such as Manning’s which hold rill-bed roughness constant®”.

This feedback mechanism typically reshapes the rill-bed into a succession of shallow reaches (steps) and small
depressions (pools) characterized by unidirectional and rapidly accelerating flow over steps, and multidirectional
and highly turbulent flow that scours pools. The spatial arrangement of step-pool units is critical to rill hydraulics
and ultimately rill erosion'~*#. Since conceptual modeling of step-pool units in streams demonstrates that step-
pool units evolve towards a maximum flow resistance condition when they are regularly spaced’, past work has
searched for regularities in the spatial arrangement of step-pool units in rills. No clear regularities have been
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Figure 1. Feedback between rill-flow hydraulics and rill-bed roughness regulate sediment transport capacity.
Rill flow velocity increases with hillside slope and flow discharge; rill bed roughness increases due to greater
flow erosivity; and rill flow velocity decreases due to greater hydrologic friction, thereby counteracting the
initial increasing impact of hillside slope. This feedback mechanism results in reduced erosivity and sediment
transport capacity of an established rill.

detected—a result attributed mainly to factors causing local variations in flow and bed resistance that prevent
regular step-pool development including rock outcroppings, vegetation, or sudden bends in the rill bed®®.

Experimental rill-bed profiles—spatial series recording longitudinal elevation profiles along a rill bed—exhibit
irregular fluctuating patterns of qualitative behavior that conceal underlying spatial dynamics®. The conventional
perspective is that irregular fluctuations are generated by linear-stochastic dynamics in which steady oscillations
randomly shift in response to exogenous shocks!’. However, recent developments in nonlinear-deterministic
dynamics raise an alternative perspective: Irregular fluctuations emerge endogenously in complex systems from
nonlinear interactions of system covariates. Complex systems have the capacity for self-organization, from which
emerges ordered collective dynamic behavior not exhibited by individual components on their own. Nonlinear
dynamics is one of several approaches used to study emergent dynamics since they potentially evolve along a
nonlinear attractor—a geometric object bounded within a low-dimensional subset of state space''. We emphasize
low-dimensionality as a valuable dimension-reducing property: If attractor dynamics of an n-dimensional non-
linear dynamic system are bounded within m < <n dimensions, the problem of modeling long-term dynamics
shrinks by the n — m inactive degrees of freedom'!. Long-term system dynamics can be captured with relatively
few degrees of freedom regardless of overall system dimensionality without sacrificing essential information.
Nonlinear attractors may exhibit irregular and aperiodic dynamic behavior, and thus remain undetected by
searches limited to regular periodic behavior. Larsen et al. (2014) cite several examples of complex real-world
environmental systems with emergent nonlinear-deterministic dynamics'2.

Rill development is a classic example of a complex system driven by an intricate network of interacting non-
linear climatic, hydrologic, and soil processes; consequently, we hypothesize that rill-bed morphology is driven
by emergent nonlinear-deterministic dynamics. To test this hypothesis, we propose an empirical framework
centered on a novel application of nonlinear time series analysis'>'%. Nonlinear time series analysis is designed
to reverse-engineer (reconstruct) state-space dynamics from sequential data, and thus distinguish between
linear-stochastic dynamics or emergent nonlinear-deterministic dynamics as the most likely source of observed
irregular spatial fluctuation in rill-bed profiles. Distinguishing underlying dynamics correctly is essential for
statistically reliable soil erosion modeling. Indiscriminately applying linear methods to model nonlinear data
creates specification bias: A distorted version of nonlinear variation in the data passes through a linear model to
structured residuals, which renders estimation of model coefficients statistically unreliable. The results will set
a benchmark guiding specification and testing of new theoretical framings of rill-bed roughness in soil-erosion
modeling by providing experimental evidence for whether rill morphology is shaped endogenously by internal
nonlinear hydrologic and soil processes or stochastically forced. Our approach deviates from past work which
takes measurements of detected step-pool units to identify ‘regular’ dimensional configurations against which
candidate step-pool units can be compared®®!>. Alternatively, we reconstruct the spatial dynamics of rill-bed
profiles to test whether irregular appearance of step-pool units in experimental profiles is due to internal non-
linear dynamics—not aberrations distorted by external random shocks. Finally, a novel application of echo state
neural network machine learning'® allows us to simulate empirically-reconstructed rill-bed profile dynamics
so that morphological development can be forecasted out-of-sample. The length of short experimental rills can
be expanded with machine learning to increase repetition of dominant spatial cycles as a potential remedy for
spatial non-stationarity.

Data. We analyzed fifteen total rill-bed profiles, five resulting from in-situ experiments, and ten from experi-
ments conducted in a flume. The in-situ experiments—described in detail by Giménez et al., 2019—were con-
ducted on approximately 20 x 5 m rectilinear hillslope sections composed of a silt loam topsoil used for crops in
Olite, (Navarre, Spain). Each section had a different slope gradient of 3%, 5%, or 15%. In preparation, the surface
of each section was smoothed with a gentle central depression inserted so that eroded channels would be as
straight as possible. The soil was moistened to saturation and left to drain to field capacity. Next, flow discharge
varying from 160 to 5000 Lh™! (Lh™! = Liter per hour) was applied at the top of the slope until steady-state aver-
age flow velocity occurred. We label rill-bed profiles by slope and discharge rate, for example, 15 s-160 Lh™!
denotes a slope gradient of 15° and a flow discharge rate of 160 Lh™". In situ rill lengths varied from 4.2 to 15 m
(Table 1). The flume experiments—described in detail by Giménez and Govers (2001, 2004)—were formed from
freely-developed rill replicas using two different agricultural topsoils: five loamy sand, and five silt loam. Flumes
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Rill profile ‘ Length (m) | Detrended signal strength® | Oscillatory components

In-situ rill profiles

551-2500 Lh™! 11.23 28% 2.03 m (21%), 1.30 m (7%)

5 s1-5000 Lh™! 15.08 52% 4.26 m (24%), 5.66 m (28%)

15s1-160 Lh™! 4.220 35% 0.68 m (18%), 0.65 m (10%), 0.61 m (7%)
151-780 Lh! 13.23 38% 0.80 m (15%), 0.50 m (23%)

15 s1-900 Lh™! 11.90 39% 0.80 m (25%), 0.20 m (13%)

Flume (loamy sand) profiles

8 s1-1000 Lh! 1.78 77% 0.25 m (68%), 0.28 m (5%), 0.30 m (4%)
851-2200 Lh™! 1.79 88% 0.24 m (73%), 0.18 m (11%), 0.30 m (3%)
8 s1-3600 Lh™! 1.80 73% 0.16 m (41%), 0.14 m (16%), 0.17 m (16%)
12 s1-1000 Lh™! 1.80 77% 0.18 m (37%), 0.13 m (40%)
1251-2200Lh! 1.80 80% 0.39 m (30%), 0.34 m (30%), 0.25 m (20%)
Flume (silt loam) profiles

851-1000 Lh™! 1.18 85% 0.21 m (65%), 0.11 m (20%)

8 51-3600 Lh™! 1.80 76% 0.40 m (64%), 0.66 m (12%)

12 51-1000 Lh~! 1.20 73% 0.28 m (42%), 0.16 m (15%), 0.08 m (15%)
1251-2200 Lh! 1.79 86% 0.70 m (43%), 0.25 m (29%), 0.19 m (15%)
12 s1-3600 Lh™! 1.79 92% 0.41 m (60%), 0.18 m (21%), 0.39 m (11%)

Table 1. Experimental rill-bed profiles and signal processing with singular spectrum analysis. *The percent of
total variation in the detrended rill-bed elevation profile accounted for by the detrended signal.

were set at 8° and 12°. Creating the rill involved using a flume 4.50 m long, 0.4 m wide, and 0.45 m deep with
a test section 2.3 m in length. The subsoil was simulated through manual compaction of the soil of choice (silt
loam or loamy sand) in the lower 0.2 m of the flume and the fine seedbed conditions were simulated by adding
the same soil type sieved at 20 mm to the upper 0.25 m of the test section. After simulating the subsoil and fine
seedbed conditions, the surface of the plot was smoothed with a rake resulting in a 0.25-0.3 m wide and 50 mm
deep longitudinal central depression with a flat bottom. The plot was then moistened to saturation and left to
drain to field capacity. Flow discharge rates ranged from 1000 to 3600 lh, and rill lengths from 1.18 to 1.8 m
(Table 1).

Data pre-processing. We investigated whether rill-bed profiles resampled at longer sampling intervals
along the rill would continue to express full ranges of dynamic behavior with the payoff being reduced computa-
tion cost of processing fewer observations. We used the Fourier power spectrum to ensure that resampling to
longer intervals did not average out substantial variation. All in-situ and flume rill-bed profiles were resampled
by averaging every 10 observations. We found that in-situ rill-bed profiles 5 sl-2500Lh™! and 15 sl-160 Lh™!
could be resampled at an interval of 8 mm. The resampling interval of the other three in-situ rill-bed profiles
are as follows: 5 sI-5000 Lh™! at 7 mm, 15 s]-780 Lh™! at 21 mm, and 15 sl-900Lh™! at 57 mm. We found that
flume rill-bed profiles could be resampled at an interval of 20 mm. We standardized flume rill-bed profiles
(by subtracting the profile mean from each observation and dividing by the profile standard deviation), which
improved the performance of signal processing in isolating high-frequency oscillations expected to contain step-
pool units. Positive (negative) standardized values represent standard deviations above (below) the mean (the
zero value). Finally, we filled in sporadic missing observations in rill-bed profiles with the R(imputeTS) package.

Workflow. The workflow followed to reconstruct spatial dynamics from experimental rill-bed profiles and
forecast reconstructed dynamics with machine learning is summarized in Fig. 2. First, we applied singular spec-
trum analysis'’ to separate signal (structured variation) from noise (unstructured variation) in rill profiles so
that we could remove low-frequency trend components from the signal and isolate higher-frequency cyclical
components expected to contain step-pool units. Second, we screened for emergent nonlinear-deterministic
dynamics in detrended rill signals by reverse-engineering (reconstructing) rill-bed shadow attractors from each
detrended rill signal with time-delay embedding'®, and statistically testing whether apparent nonlinear structure
in shadow attractors was likely mimicked by a linear-stochastic process with surrogate data testing'®. Third, we
screened shadow attractors for nonlinear stationarity with space-time separation plots® to ensure that underly-
ing rill signals were long enough to adequately sample dominant low-frequency cycles isolated with singular
spectrum analysis. Finally, we simulated and forecasted reconstructed nonlinear-deterministic dynamics with
echo state neural network'® machine learning. We used out-of-sample forecasts to increase profile length of rill
signals screened to be non-stationarity and then re-tested for stationarity.
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Figure 2. Workflow for reconstructing spatial dynamics from experimental rill-bed profiles. (a) We applied
singular spectrum analysis to separate signal from noise in rill profiles and remove low-frequency trend
components from the signal to isolate higher-frequency cyclical components expected to contain step-pool
units and to promote nonlinear stationarity. (b) We screened for emergent nonlinear-deterministic dynamics
in detrended rill signals with nonlinear time series methods. We reverse-engineered (reconstructed) rill-bed
morphology dynamics from each detrended rill signal with time-delay embedding, and statistically tested
whether apparent nonlinear structure in reconstructed dynamics was likely mimicked by a linear-stochastic
process with surrogate data testing. (c) We used space-time separation plots to screen for nonlinear stationarity
in reconstructed rill-bed dynamics to ensure that rill signals were long enough to adequately sample dominant
low-frequency cycles isolated by singular spectrum analysis. (d) We applied echo state neural network'® machine
learning to simulate and forecast reconstructed nonlinear-deterministic dynamics. We used out-of-sample
forecasts to increase profile length of rill signals screened to be non-stationarity and re-tested for stationarity.

Results

Signal processing. Table 1 shows that the strength of signals isolated in the detrended in-situ rill-bed pro-
files ranged from relatively low (28%) to moderate (52%) with four of the five profiles accounting for over a third
of total variation in the corresponding detrended profiles. The strength of signals isolated from the ten flume
rill-bed profiles were substantially higher (ranging from 73 to 92%) reflecting reduced presence of unstructured
noise in a controlled laboratory setting. Signal processing components for in-situ profiles, flume (loamy sand)
profiles, and flume (silt loam) profiles are plotted in Fig. 3. For each category, upper graphs plot detrended
experimental rill-bed profiles (black curve) and isolated detrended signals (red curve) against rill length (m),
and lower graphs plot oscillatory components dominating signals. We observe that filtering out the hillside-slope
trend component from in-situ rill-bed profiles removes steps from step-pool units in the detrended plots as seen
in Giménez et al., 2019 (compare their figures 1 and 10). Pools remain in the valleys of the detrended profiles. We
also observe that the plots of signals isolated from in-situ and flume rill-bed profiles fluctuate irregularly without
exhibiting clear regularities in the spatial distribution of pools. The detrended signals are composed of multiple
high frequency oscillations (see also Table 1).

Screen for emergent rill-bed profile dynamics. We reconstructed low-dimensional shadow attractors
from all in-situ rill signals from eight of ten flume rill signals. The two failed reconstructions were associated
with flume rill signals generated with the lowest discharge level of 1000 Lh™* (8 s1-1000 Lh™! (loamy sand) and
12 s1-1000 Lh™! (silt loam)). The failed shadow attractors had too few orbits to adequately sample an under-
lying attractor, possibly indicating failure of the associated rill profiles to develop step-pool units. All recon-
structed shadow attractors required from two to four embedding dimensions (Table 2), indicating presence of
low-dimensional nonlinear dynamics. Three-dimensional projections of shadow attractors (black trajectories
plotted in Fig. 4a) have a cyclical appearance composed of aperiodic non-repeating oscillations whose visual
geometric structure stands out when compared to a random scattering of points reconstructed from a uniform
random time series (Fig. 4b).

We tested the null hypothesis that apparent geometric regularity in shadow attractors reconstructed from
rill signals is due to mimicking linear-stochastic dynamics. We selected nonlinear prediction skill—measured
by Nash-Sutcliffe Efficiency (NSE)—and permutation entropy—measured by a modification of the Shannon H
statistic—as discriminating statistics measuring hallmarks of nonlinear-deterministic dynamic behavior. We
computed PPS surrogate data vectors testing for noisy linear dynamics in cyclical records. We specified an upper-
tailed test for nonlinear prediction skill since shadow attractors reconstructed from nonlinear-deterministic data
should predict with more skill (larger NSE) than attractors reconstructed from 399 PPS surrogate data vectors. We
formulated a lower-tailed test for permutation entropy since higher H values reflect more random behavior. We
applied rank-order statistics with significance level a=0.05 and summarize the results in Table 2. When nonlinear
prediction skill is the discriminating statistic, we reject the null hypothesis for all shadow attractors reconstructed
from rill signals since the NSE achieved by each surpasses the corresponding upper-threshold value exceeded
by the top ranked surrogate attractors. When permutation entropy is the discriminating statistic, we reject the
null hypothesis for ten of eleven shadow attractors since H computed for each falls below the corresponding
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Figure 3. Singular spectrum analysis (SSA) of experimental rill-bed profiles. Upper graphs in each category
plot detrended rill-bed profiles (black curve) and the corresponding detrended signal (red curve) against rill
length (m); and lower graphs plot corresponding dominant oscillatory components. Removing the hillside-slope
trend component from in-situ rill-bed profiles removes steps from step-pool units in the detrended plots; pools
remain in the valleys of the detrended profiles. SSA performed better to isolate high-frequency oscillations in
flume rill-bed profiles when standardized by subtracting the profile mean from each observation and dividing
by the profile standard deviation. Positive (negative) standardized values represent standard deviations above
(below) the mean (the zero value). The plots of signals isolated from in-situ and flume rill-bed profiles fluctuate
irregularly without exhibiting clear regularities in the spatial distribution of pools.

lower-threshold value bounding from above the bottom ranked surrogate attractors. The permutation entropy
test was inconclusive only for the shadow attractor reconstructed from rill signal 15 s1-780 Lh™* since H equals
the lower-threshold value. Given the strength of these results, we confidently reject the null hypothesis that
linear-stochastic dynamics are the most likely source of geometric regularity in shadow attractors reconstructed
from rill signals. Nonlinear-deterministic dynamics remain a likelihood.

Screen for nonlinear stationarity. Nonlinear stationarity requires that the “duration of the measurement
is long compared to the time scales of the systems™'. Consequently, an important implication of finding rill
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Embedding Nonlinear prediction test Permutation entropy test

PPS surrogates® Rill signal PPS surrogates
Rill profile m* | d® |Rill signal NSE¢ | upper threshold® | HOf entropy lower threshold¢ | HO"
In-situ rill signals
5s1-2500 Lh! 2 20 |0.996 -0.385 Nonlinear | 0.399 0.975 Nonlinear
5 s1-5000Lh™! 2 20 |0.999 -0.398 Nonlinear | 0.310 0.977 Nonlinear
15s1-160 Lh™! 4 14 0912 -0.183 Nonlinear | 0.739 0.977 Nonlinear
1551-780 Lh! 4 16 |0.988 —-0.349 Nonlinear | 0.97 0.97 Inconclusive
15 s1-900 Lh™! 4 5 10.975 -025 Nonlinear | 0.607 0.955 Nonlinear
Flume (loamy sand) rill signals
851-2200 Lh™* 3 6 |0.968 -0.177 Nonlinear | 0.567 0.91 Nonlinear
8 51-3600 Lh™! 4 3 10.788 - 0.064 Nonlinear | 0.757 0.91 Nonlinear
12 s1-1000 Lh™! 3 3 10912 -0.183 Nonlinear | 0.739 0.909 Nonlinear
1251-2200 Lh! 3 6 |0.871 - 0.054 Nonlinear | 0.599 0.905 Nonlinear
Flume (silt loam) rill signals
851-1000 Lh™! 3 4 |0.739 -0.12 Nonlinear | 0.73 0.847 Nonlinear
851-3600 Lh™! 3 8 |0.979 -0.123 Nonlinear | 0.674 0.909 Nonlinear
12 s1-2200 Lh™! 3 4 10.959 -0.132 Nonlinear | 0.703 0.852 Nonlinear
12 s1-3600 Lh™! 3 5 10.983 -0.264 Nonlinear | 0.46 0.945 Nonlinear

Table 2. Surrogate data results. *Embedding dimension; *embedding delay; “Nash Sutcliffe Efficiency (NSE=1
denotes perfect prediction skill); “PPS surrogates test the null hypothesis that aperiodic cycling characterizing
the empirically-reconstructed attractors is generated by randomly shifting periodic orbits characteristic of
noisy linear dynamics. The significance level is set at a=0.05% with 399 surrogates generated; an upper-
tailed test rejects the null hypothesis if the NSE computed using the shadow attractor reconstructed from the
signal rests above the floor of the upper extreme values computed from surrogate attractors; ‘Rejection of the
null hypothesis leaves the door open to nonlinear-deterministic dynamics; émodified Shannon H measure; hy
lower-tailed test rejects the null hypothesis if H computed using the shadow attractor reconstructed from the
signal rests below the floor of the lower extreme values computed from surrogate attractors.

signals to be stationarity is that they are long enough to adequately sample the dominant low-frequency cycles
isolated by singular spectrum analysis. Space-time separation plots exhibiting contour cycles requiring large
numbers of measurement steps for completion indicate that measurement distance between points on an attrac-
tor continues to affect their Euclidean distance—a sign of spatial non-stationarity of the signals from which the
attractors were reconstructed. Contour cycles in the space-time separation plots for three flume shadow attrac-
tors reconstructed from 12 sl to 1000 Lh™! (loamy sand), 12 s1-2200 Lh™! (loamy sand), and 12 sI-3600 Lh™ (silt
loam), require large numbers of measurement steps for completion in contrast to contour cycles in the other
plots oscillating with much higher frequency (Fig. 5). To address the possibility that these flume rill-profile
signals were prone to non-stationarity because of their relatively short lengths (ranging from 1.18 to 1.80 m in
Table 1), we increased profile length with out-of-sample machine-learning forecasts and retested for stationarity
as reported below.

Model reconstructed rill-bed dynamics with machine learning.  Echo state neural networks (ESNN)
learned shadow attractors reconstructed from three of five in-situ rill signals (15 sl-160 Lh™!, 15 s1-780 Lh™},
15 s1-900 Lh™!), and all shadow attractors reconstructed from flume rill signals. ESNN failed to learn recon-
structed dynamics from in-situ rill signals 5 s1-2500 Lh™! and 5 sl-5000 Lh™! since runs were explosive for
wide ranges of sampled hyperparameter values. In Fig. 6a, we show performance plots for the successful ESNN
simulations. The plots focus on rill signals as the first coordinate vector of shadow attractors reconstructed with
time-delay embedding. Each plot shows the portion of the rill signal allocated to the training set (blue curve
to left of shaded area), the portion remaining in the testing set (blue curve within the shaded area), ESNN
in-sample predictions (orange curve within shaded area), and ESNN out-of-sample forecasts (orange curve to
right of shaded area). The shaded area represents the testing interval in which ESNN skill in learning rill-signal
dynamics is demonstrated by how close ESNN predictions (orange curve) track the rill signal in the testing set
(blue curve). In each plot, ESNN predicts with almost-perfect skill (NSEs>0.95) as evidenced by orange curves
effectively covering the blue curves. We used the trained ESNN models to forecast each rill signal out-of-sample.
Forecasts largely preserved oscillatory behavior observed in corresponding rill profile signals. Moreover, in a
demonstration of dynamic correspondence, state-space trajectories reconstructed from ESNN out-of-sample
forecasts (red trajectories) largely rest on shadow attractors reconstructed from in-sample rill signals (black
trajectories) (Fig. 4).

We used ESNN forecasts to extend the lengths of the three flume rill signals detected to be non-stationarity
above: 12 s1-1000 Lh! (loamy sand), 12 s1-2200 Lh™* (loamy sand), and 12 s1-3600 Lh™* (silt loam). We re-tested
for stationarity with space-time separation plots, which revealed that the extended rill signals are now stationary
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Figure 4. Screening for emergent nonlinear-deterministic dynamics in rill signals. (a) We reconstructed low-
dimensional shadow attractors from all five in-situ rill signals, and from eight of the ten flume rill signals whose
flow discharge levels exceeded 1000 Lh™* (black trajectories). The two failed shadow attractors had too few orbits
to adequately sample an underlying attractor, possibly indicating failure of the associated flume rill profiles to
develop step-pool units. All reconstructed attractors required at least from two to four embedding dimensions
(Table 2), indicating low-dimensional nonlinear dynamics. The plots of shadow attractors have a cyclical
appearance composed of aperiodic non-repeating oscillations. In a demonstration of dynamic correspondence,
state-space trajectories reconstructed from echo state neural network out-of-sample forecasts (red trajectories)
largely rest on shadow attractors reconstructed from in-sample rill signals (black trajectories). Echo state neural
network models fit to in-situ rill signals 5 s1-2500 Lh™" and 5 s]-5000 Lh~! were explosive for wide ranges of
sampled hyperparameter values, and thus not used for forecasting. (b) The visual geometric structure of shadow
attractors stands out in contrast to a random scattering of points resulting from reconstruction of a uniform
random time series. Surrogate data results soundly reject the null hypothesis that this geometric structure can be
attributed to mimicking linear-stochastic dynamics (Table 2).

(Fig. 6b). Extended rill lengths became long enough to more adequately sample the dominant low-frequency
cycles isolated in signal processing.

Discussion

Past experimental work found that rill erosion occurs mainly during rill formation in response to feedback
between rill-flow hydraulics and rill-bed roughness that creates a succession of step-pool units self-regulating
the sediment transport capacity of established rills. Recent work has searched for clear regularities in the succes-
sion of step-pool units without success. The intuition that rill morphology might self-organize into systematic
spatially dynamic behavior was on the right track, but the search needed to be broadened to enable detection of
irregular and aperiodic nonlinear-deterministic spatial dynamics characteristic of complex systems. Our results
provide compelling experimental evidence supporting the hypothesis that the succession of step-pool units is
governed by emergent nonlinear-deterministic spatial dynamics; and consequently, that rill morphology is shaped
endogenously by internal nonlinear hydraulic and soil processes rather than stochastically forced. We success-
fully reconstructed low-dimensional nonlinear shadow attractors from thirteen of fifteen rill signals investigated,
all of which held up against surrogate data testing. We were unable to reconstruct shadow attractors from two
flume rill signals generated by the lowest discharge level (1000 Lh™!)—likely because these slope and discharge
levels precluded development of systematic step-pool units. Low estimated embedding dimensions provide
justification for modeling long-term rill-bed dynamics with relatively few degrees of freedom regardless of the
immense size and complexity of the real-world system generating experimental rill-bed profiles. This is good
news for future efforts to replace constant rill-bed roughness coefficients in conventional soil erosion modeling
with parsimonious spatially dynamic rill-bed models. Our results are robust across the rill-bed profiles inves-
tigated since emergent nonlinear spatial dynamics were detected in: (1) profiles generated both in a controlled
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Figure 5. Screening for stationary nonlinear rill-bed dynamics with space-time separation plots. The plots
indicate non-stationarity of three flume shadow attractors: 12 s1-1000 Lh! (loamy sand), 12 s1-2200 Lh™
(loamy sand), and 12 s1-3600 Lh™! (silt loam) since contour cycles require many measurement steps to complete
in contrast to contour cycles in the other plots oscillating with much higher frequency. Since these flume rill
profiles may be non-stationarity due to relatively short lengths (ranging from 1.18 to 1.80 m in Table 1), we
sought to remedy this by increasing profile length with out-of-sample machine-learning forecasts.
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Figure 6. Modeling shadow attractors with Echo State Neural Network (ESNN) machine learning. (a) Each
performance plot shows the rill signal in the training set (blue curve to left of shaded area), the rill signal in the
testing set (blue curve within the shaded area), ESNN in-sample predictions (orange curve within shaded area),
and ESNN out-of-sample forecasts (orange curve to right of shaded area). The shaded area represents the testing
interval in which ESNN predictions (orange curve) are plotted with the rill signal in the testing set (blue curve).
In each plot, ESNN predicts with almost-perfect skill (NSEs>0.95) as evidenced by orange curves overlapping
blue curves in the shaded area. Forecasts largely preserved oscillatory behavior observed in corresponding rill
profile signals. (b) We used ESNN forecasts to extend the lengths of three non-stationary flume rill signals and
re-tested for stationarity with space-time separation plots. The plots show that the extended rill signals are now
stationary.

lab (flume) setting and in an in-situ real-world hillside setting; and (2) flume profiles created in both silt-loam
and loamy-sand soils. Compatible with Giménez and Govers (2001), this suggests that the spatial arrangement
of step-pool units (macroroughness) is not largely conditioned by soil type so long as the soil is susceptible to
erosion (erodible material).

Our results contribute more broadly to a growing literature demonstrating that many types of erosional
landscapes (e.g., channel bed-steps in ephemeral reaches of boulder and bedrock streams?®?, undulating canyon
walls?, bedrock waterfalls?, and cyclic steps in erodable surfaces® including emphemeral gullies®) are shaped
by internal (autogenic) dynamics governing feedbacks among topographical, erosional, and sediment-transport
processes. Zeng et al. (2021) found that gully erosion is characterized by cyclic steps that are comparable to
step-pool units in rill erosion, except that “cyclic steps can form autogenically on homogeneous bed surfaces
of uniform bed material.” We offer experiental evidence that step-pool units in rill erosion also form autogeni-
cally. We further address a critical research gap identified in a review by Scheingross et al. (2020)%. The authors
concluded that, although autogenic dynamics are increasingly detected in depositional systems, understanding
remains nascent because criteria are lacking to distinguish internal dynamics from external forcing. We con-
ceptualized rill erosion as a complex system in which system variables are internalized by an extensive web of
nonlinear interactions. Each variable encodes its internal interactions with covariates, which famous naturalist
John Muir intuited in the early nineteenth century when he observed that: “When we try to pick something up
by itself, we find it hitched to everything else in the universe*?. This precludes the need to synthetically separate
internal from external variables. Instead, we isolated structured variation (signal) in experimental rill profiles
from unstructured variation (noise) with signal processing, and empirically detected emergent autogenic dynam-
ics in signals with nonlinear time series analysis.

There are important caveats in applying nonlinear time series analysis to reconstruct dynamics of real-
world systems from experimental datasets. Records are often noisy and short. Noise must be carefully filtered
from records without unintentionally removing aperiodic nonlinear dynamic structure mistaken for noise. We
applied singular spectrum analysis to remove noise from irregular appearing rill profiles because this method
retains aperiodic oscillations in the isolated signal. Records that are too short to adequately sample the domi-
nant low-frequency cycles isolated by singular spectrum analysis violate nonlinear stationarity requirements.
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We tested rill-bed profiles for nonlinear stationarity with space-time separation plots. We mitigated detected
non-stationarity in in-situ rill-bed profiles by filtering out inadequately sampled low-frequency trend cycles
with multi-stage singular spectrum analysis, and in flume rill-bed profiles by extending rill lengths with out-of-
sample forecasts computed with machine learning. Even with these precautions, we cannot reasonably expect to
reconstruct the complex folding and fractal patterns of real-world attractors?, but must lower our expectations
to reconstruct a sampling or skeleton of an attractor®’. We will fall short of reconstructing even a skeleton attrac-
tor if: (1) a low-dimensional real-world attractor does not exist; or (2) the data sample only transitory dynamics
heading toward an attractor.

We emphasize that nonlinear time series analysis does not replace conceptual modeling of soil erosion based
on first principles. Rather, the broader impact of our work is to provide a rigorous empirical benchmark guiding
specification and testing of new theoretical framings of rill-bed roughness in next-generation modeling. This
benchmark includes a geometric picture of rill-bed profile dynamics that conceptual models should reproduce,
and an estimate of the minimum model dimensionality required to do so.

Methods

Signal processing. Singular spectrum analysis is a data-adaptive signal processing method accommodat-
ing highly anharmonic (aperiodic) oscillations in irregular records'*'’. It is used to separate structured varia-
tion (signal) composed of trend and oscillatory components from unstructured variation (noise). The strength
of each component is based on its contribution to explaining total variation in the record. We searched for
emergent nonlinear dynamics in the structured signal component of measured rill-bed profiles since including
unstructured noise obscures detection. Singular spectrum analysis can be run in multiple stages to remove low-
frequency components that: (1) violate stationarity conditions requiring that the “duration of the measurement
is long compared to the time scales of the systems™'; or (2) impede detection of fainter higher-frequency oscil-
latory behavior. We ran three-stage singular spectrum analysis on the in-situ rill-bed profiles to remove low-fre-
quency trend components. The 1% stage removed the dominant trend due to hillside slope, the 2 stage removed
lingering trend components driven by physical processes beyond hillside slope, and the 3™ stage isolated higher
frequency components expected to capture finer structure in rill morphology containing step-pool units.

Time-delay embedding. We applied time-delay embedding'® to reconstruct a shadow attractor from each
detrended rill signal. The matrix form of a shadow attractor (embedded data matrix) is composed of a first col-
umn containing the observed rill signal and remaining columns containing space-delayed copies of the observed
signal which serve as surrogates for omitted system variables. The number of columns in the embedded data
matrix is the embedding dimension, and the delay length between columns is the embedding delay. The columns
of the embedded data matrix are coordinates axes in state space, and the rows are multidimensional points on a
shadow attractor. Takens (1980) formally proved that time-delay embedding provides a 1-1 mapping of system
dynamics from the original real-world state-space to the reconstructed shadow state space so long as the latter
has sufficient dimensions to contain the original attractor. Since we do not directly observe the dimension of
the real-world attractor, we followed convention in estimating the embedding dimension with the false near-
est neighbors test®, and the embedding delay as the delay giving the first minimum of the mutual information
function®.

Surrogate data testing. We tested the shadow attractor reconstructed from each rill signal against surro-
gate data to provide a statistical safeguard against mistaking apparent geometric regularity in a shadow attractor
for deterministic nonlinear dynamic structure when it is most likely mimicked by linear stochastic dynamics'®*.
First, we generated surrogate data vectors that destroyed the spatial structure of rill signals while preserving sta-
tistical properties compatible with a hypothesized stochastic dynamic structure. We computed PPS surrogates
which test for noisy linear dynamics in cyclic records*. Second, we reconstructed attractors from each surrogate
data vector and compared them to the shadow attractor reconstructed from a rill signal based on two discrimi-
nating statistics conventionally measuring hallmarks of nonlinear-deterministic behavior: nonlinear predictive
skill** and permutation entropy’®. In a conventional nonlinear prediction algorithm, the points on a shadow
attractor are split into learning and testing sets, the last point in the training set is predicted one-step-ahead
by taking a weighted average of the nearest neighboring points in the training set, and skill measured by how
close the prediction is to the corresponding point on the attractor in the test set’>. We specified an upper-tailed
hypothesis test for nonlinear predictive skill since nonlinear-deterministic structure should predict better with
a nonlinear prediction algorithm than linear-stochastic surrogates measured by a goodness-of-fit measure such
as the Nash-Sutcliffe Model Efficiency (NSE)*’, which denotes perfect skill when NSE= 1. Permutation entropy
modifies the classic Shannon H measure of the information in a time series for application to finite noisy data.
When H=0, the time series is perfectly predictable from past values. H achieves a maximum value when time
series observations are independent and identically distributed. We adopted a lower-tailed hypothesis test for
permutation entropy since larger values of H indicate more random behavior. Third, we applied rank-order sta-
tistics to test for significant difference in nonlinear performance®. We generated an ensemble of S= (k/a) — 1 sur-
rogates, where « is the probability of false rejection and k controls the number of surrogates and the sensitivity
of the test. We set «=0.05 and k=20 and accepted the null hypothesis of stochastic cycling dynamics if the NSE
(H) taken from the attractor reconstructed from the rill signal did not fall in the upper (lower) k corresponding
values taken from the ensemble of S =399 surrogate attractors. If we reject the null hypothesis, untested dynamic
structures (including nonlinear-deterministic dynamics) remain viable.
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Screen for nonlinear stationarity. We tested for nonlinear stationarity with space-time separation
plots®®, which scatterplot the Euclidean distance (vertical axis) and the number of measurement steps (horizon-
tal axis) between each pair of points on a shadow attractor. Scatterplotted distances are conventionally reformat-
ted as equal-probability contour lines by plotting the percentage of pairs that are less than or equal to a given
Euclidean distance and drawing curves through identical percentages. In the simplest plots, these contours satu-
rate, or in more complex plots, cycle. Contour cycles requiring large times for completion indicate that meas-
urement distance between points on an attractor continues to affect their Euclidean distance—an indication of
non-stationarity.

Model reconstructed rill dynamics with machine learning. Echo state neural network!® (ESNN)
machine learning is a reservoir computing method comprised of a reservoir mapping each point on the attractor
sequentially into a high-dimensional space, and a read-out providing reservoir predictions. Reservoir comput-
ing is fast-learning with low-training cost since the reservoir is fixed and only the readout is trained. The embed-
ded data matrix of a reconstructed attractor is divided into training and testing sets. In each iteration t of the
training mode, a row of the training set (i.e., a point on the attractor) is inputted through an input coupler into a
reservoir composed of N neurons, x;(t), i = 1,2,...N. The scalar activation values are updated in each iteration
and collected in a neuron activation matrix, X. The training set is regressed against X to estimate a coefficient
matrix, Wy, used to formulate the read-out component. In each iteration of the testing mode, a row of the
testing set is inputted into the reservoir, and the linear read out generates predicted values, y(t) = Wo,ex(t),
where x(f) is the vector of activations at iteration t. The neuron activations are updated at each iteration, and the
updated predictions collected in prediction matrix Y. In sum, Y is the ESNN simulation of the portion of the
embedded data matrix allocated to the testing set. Consequently, the first column of Y is the prediction of the
rill profile signal contained in the first column of the embedded data matrix, and the rows of Y are predicted
points on the testing portion of the reconstructed attractor. We measure how well each column of Y predicts
its counterpart in the embedded data matrix with the Nash-Sutcliffe Efficiency Index*. Since machine learning
performance is highly sensitive to architectural hyperparameters'®, we run ESNN through a ‘tuning cycle’ that
employs high-performance computing (HPC) and global sensitivity analysis*® (GSA) to automate a large parallel
grid search of architectural hyper-parameters. The tuning cycle first uniformly samples a hyper-parameter grid
with option for sparse Morris or denser Sobol GSA sampling methods®®. Sampled machine learning configura-
tions are parallelized and batch run with HPC. Post-processing GSA identifies which hyper-parameters are most
influential in driving machine learning performance, and consequently can be effectively adjusted in another
tuning cycle. If we select the Morris sampling method, we compute Morris sensitivity measures; if we select
the Sobol method, we compute first-order and total-sensitivity variance-decomposition indices*. In generation
mode, we use skillful parameterizations to forecast points on the attractor out-of-sample by feeding back in
predicted values at each iteration.

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author.

Code availability

These R packages were used: imputeTS (fill in data gaps), RSSA (singular spectrum analysis); spacetime (space-
time separation plots); and tseriesChaos (mutual information function, false nearest neighbors test, time-delay
embedding). These packages are downloaded from https://cran.r-project.org/package =*, where * is a package.
Wrap-around R code facilitating the use of these packages is available in Huffaker et al. (2017). We used Origin
2022 for 3-D plotting in Fig. 4. We modified R Code developed by Lukosevicius (2012) to run ESNN and wrote
additional code employing high-performance computing and global sensitivity analysis to automate a large
parallel grid search of ESNN architectural hyperparameters.
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