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A B S T R A C T

The success of second-life (SL) Li-ion batteries from electric vehicles is still conditioned by their technical
and economic viability. The knowledge of the internal parameters of retired batteries at the repurposing stage
is key to ensure their adequate operation and to enlarge SL lifetime. However, traditional characterization
methods require long testing times and specific equipment, which result in high costs that may jeopardize the
economic viability of SL. In the seek of optimizing the repurposing stage, this contribution proposes a novel
fast characterization method that allows to estimate capacity and internal resistance at various state of charge
for reused cells, modules and battery packs. Three estimation models are proposed. The first of them is based
on measurements of AC resistance, the second on DC resistance and the third combines both resistance types.
These models are validated in 506 cells, 203 modules and 3 battery packs from different Nissan Leaf vehicles.
The results achieved are satisfactory, with mean absolute percentage errors (MAPE) below 2.5% at cell and
module level in capacity prediction and lower than 2.4% in resistance estimation. Considering battery pack
level, MAPE is below 4.2% and 1.8% in capacity and resistance estimation respectively. With the proposed
method, testing times are reduced from more than one day to 2 min per cell, while energy consumption is
lowered from 1.4 kWh to 1 Wh. In short, this study contributes to the reduction of repurposing procedures
and costs, and ultimately to the success of SL batteries business model.
1. Introduction

Nowadays, the transition of the automotive sector towards electric
vehicle (EV) is already a fact. Environmental problems related to tradi-
tional internal combustion vehicles, together with government actions
and citizen awareness have contributed to the expansion of EVs on
our roads, which is expected to hit 145 million units by 2030 [1].
As a result, the demand of Li-ion batteries (LIB) for EVs is forecast at
1239 GWh by 2030 [2].

As a consequence of usage, capacity and power capabilities of LIB
fade, which eventually compromise their performance in EVs. Automo-
tive standards set therefore a 20–30% of capacity fade as withdrawal
point for LIB in EVs. In recent years, the reuse of these batteries has
emerged as an alternative to direct recycling, thereby enlarging their
lifetime and representing a beneficial solution from an economic and
environmental viewpoint [3]. Stationary applications such as residen-
tial photovoltaic installations, less demanding than EVs in terms of
performance and energy and power density, are regarded as promising
alternatives for these second-life (SL) batteries [4]. The outlook for SL
LIB market stands at 26 GWh by 2025 [2], yet its success depends on
technical and economic viability.

∗ Corresponding author.
E-mail address: alfredo.ursua@unavarra.es (A. Ursúa).

On the one hand, technical viability of SL batteries is almost a
reality nowadays. The reuse of EV LIB can be carried out at three levels:
battery pack, module and cell. The selection among them depends
on the specific energy requirements of the SL applications, as well
as on the related costs, and nowadays several approaches can be
found. At industrial level, automotive companies such as Nissan [5],
BMW [6] o Daimler [7] have already partnered with energy firms
in the constructions of large-scale demonstrators with reused battery
packs from EVs. Moreover, commercial SL batteries can be found,
with battery packs directly reused [8,9] or reconfigured batteries from
SL modules [10,11]. Research contributions have also assessed the
viability of SL battery packs, in applications with high power require-
ments such as frequency regulation [12], or high energy demand such
as energy time shifting and demand side management at residential
level [13,14]. Performance [15,16] and durability [17] of SL modules
have also already been assessed. Nevertheless, the economic viability
of reused LIB is still uncertain, with threats as their final cost or price
competitiveness of new batteries [18]. Moreover, the standards and
regulation specific for reused batteries are scarce. Only UL 1974 is
vailable online 8 November 2022
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currently available, which focuses on the evaluation of repurposed
batteries [19].

The repurposing stage of SL LIB plays a key role in their economic
viability, given that it can represent up to 30% of the total costs [20,
21]. The direct reuse of battery packs is a priory the most economic
option, given its simplicity. Nevertheless, the lack of energy modularity
or the internal dispersion of SL modules [16,22,23] are drawbacks
that may affect their lifetime [24,25] and therefore its profitability.
For its part, module-level reuse overcomes these issues, although the
further repurposing processes required increase costs, which may risk
economic viability.

Characterization of reused LIB from EVs is essential to ensure an
adequate SL operation, being capacity and resistance the internal pa-
rameters normally assessed. Traditional characterization methods con-
sists of several hours of testing, with full charge and discharge cycles
to obtain capacity, and current pulses or Electrochemical Impedance
Spectroscopy (EIS) measurements to measure internal impedance [26].
Despite their accuracy, the time and infrastructure necessary is today
a major barrier to decrease costs. Therefore, a major effort is under-
way to optimize testing procedures. In recent years, the estimation of
internal parameters has emerged as an alternative to characterization,
which in general requires complex algorithms based on neuronal net-
works [27–30], support vector machine [27,31,32] or support vector
regression [33–35]. However, the principle of these methods differs.
Some authors propose incremental capacity curves to estimate capac-
ity [22,31,36–40], which requires high testing times at low current
or high data processing [33]. Other estimation methods are based
on current pulses [23,27,28,37] or EIS measurements [40–42]. In a
second stage, results are extrapolated to a larger data set, thereby
estimating the internal parameters. Nevertheless, the easiness and low
number of samples required on the characterization tests are usually in
counterbalance with the complexity of the algorithms required.

Considering SL LIB, only few contributions targeting this issue have
been found [22,23,27,37,39,41,42]. Given the importance of charac-
terization in SL LIB to ensure economic and technical viability, and the
research gap found in easy and quick methods, this work proposes a
new approach for the estimation of the internal features that define SL
LIB state. More precisely, a method that allows to estimate the internal
characteristics that define the state of a battery, i.e., its capacity (𝐶)
nd internal DC resistance (𝑅𝐷𝐶 ), in a quicker and easier procedure
han traditional methods is developed. The method is applicable at cell,
odule and battery pack level, and it can be extrapolated to other

attery technologies. The experimental procedure has been carried out
ith a large sample, covering 506 cells, 203 modules and 3 battery
acks, all of them retired from real EVs. The work is organized as
ollows: Section 2 describes the method developed for the quick estima-
ion of the internal features of the SL cells, modules and battery packs.
ection 3 gathers the experimental procedure followed, together with a
escription of the LIB used and the test bench. The experimental results
upporting the proposed method for fast characterization are further
iscussed in Section 4. The initial analysis lead to the identification of
wo significant variables for estimation (AC and DC resistances), and
s a result three models are proposed, one for each of the significant
ariables and a third as a combination of both. In addition, this section
nalyses the influence of the sample size used for model fitting on the
ccuracy and impact of the proposed method in terms of time and
nergy consumption. Finally, Section 5 gathers the main conclusions
f the work.

. Methodology

The proposed method is divided in two main stages: initial analysis
nd estimation of variables, as presented in Fig. 1. The starting point
f the method is a data set (Data Set 0) of cells, modules or battery
acks retired from EVs of a specific chemistry and technology, of size

. Once the study level is defined, a complete characterization is
2

0

carried out in a selected sample of Data Set 0 (Sample 0), with size
𝑛0. The analysis of results allows to identify the relevant significant
variables that show strong correlation with 𝐶 and 𝑅𝐷𝐶 , as well as to
fit the estimation models (Estimation models 0). A fast characterization
procedure for measuring these relevant variables is also designed,
which allows to optimize resources and testing times. Moreover, the
minimum number of samples necessary to get representative results (𝑛𝑠)
is analysed. The second stage of the method starts with a Data Set 1 of
𝑁1 samples with similar chemistry and technology than Data Set 0. The
fast characterization procedure is applied to this batch, which allows
to statistically determine whether it is similar to Data Set 0. If so, 𝐶
and 𝑅𝐷𝐶 will be assessed by means of Estimation models 0. Otherwise,
a complete characterization is performed in 𝑛𝑠 samples of Data Set 1
(Sample 1.1), in such a way that the estimation models are adjusted
(Estimation models 1). These models will be applied to the remaining
samples of Data Set 1 (Sample 1.2), thereby estimating the targeted
variables.

2.1. Stage 1: initial analysis

The first step of the method focuses on the general analysis of the
SL samples. Thereby, from a Data Sample 0, it seeks to select the study
level (cell, module or battery pack), to identify the significant variables
for 𝐶 and 𝑅𝐷𝐶 estimation, and finally to define the fast characterization
procedure. Moreover, model fitting is also targeted, together with the
definition of the minimum sample size to get representative estimation
results (𝑛𝑠).

2.1.1. Selecting the level of the study
EV battery reuse is not a standardized procedure [3], and therefore

the repurpose at cell, module or battery pack level is possible. When
more than one option is available, i.e., modules and their corresponding
cells, it is important to assess which approach is the most suitable. On
the one hand, the reuse at module level leads to shorter testing times,
but the higher voltage levels required in the measuring equipment
could increment final costs. On the other hand, cell repurposing allows
more precise management and balancing in SL applications. Besides,
the operating conditions of the cells from a given module in an EV
may vary due to their position, which may result in dispersion on
their internal parameters [16,23]. Characterization at cell level would
hence overcome this issue, also representing a cost-effective solution
regarding requirements for testing equipment. The selection of the
study level, if possible, will hence depend on the interests of the specific
case.

2.1.2. Complete characterization and analysis
Once the study level is selected, a random sample (Sample 0) of

𝑛0 units is selected from Data Set 0. The reception open circuit voltage
(𝑂𝐶𝑉0) is firstly measured, thereby discarding samples out of the safety
limits set by the manufacturer. Then, the characterization procedure
described in Section 3.2 is carried out. The reuse of too damaged
samples should be avoided, given that it may compromise SL reliability
and lifetime. Thus, threshold values for the characterization parameters
are defined, in such a way that a second screening is performed to
remove units which do not meet the requirements. The total population
size is kept to 𝑛0, so if any sample is removed, new units will be tested
to meet this number.

Significant variables and fast estimation method. After data screening,
the significant variables related to 𝐶 and 𝑅𝐷𝐶 are identified. To this
end, Pearson correlation coefficient (PCC) is used as indicator, given
by Eq. (1).

𝑃𝐶𝐶𝑋,𝑌 =
𝐶𝑂𝑉 (𝑋, 𝑌 )

𝜎𝑋𝜎𝑌
(1)

COV(X,Y) is the covariance between the target variables 𝑌 (𝐶 and

𝑅𝐷𝐶 ) and the significant variables 𝑋, while 𝜎𝑋 and 𝜎𝑌 are the standard
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Fig. 1. Flowchart of the proposed method for quick estimation of capacity and internal resistance in SL batteries.
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d
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eviation of 𝑋 and 𝑌 , respectively. The value of 𝑃𝐶𝐶𝑋,𝑌 can range
from −1 to +1. A value of 𝑃𝐶𝐶𝑋,𝑌 of +1 implies a perfect positive linear
correlation between 𝑋 and 𝑌 , a 𝑃𝐶𝐶𝑋,𝑌 of 0 denotes the absence of
linear correlation, and a 𝑃𝐶𝐶𝑋,𝑌 of −1 implies a perfect negative linear
correlation [43]. Moreover, an analysis of variance (ANOVA) test is
carried out, with the null hypothesis of no correlation with 𝑋 and 𝑌 . If
the resulting 𝑃 -value is lower than 0.05, this hypothesis will be rejected
with 95% of confidence. Once the significant variables are identified, a
fast characterization procedure to obtain them will be designed, aiming
to minimize testing times and processes.

Model fitting. The general expression for the model relating the target
and the significant variables is given by Eq. (2).

𝑌𝑖 = 𝑌0 + 𝛼1𝑋1 + 𝛽1𝑋2 + 𝛾1𝑋3 +⋯ + 𝛼𝑚𝑋
𝑚
1 + 𝛽𝑚𝑋

𝑚
2 + 𝛾𝑚𝑋

𝑚
3 (2)

The degree and coefficients of each model are fitted with an it-
erative procedure. Considering a given degree 𝑚, the assumption of
significance for the variable is tested by means of an ANOVA test. If
rejected, the procedure is repeated with 𝑚 equal to the next lower
integer, until the degree that considers all the significant terms is found.
Then, the resulting polynomial is fitted through least squares method,
thereby obtaining Estimation models 0. To evaluate the accuracy of the
3

models, mean absolute percentage error (MAPE) and root mean squared
error (RMSE) are computed, according to Eqs. (3) and (4).

𝑀𝐴𝑃𝐸 (%) = 1
𝑛

𝑛
∑

𝑖=1

|𝑌𝑖 − 𝑌𝑖|
𝑌𝑖

⋅ 100 (3)

𝑅𝑀𝑆𝐸 =

√

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌𝑖)2

𝑛
(4)

being 𝑌 the measured value, 𝑌 the estimation and 𝑛 the size of the
sample.

Influence of sample size on estimation. When optimizing testing times,
the number of samples to be characterized plays a key role. Therefore,
the influence of sample size necessary to obtain similar results as in
greater populations (𝑛𝑠) is analysed. Relative error is the parameter
elected to assess this influence, computed as the absolute value of the
ifference between the real value and the estimation, divided by the
eal value. The overall population, with size 𝑁 , has an relative error

with given average (MAPE) and standard deviation values. From this
population, it is possible to extract n-sized samples, each with its own
MAPE, being 𝑛 < 𝑁 . Statistically, the dispersion of sample averages

for different 𝑛 with respect to the overall population average can be
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computed by means of the standard error of the sample mean (𝑆𝐸).
Eq. (5) shows the calculation of 𝑆𝐸, adjusted to finite populations.

𝐸 = 𝜎
√

𝑛
⋅

√

𝑁 − 𝑛
𝑁 − 1

(5)

here 𝜎 is the standard deviation of MAPE. 𝑁 is the overall population
ize and 𝑛 is the sample size. By computing the derivative of 𝑆𝐸 over
, it is possible to define the minimum sample size from which there is
o improvement in estimation (𝑛𝑠).

.2. Stage 2: fast estimation

In this second step, a population with similar chemistry and tech-
ology as Data Set 0 is considered, named as Data Set 1 and sized
1. First, the possibility of directly reusing Estimation models 0 is

onsidered, which would be the case if both populations were similar.
therwise, model adjustment is necessary. To compare both popula-

ions, a fast characterization is performed in Data Set 1, from which
he values of the significant variables for estimation are obtained.
hen, a statistical comparison of the characterization results is per-
ormed. The evaluation of differences between data sets depends on
heir statistical distribution. Hence, a normality test is firstly applied to
he fast characterization results of both Data Sets 0 and 1. As widely
sed solution, Shapiro–Wilk test is recommended. If the set follows
normal distribution, an ANOVA test is performed, as it compares

verage values. Otherwise, Kruskal–Wallis test is used, given that it
argets medians and is recommended when there are outliers. From any
f these tests, it is thus possible to statistically compare the sets. These
ests probe the hypotheses of equality between the groups, which are
ejected with 95% confidence if the resulting 𝑃 -value indicator is lower
han 0.05.

Therefore, if Data Set 1 and 0 are similar, Estimation models 0 can
e used. Failing that, a random 𝑛𝑠-sized sample will be taken from Data
et 1 (Sample 1.1), and a fast characterization will be performed. Note
hat 𝑛𝑠 has been previously defined on Stage 1. From the characteriza-
ion data, the models will be adjusted (Estimation models 1 in Fig. 1)
nd applied to the remaining units of Data Set 1 (Sample 1.2).

. Experimental setup

.1. Battery description

The batteries used in this contribution come from different Nissan
eaf EVs. The specific history of their first use, as well as the battery
ack of origin are unknown. Each Nissan Leaf battery pack, shown in
ig. 2 is formed by 48 modules in series as the ones depicted in Fig. 2.
n turn, each module is formed by four pouch-type cells of LNO/LMO
athode and graphite anode. The cells are connected in pairs associated
n series (2s2p). Three external terminals are available in the modules:
ositive, middle-point and negative, in such a way that 2p cells is the
mallest testing unit [17]. This 2p cells will be hereinafter named as
‘cell’’ to ease reading. Therefore, Cell-SUP refers to cells between the
ositive and middle-point terminals, and Cell-INF between the middle
nd negative ones. The main specifications of battery pack, module and
ell are gathered in Table 1.

.2. Experimental procedure

The experimental procedure of this contribution focuses on the
haracterization of retired batteries from EVs. As previously mentioned,
wo types of characterization can be distinguished: fast and complete.

The fast characterization consists of three measurements: initial
pen circuit voltage (𝑂𝐶𝑉0), AC internal resistance (𝑅𝐴𝐶 ) and DC ini-
ial resistance (𝑅𝐷𝐶,0). These measurements are performed at ambient
aboratory temperature (23 ± 2 ◦C) and with the battery at rest. First,
𝐶𝑉 between battery terminals is measured. On a second stage, 𝑅
4

0 𝐴𝐶
s measured by means of an AC current at 1 kHz. Finally, 𝑅𝐷𝐶,0 is
btained from a discharge pulse at C/2 during 30 s, considering the
nitial voltage and current (𝑉0 and 𝐼0) and their homologues after 10 s
𝑉2 and 𝐼2), computed as 𝑅𝐷𝐶,0 = (𝑉2 − 𝑉0)∕(𝐼2 − 𝐼0). C is defined
ccording to the rated capacity of the cell shown in Table 1.

The complete characterization procedure is based on a capacity and
esistance measurement at different state of charge (𝑆𝑂𝐶) levels. It
s performed at a controlled temperature of 25 ± 1 ◦C in cells and
t a laboratory ambient temperature of 23 ± 2 ◦C in battery packs.
he capacity test starts with a 2 h rest period, so that the battery
eaches thermodynamic equilibrium. Then, three full cycles at C/3 are
erformed between the voltage limits. Charge is performed in two steps:
onstant current and constant voltage (CC-CV), with a cut-off current of
/30 in the CV phase. The capacity of the battery is defined according
o the value obtained in the third discharge cycle. Then, the battery is
ully charged at C/2 and discharged with the same rate until 90% of
OC. After a 1-h rest, voltage and current are kept (𝑉1 and 𝐼1), and a
C discharge pulse at C/2 is performed until the next SOC level. The
alues of voltage and current after 10 s are also tracked (𝑉2 and 𝐼2),
nd 𝑅𝐷𝐶 is computed as 𝑅𝐷𝐶 = (𝑉2 − 𝑉1)∕(𝐼2 − 𝐼1). This procedure is
epeated at 90%, 70%, 30% and 10%. Fig. 3 shows voltage (blue lined)
nd current (red line) of the 𝐶 and 𝑅𝐷𝐶 measurements in a cell.

Moreover, in order to determine the relationship between 𝑂𝐶𝑉 and
𝑂𝐶, a quasi-OCV test is performed. From a fully charged cell, after a
-h rest period it is CC discharged at C/30 until the lower voltage limit.
hen, after a 2-h rest the cell is CC charged with the same rate. This
est is also performed at controlled ambient temperature of 25 ± 1 ◦C.
he OCV–SOC curve is computed from the average value of charge and
ischarge voltages.

.3. Test bench

Fig. 2 shows the test bench used in this contribution. Three multi-
hannel battery testers standing 5 V and 50 A per channel are used,
hich have a measurement precision of ±0.1% of their full scale.
oreover, two climatic chambers, ranging −30 ◦C to +180 ◦C and with
precision of ±0.5 ◦C are used. On the other hand, the bench also has
battery pack tester of 800 V and 90 A, accurate up to ±0.1% of its full

cale. 𝑅𝐴𝐶 measurement at 1 kHz are performed with a battery analyser
ith 0.001 mΩ, which stands 60 V and 100 mA, and has a precision of
1% of its full scale. 𝑂𝐶𝑉 is measured by means of a multimeter with
.1 mV resolution. Data processing and statistical analysis are carried
ut with Matlab R2020a and StatGraphics 18-X64 software.

. Results and discussion

.1. Initial analysis

The first stage of the proposed method is the selection of the study
evel. As described in Section 3.2, the Nissan Leaf modules analysed
ave a 2s2p configuration with their Cell-SUP and Cell-INF available.
he initial analysis is carried out at cell level, and Cell-SUP are selected
s Data Set 0.

As starting point, a Sample 0 of 𝑛0 = 100 cells is taken from Data
et 0. First, 𝑂𝐶𝑉0 is measured and screened, being all the values
racked within safety limits. Then, 𝑅𝐴𝐶 , 𝑅𝐷𝐶,0 and 𝑅𝐷𝐶 are mea-
ured according to the procedure described in Section 3.2. To get the
eceiving 𝑆𝑂𝐶 of the cells (𝑆𝑂𝐶0), 𝑂𝐶𝑉0 measurements and the SOC-
CV curve are used. Even though this curve varies with aging, its
hanges are minor and can be mostly neglected [44]. Hence, a single
urve will be used as representative for the repurposing stage, obtained
rom the quasi-OCV test performed in one cell with 𝐶 similar to the
verage value of Data Set 0. Table 2 shows the statistical resume of the
haracterization from Sample 0, with average (Avg), standard deviation
Std), maximum (Max), minimum (Min) and coefficient of variation
𝐶𝑉 = 𝑆𝑡𝑑∕𝐴𝑣𝑔). 𝑂𝐶𝑉 is replaced by the corresponding 𝑆𝑂𝐶 , and
0 0
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Table 1
Battery pack, module, and cell specification of Nissan Leaf EV.

Battery pack Module Cell

Nominal voltage (V) 360 7.50 3.75
Maximum voltage (V) 403.2 8.30 4.15
Minimum voltage (V) 240 5.0 2.5
Rated capacity (Ah) 66.2 66 66
Rated energy (Wh) 24,000 495.0 247.5
Rated 𝑅𝐷𝐶,50% (mΩ) 93.1 1.94 0.970
Rated 𝑅𝐴𝐶 (mΩ) 59.8 1.25 0.623
Length × Width × Thickness (mm) 1570.5 × 1188.0 × 264.9 303 × 223 × 35 –
Mass (kg) 293 3.85 1.57
Table 2
Characterization results of Sample 0.

𝑅𝐴𝐶 (p.u.) 𝑆𝑂𝐶0 (%) 𝑅𝐷𝐶,0 (p.u.) 𝐶 (p.u.) 𝑅𝐷𝐶,90% (p.u.) 𝑅𝐷𝐶,70% (p.u.) 𝑅𝐷𝐶,50% (p.u.) 𝑅𝐷𝐶,30% (p.u.) 𝑅𝐷𝐶,10% (p.u.)

Avg 2.02 36.2 2.20 0.66 2.13 2.08 2.14 2.13 2.37
Std 0.26 5.6 0.28 0.07 0.27 0.26 0.28 0.27 0.30
Max 2.42 74.3 2.61 0.95 2.56 2.46 2.54 2.54 2.87
Min 0.99 11.2 1.13 0.57 1.08 1.07 1.06 1.10 1.26
CV (%) 13.06 15.5 12.77 11.18 12.97 12.63 13.16 12.84 12.68
Fig. 2. (a) SL Nissan Leaf modules, battery tester and climatic chamber, and (b) Nissan Leaf battery pack and battery pack tester from the test bench.
Fig. 3. Voltage and current measurements in a cell during a capacity and DC resistance
tests in a complete characterization.

the rest of results are normalized with respect to the rated values from
Table 1. 𝑅𝐷𝐶 is shown at the corresponding 𝑆𝑂𝐶, in such a way that
for example 𝑅𝐷𝐶,30% is the measurement performed at 30% of 𝑆𝑂𝐶.

As can be seen, the normalized value of 𝐶 ranges from 0.57 to
0.95, with an average of 0.66, slightly lower to the automotive with-
drawal limit. Regarding DC resistance, the maximum, minimum and
average values of 𝑅𝐷𝐶,0 are greater than the ones with the closest
𝑆𝑂𝐶 (𝑅𝐷𝐶,30%) for similar CV. This could be due to the fact that 𝑅𝐷𝐶,0
is measured after a long rest period in the cell, of several weeks or
even months, while 𝑅𝐷𝐶 test is carried out after several cycles, which
promotes the internal kinetics of the cells and as a consequence reduces
5

their internal resistance. On the other hand, it is observed that the
maximum average value of 𝑅𝐷𝐶 is measured at 10% of 𝑆𝑂𝐶, which
is in good agreement with literature [27]. The minimum average value
is obtained at a 𝑆𝑂𝐶 value of 70%.

When it comes to define threshold values for reusable cells, previous
degradation tests with similar cells are considered [17], and therefore
0.55 is selected for the normalized 𝐶 and 4 for normalized 𝑅𝐷𝐶 and
𝑅𝐴𝐶 respectively. None of the measurements of Sample 0 reaches the
threshold, so all the cells are considered as valid for the analysis.

Identification of significant variables for fast estimation. Three candidate
variables are considered to be significant for 𝐶 and 𝑅𝐷𝐶 estimation:
𝑅𝐴𝐶 , 𝑅𝐷𝐶,0 and 𝑂𝐶𝑉0. From the experimental results of the charac-
terization in Data Set 0, PCC and the 𝑃 -value of the ANOVA test are
computed, being the results presented in Table 3. To evaluate resistance
estimation, the values measured at 50% of 𝑆𝑂𝐶 are considered. On
the other hand, considering DC resistance as candidate for significant
variables, the values obtained at 30% of 𝑆𝑂𝐶 will be analysed, given
that it is the closest value to the average reception 𝑆𝑂𝐶 in Sample 0.
As can be seen, PCC shows a high correlation in both capacity and
resistance with 𝑅𝐴𝐶 and 𝑅𝐷𝐶,30%, while 𝑂𝐶𝑉0 is quantified as weakly
related. ANOVA only accepts the hypothesis of no correlation with the
same variable. Therefore, it is concluded that the significant variables
for 𝐶 and 𝑅𝐷𝐶 estimation are 𝑅𝐴𝐶 and 𝑅𝐷𝐶,30%.

Once the significant variables are identified, the fast characteri-
zation procedure is defined. 𝑂𝐶𝑉0 measurement is kept as screening
procedure to discard damaged samples and to determine 𝑆𝑂𝐶0. Sec-
ondly, 𝑅 is measured as described in Section 3.2. To define 𝑅
𝐴𝐶 𝐷𝐶



Applied Energy 329 (2023) 120235E. Braco et al.

a

f

t

𝐹

Table 3
Correlation results between measured variables (𝑅𝐴𝐶 , 𝑅𝐷𝐶,30% and 𝑂𝐶𝑉0) and capacity
nd internal resistance (𝐶 and 𝑅𝐷𝐶 ).
Parameter Count C 𝑅𝐷𝐶

PCC 𝑃 -value PCC 𝑃 -value

𝑅𝐴𝐶 100 −0.927 0.000 0.900 0.000
𝑅𝐷𝐶,30% 100 −0.945 0.000 0.997 0.000
𝑂𝐶𝑉0 100 0.070 0.487 −0.062 0.542

Table 4
Weighting factors for 𝑅𝐷𝐶,0 and 𝑅𝐷𝐶,30% to be used as input in the estimation models
or Data Sample 0.
SOC (%) 10 30 50 70 90

𝐹𝑆𝑂𝐶 0.8979 – 0.9925 1.0226 0.9985
𝐹0 1.0127 0.9670 0.9766 0.9880 0.9880

measurement, it is important to note that whereas 𝑅𝐴𝐶 is independent
of 𝑆𝑂𝐶 [45], 𝑅𝐷𝐶 varies at high or low levels [26]. The lack of
SL standards leads to random 𝑆𝑂𝐶 at the repurposing stage, even
with extreme values [44]. Thereby, it is proposed to adjust the 𝑅𝐷𝐶,0
measurement of an initial step to a fixed 𝑆𝑂𝐶, in order to get the input
values for the model. More precisely, 30% is selected, given that it is
the closest to the average 𝑆𝑂𝐶0 of Sample 0. The weighting factors are
determined from experimental measurements.

On the one hand, the influence of 𝑆𝑂𝐶0 is taken into account by a
factor 𝐹𝑆𝑂𝐶 , which considers the ratio between the average resistance
values from the characterization test at 30% (𝑅𝐷𝐶,30%) and the average
values of resistance at the 𝑆𝑂𝐶 closest to the reception (𝑅𝐷𝐶,𝑆𝑂𝐶0

), as
given by Eq. (6).

𝐹𝑆𝑂𝐶 =
𝑅𝐷𝐶,30%

𝑅𝐷𝐶,𝑆𝑂𝐶0

(6)

On the other hand, the resistance of a cell after a long inactivity
period may be higher than its real value after being cycled [46], which
could compromise the accuracy of the estimation methods. Therefore,
from the average experimental values after this initial step (𝑅𝐷𝐶,0) and
he ones obtained from the characterization test at a 𝑆𝑂𝐶 of 30%

(𝑅𝐷𝐶,30%), a weighting factor 𝐹0, is defined according to Eq. (7).

𝑜 =
𝑅𝐷𝐶,30%

𝑅𝐷𝐶,0 ⋅ 𝐹𝑆𝑂𝐶

(7)

Table 4 gathers the values of 𝐹𝑆𝑂𝐶 and 𝐹0 considering the exper-
imental results of Data Sample 0, and using Eqs. (6) and (7) for the
five 𝑆𝑂𝐶 levels tested. As can be seen, 𝐹𝑆𝑂𝐶 shows similar average
values except at 10%. This could be explained by the lower number
of available gaps for Li ions at low 𝑆𝑂𝐶, which increases the internal
resistance [26]. On the other hand, considering 𝐹0, there were no
samples received at 90% in Data Set 0, so the closest value, i.e. 70% is
taken. This provisional value will be substituted if in future complete
characterizations there are samples at the corresponding 𝑆𝑂𝐶.

The average error between the original measurements of 𝑅𝐷𝐶,0 and
𝑅𝐷𝐶,30% is 3.4%, while after applying the weighting factors it decreases
to 0.1%. The maximum error also decreases from 13.2% to 5.4%. It
can be therefore concluded that the factors proposed for Data Sample 0
allow to mitigate the heterogeneity of 𝑅𝐷𝐶,0.

Fast estimation models fitting. In the previous step, two significant
variables for the estimation of 𝐶 and 𝑅𝐷𝐶 were identified: 𝑅𝐴𝐶 and
𝑅𝐷𝐶,30%. Considering Eq. (2), three models can be thereby fitted with
the results of the characterization tests. More precisely, 𝑅𝐴𝐶 is taken
as 𝑋1, while 𝑅𝐷𝐶,30% is 𝑋2. Based on the procedure described in
Section 2.1.2, the degree and coefficients for each model are found.
Table 5 shows the best fitting and coefficients for the models in Data
Sample 0. The accuracy of the models is evaluated by means of the
6

coefficient of determination (Rsq). Note that when 𝑅𝐷𝐶,30% itself is
targeted for estimation, only Model 1 can be used.

To sum up, three estimation models are available, one for each
significant variable and a third combining both. When it comes to
model fitting, 𝐶 shows a second-degree correlation with 𝑅𝐴𝐶 and
𝑅𝐷𝐶,30% with better fitting in Model 2, which can be justified by the
greater correlation found through PCC. On the other hand, 𝑅𝐷𝐶 is
linear with both 𝑅𝐴𝐶 and 𝑅𝐷𝐶,30%, and likewise 𝑅𝐷𝐶,30% shows greater
PCC and Rsq. Note that 𝑅𝐷𝐶,30% is the target variable, so it is not
considered as input for Models 2 and 3. Considering Model 3, the best
fitting is a second-order polynomial for 𝑅𝐴𝐶 and linear with 𝑅𝐷𝐶,30%.
The better results obtained in resistance models compared to capacity,
can be justified by its greater correlation with the input parameters.

Sample size for estimation. The initial analysis considers 100 cells from
Sample 0. However, given the importance of optimizing repurposing
costs and times, the influence of sample size on the estimation is
assessed. The aim is thus to define the minimum sample size 𝑛𝑠 to
obtain similar accuracy results in the models as the ones obtained.
To this end, 𝑆𝐸 in Sample 0 is analysed, according to Eq. (5). The
standard deviation of 𝑆𝐸 in 𝐶 is 3.8, 2.8 and 2.7 from Model 1, 2,
and 3 respectively, while 𝑅𝐷𝐶,30% ranges from 5.6 to 5.8 in Model 1,
0.8 to 1.7 in Model 2 and 0.8 to 1.3 in Model 3. Fig. 4(a) shows the
results of the 𝑆𝐸 in the sample mean depending on the sample size
(𝑛) for the three capacity models. As can be seen, as 𝑛 increases the
error between sample and overall population mean decreases, which
is consistent with the unbiased character of the sample mean [43].
However, the decreasing ratio changes, slowing down as 𝑛 increases.
Fig. 4(b) shows the derivative of 𝑆𝐸 of the sample mean depending on
𝑛 for the three estimation models proposed. As the figure shows, from
a given value of 𝑛 there is almost no variation in 𝑆𝐸, which will be
selected as 𝑛𝑠. Considering the results from Data Sample 0, the values
selected for 𝑑𝑆𝐸∕𝑑𝑛 in 𝐶 and 𝑅𝐷𝐶 are 1e−03 and 1.5e−03 respectively,
given the greater measurement variability of this second parameter.
Hence, the value that meets the requirements for the three models is 𝑛𝑠
= 40 in both 𝐶 and 𝑅𝐷𝐶 .

4.2. Fast estimation

Once the initial analysis is carried out, the second stage of the
method focuses on the fast estimation of 𝐶 and 𝑅𝐷𝐶 , which will be
carried out at cell, module and battery pack level.

4.2.1. Cells
In order to compare different scenarios, two data sets of cells are

considered, with the same chemistry and technology of Sample 0.

• Data Set A: formed by 103 cells (𝑁𝐴) of type Cell-SUP from a
different batch than Data Set 0.

• Data Set B: consisting of 203 cells (𝑁𝐵) of type Cell-INF.

Firstly, both data sets are characterized according to the fast pro-
cedure defined in Section 3.2. Table 6 shows the statistical resume
of the experimental results obtained, with 𝑅𝐴𝐶 and 𝑅𝐷𝐶,0 normalized
considering their rated values of Table 1. As can be seen, resistance
values are greater in Data Set B. Given that the only distinctive feature
between both data sets is the position in the module, this fact confirms
that EV usage leads to different degradation rates in the cells, specially
affecting the ones placed between the middle and negative terminals.
This is in good agreement with previous experimental contributions
carried out with similar modules [16]. It should be also highlighted the
larger 𝑆𝑂𝐶 variability observed in Data Set B, three times greater than
Data Set A, which, together with the high values of 𝑆𝑂𝐶0 reported, up
to 98%, confirm the need to adapt 𝑅𝐷𝐶,0 to a fixed 𝑆𝑂𝐶 value in order
to reduce this variations.

Following the method, the data sets are compared to Data Set 0 to
determine their similarity. First, a normality test is applied to the fast
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Fig. 4. (a) Standard error (𝑆𝐸) of the sample mean and (b) its derivative depending on sample size 𝑛 for the capacity estimation from the three models proposed for Sample 0.
Table 5
Coefficients and Rsq for the best fitting of capacity and internal resistance estimation models based on 𝑅𝐴𝐶 (Model 1), 𝑅𝐷𝐶,30% (Model 2) and
both parameters (Model 3) obtained in Data Set 0.
Model 𝑋𝑖 𝑌 𝑌𝑜 𝛼1 𝛼2 𝛽1 𝛽2 Rsq

1 𝑅𝐴𝐶 𝐶 1.4602 −0.6149 0.1058 – – 0.888
𝑅𝐷𝐶,90% 0.2407 0.9352 – – – 0.795
𝑅𝐷𝐶,70% 0.2816 0.8903 – – – 0.795
𝑅𝐷𝐶,50% 0.1985 0.9626 – – – 0.807
𝑅𝐷𝐶,30% 0.2549 0.9267 – – – 0.799
𝑅𝐷𝐶,10% 0.3374 1.0052 – – – 0.777

2 𝑅𝐷𝐶,30% 𝐶 1.5887 – – −0.6952 0.1187 0.937
𝑅𝐷𝐶,90% −0.0189 – – 1.0102 – 0.996
𝑅𝐷𝐶,70% 0.0372 – – 0.9605 – 0.996
𝑅𝐷𝐶,50% −0.0500 – – 1.0311 – 0.995
𝑅𝐷𝐶,30% – – – – – –
𝑅𝐷𝐶,10% 0.0456 – – 1.0919 – 0.985

3 𝑅𝐴𝐶 𝐶 1.4311 −0.4016 −0.1412 0.0814 – 0.942
𝑅𝐷𝐶,30% 𝑅𝐷𝐶,90% −0.0131 −0.0117 0.0018 1.0150 – 0.996

𝑅𝐷𝐶,70% −0.0526 0.1218 −0.0342 0.9538 – 0.961
𝑅𝐷𝐶,50% −0.2291 0.2682 −0.0659 0.9891 – 0.996
𝑅𝐷𝐶,30% – – – – – –
𝑅𝐷𝐶,10% 0.4991 −0.6366 0.1707 1.1501 – 0.989
c
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Table 6
Statistical resume of the fast characterization results of Data Set A and B.

𝑅𝐴𝐶 𝑆𝑂𝐶0 (%) 𝑅𝐷𝐶,0

A B A B A B

Mean 1.99 2.11 36.1 39.2 2.17 2.38
Std 0.40 0.32 3.8 13.3 0.38 0.39
Max 2.70 2.71 50.4 98.1 2.69 2.96
Min 0.98 1.16 11.1 10.9 1.20 1.19
CV (%) 20.01 15.24 10.6 34.0 17.34 16.90

characterization results, concluding that none of the variables follow a
normal distribution. This is consistent with other research works that
analyse statistically SL batteries from EVs [22]. After applying Kruskal–
Wallis method, P-values of 0.32 and 0.13 are obtained for 𝑅𝐷𝐶,0 and
𝑅𝐴𝐶 in Data Set A, which accept the hypothesis of similarity with Data
Set 0. Therefore, the Estimation models 0 will be used in Data Set A,
with the coefficients from Table 5. Nevertheless, in Data Set B the P-
values obtained are 0.00, which shows that this population is different
from Data Set 0. It is thus necessary to adapt the estimation models to
the new data. To do so, a sample of 𝑛𝑠 = 40 cells will be randomly taken
from Data Set B. The cells are completely characterized, according
to the procedure described in Section 3.2. The estimation models are
then fitted, and the new factors and coefficients obtained. Using these
adjusted models (Estimation models 1 in Fig. 1), 𝐶 and 𝑅𝐷𝐶 are
estimated in the remaining cells of Data Set B.

Fig. 5(a) and (b) show the experimental results of capacity and
internal resistance measured at the five SOC levels in the complete
characterization test. These values are compared to the estimations
with the proposed methodology, being the accuracy results of 𝐶 and
7

𝐷𝐶 estimation in Data Sets A and B presented in terms of RMSE and
MAPE in Fig. 5(c) and (d) respectively. To consider all the cells and
decrease the influence of sampling, models are trained and tested by
means of cross-validation. 5 folds are considered, so that the require-
ment of 𝑛𝑠 = 40 for training is kept. The results shown in Fig. 5 are the
average value of the 5 trials.

As can be seen, in general 𝐶 shows better accuracy results, which
ould be expected given the greater magnitude and lower variability of
his parameter. Model 3 has the best results, with RMSE of 1.9% and
.0% in Data Sets A and B, and MAPE of 2.3% and 2.5% respectively.
onsidering, 𝑅𝐷𝐶 , the best estimation leads to RMSE of 4.3% in Data
et A and 6.8% in B, while MAPE is 2.2% and 2.4% on each set,
espectively. Compared to other contributions that target SL characteri-
ation at the repurposing stage, these are generally focused on capacity
stimation, with errors below 2% [42], 3% [22,47] or even 5% [23],
ut considering other input variables such as partial charge [47],
artial discharge [23], EIS [42] or incremental capacity [22,23].

.2.2. Modules
This subsection goes a step further in the estimation of features

rom SL batteries, by targeting module level. To do so, a Data Set C
ormed by 203 modules is analysed. The characterization results of
his data set are obtained from the experimental measurements of their
onstituent cells, previously described in this contribution. Hence, in
given module, 𝐶 is defined as the lowest value of its 2p cell pairs,
hile 𝑅𝐷𝐶 is the sum of them. Table 7 shows the statistical resume of

the fast characterization in Data Set C, normalized with the rated values
of Table 1.

Following the method, a normality test is carried out, which shows
that none of the estimation variables follow a normal distribution.

Kruskal–Wallis test is then applied, which gives P-values of 0.00 in both
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Fig. 5. Experimental results of capacity and internal resistance in (a) Data Set A and (b) Data Set B, and accuracy results of estimation in terms of (c) RMSE and (d) MAPE in
ata Sets A and B depending on the estimation model.
Table 7
Fast characterization results of Data Set C.

𝑅𝐴𝐶 𝑆𝑂𝐶0 (%) 𝑅𝐷𝐶,0

Mean 2.06 37.4 2.20
Std 0.41 6.7 0.68
Max 2.55 62.6 2.73
Min 1.08 11.0 1.12
CV (%) 15.73 18.0 15.85

values, thereby detecting differences between Data Sets C and 0 and
requiring model adjustments. As in Data Set B, a sample of 𝑛𝑠 = 40

odules is completely characterized, and the factors and coefficients
or the models are fitted. 𝐶 and 𝑅𝐷𝐶 are estimated in the remaining
odules of the data set, with the experimental measurements and

ccuracy results in terms of RMSE and MAPE shown in Fig. 6(a), (b)
nd (c), respectively. As in the previous analysis, a cross-validation
rocedure with 5 folds is followed, in such a way that all the available
ata is considered in both model training and testing. Similarly, the
esults shown are the average of all the trials.

As can be observed, RMSE values are lower in 𝐶 estimation, simi-
arly than at cell level. In particular, 1.9% was achieved, versus 5.7%
btained in the best case for 𝑅𝐷𝐶 . Nevertheless, MAPE is similar in both
ariables, with a value of 2.3%.

.2.3. Battery packs
Finally, a Data Set D formed by three battery packs (D1, D2 and

3) is also assessed. Given that there are not enough samples to develop
pecific models for this level of study, their 𝐶 and 𝑅𝐷𝐶 will be estimated
rom the models used at module level.

Therefore, the three battery packs are characterized according to the
ast procedure, being the results presented in Table 8. Given that the
oltage range of the battery packs exceeds the limits of the measuring
evice, 𝑅𝐴𝐶 cannot be determined. To compare the results obtained
8

ith module level, the average value of the 203 samples of Data Set
Table 8
Fast characterization results of Data Set D.

Battery pack 𝑆𝑂𝐶0 (%) 𝑅𝐷𝐶,0 (mΩ)

D1 79.1 129.2
D2 23.3 126.9
D3 40.5 205.5

C, shown in Table 7 are extrapolated to battery pack level (48 modules
in series), resulting in 204.9 mΩ. As can be seen, the values of 𝑅𝐷𝐶,0
in the battery packs are lower, with the maximum value measured in
D3, thereby suggests a worse degradation state of this sample.

To estimate 𝐶 and 𝑅𝐷𝐶 with the available data, Model 2 from
Section 4.2.2 and the corresponding factors are used. To adapt the
measured data, 𝑅𝐷𝐶,0 from D1, D2 and D3 are divided by the number of
modules that form the battery pack, thereby obtaining the equivalent
input for the model. Fig. 7 shows the experimental measurements of
(a) 𝐶 and (b) 𝑅𝐷𝐶 at the five SOC levels, which are compared to the
estimated values and with the resulting relative errors of 𝐶 and 𝑅𝐷𝐶
estimation obtained on each battery pack plotted in Fig. 7(c) and (d).

As can be seen, relative errors in 𝐶 range from 2.0% (D2) to 6.6%
(D3), resulting in a MAPE of 2.8%. The outliered estimation error in
D3 could be explained by its greatest 𝑅𝐷𝐶,0, from which a lower value
of capacity could be expected. Considering 𝑅𝐷𝐶 prediction, the best
results are also obtained in D2, with errors below 1% except from
𝑅𝐷𝐶,10%. In this case, MAPE ranges from 1.4%, obtained in 𝑅𝐷𝐶,70% to
8.2% reported in 𝑅𝐷𝐶,10%.

4.3. Influence of sample size on accuracy

The fast characterization method proposed aims to obtain sufficient
data to estimate 𝐶 and 𝑅𝐷𝐶 in the remaining units of a given set.
Thereby, the size of this sample to be fully characterized (𝑛𝑠) should

balance testing times and accuracy. It is hence interesting to analyse
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Fig. 6. (a) Experimental results of capacity and internal resistance in Data Set C and accuracy results of estimation in terms of (b) RMSE and (c) MAPE depending on the estimation
model.
Fig. 7. Experimental results of (a) capacity and (b) internal resistance in Data Set D and absolute error in estimation of (c) 𝐶 and (d) 𝑅𝐷𝐶 at the different 𝑆𝑂𝐶 for the three
battery packs tested.
how the estimation accuracy varies depending on this parameter. As an
illustrative example, Data Set B, formed by 203 cells will be assessed.
Therefore, from the experimental results obtained in this set, presented
in Section 4.2.1, the value of 𝑛𝑠 is varied from 5 to 100, fitting on
each case the corresponding estimation models and applying them
to estimate the remaining samples. On each case, cross-validation is
applied in model testing and training, in such a way that the number of
folds is adjusted to meet the corresponding 𝑛𝑠. Then, RMSE and MAPE
are computed with Eqs. (4) and (3). Fig. 8 shows the resulting evolution
of RMSE (Fig. 8a) and MAPE (Fig. 8b) in capacity estimation of Data
Set B depending on 𝑛𝑠. As can be seen, in Model 3 RMSE is below 2%
for 𝑛𝑠 greater than 30, while MAPE decreases below 2.5% from 𝑛𝑠 = 40.
Hence, 𝑛𝑠 could be modified depending on the accuracy desired.

4.4. Impact of the proposed method on testing resources

In addition to the precision of the proposed method, another inter-
sting issue to discuss is its impact on testing times and equipment, as
ell as in the energy consumed. Table 9 shows the results of time and
nergy required in this contribution for the proposed estimation proce-
ure at cell level, with their equivalent in a complete characterization.
9

he required equipment in both approaches is also shown.
Table 9
Time and energy consumed and required equipment for cell characterization according
to the traditional method and the proposed fast estimation procedure.

Traditional method Proposed method Equipment

Time (min) Energy (Wh) Time (min) Energy (Wh)

𝐶 836 1071 – – Battery tester
climatic chamber

𝑅𝐷𝐶 606 357 – – Battery tester
climatic chamber

𝑅𝐷𝐶,0 1 1 1 1 Battery tester
𝑅𝐴𝐶 1 – 1 – Impedance meter

TOTAL 1444 1429 2 1

As can be seen, the proposed fast estimation method leads to a
drastic decrease in testing times, from more than one day to 2 min per
cell. Specifically, the fast characterization is carried out, consisting of
OCV, AC and DC resistance measurements. Yet considering the parallel
use of resources, e.g., several channels at the same time, time reduction
is even more clear at industrial level, which deals with much greater

volumes of SL samples to repurpose. Energy reduction is also very
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Fig. 8. (a) RMSE and (b) MAPE evolution depending on the size of 𝑛𝑠 for capacity estimation in Data Set B.
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arked, going from 1429 Wh to 1 Wh. The electrical energy consumed
hen implementing the proposed fast characterization method is ap-
roximately 1 Wh, obtained as 33 A × 30/3600 h × 3.75 V = 1.03 Wh.
n this case, there are several factors to consider when quantifying
dvantages, such as the possibility of utilizing the energy obtained from
he batteries in the characterization. Regarding the required equip-
ent, it is noteworthy that 𝑅𝐷𝐶,0 can be measured without a climatic

hamber, given that the duration of the current pulse required, of few
econds, is too small to increase the internal temperature of the cells
ignificantly. Therefore, the benefits of the proposed method compared
o traditional measurements are demonstrated.

. Conclusion

This contribution proposes a method for the fast estimation of
apacity and internal resistance of SL cells, modules and battery packs.
he existing need of optimizing characterization procedures at the
epurposing stage in order to decrease costs, together with the actual
esearch gap justify the analysis.

The suggested procedure consists of two stages: initial analysis and
ast estimation. In the first step, a given data set is characterized,
hich allows to identify the significant variables for estimation. A

ast characterization procedure to measure significant variables is then
efined, and the estimation models thus fitted. Moreover, the minimum
umber of samples to characterize in order to have significant results
n the overall population is assessed. In the second stage, a new data set
s considered and characterized with the fast procedure. By comparing
t statistically to the previous samples, it is possible to determine
f they are similar, so that the previous estimation models can be
pplied. Otherwise, a sample with the minimum number needed is fully
haracterized, thereby adjusting the models and estimating capacity
nd resistance in the remaining units.

The proposed method is validated in 506 cells, 203 modules and 3
attery packs, all reused from Nissan Leaf EVs. The significant variables
dentified for both capacity and resistance estimation are AC and DC
esistances. Three estimation models are thereby obtained, one for
ach target variable and a third combining them. Considering the
ells between positive and middle terminal as starting data set, it is
tatistically demonstrated that the counter-posed cells, between middle
nd negative terminals, are different, so model adjustment is necessary.
ikewise, estimation at module level require new models.

The best accuracy results are obtained by means of the model that
ombines both AC and DC resistances, with RMSE values below 2% in
apacity estimation of cells and modules, and MAPE below 2.5%. In
erms of resistance estimation, the average RMSE is lower than 6.4%
t cell and module level, while MAPE is below 2.4% in both cases.
onsidering battery pack estimation, it is only possible to estimate with
odel 2 due to equipment limitations, obtaining RMSE values of 3.1%

nd 7.0% in capacity and resistance, and MAPE below 4.2%. With the
roposed method, testing times are reduced from more than one day
o 2 min per cell, while energy is reduced from 1.4 kWh to 1 Wh.

Overall, this contribution highlights the importance of optimizing
10

haracterization procedures at the repurposing stage of Li-ion batteries
rom EVs. The assessment of the correlation between the internal
ariables allows to design a fast characterization procedure and to
efine estimation models, thereby reducing testing times with good
ccuracy results. This allows to simplify this stage, thereby reducing
ts costs and contributing to the economic viability of SL batteries. The
roposed method is likely suitable to be adapted to other technologies
nd chemistries, and such tests are left as future lines of this work.

RediT authorship contribution statement

Elisa Braco: Conceptualization, Methodology, Software, Formal
nalysis, Investigation, Visualization, Data curation, Writing – original
raft. Idoia San Martín: Conceptualization, Methodology, Investi-
ation, Validation, Writing – review & editing. Pablo Sanchis: Re-

sources, Supervision, Project administration, Funding acquisition. Al-
fredo Ursúa: Conceptualization, Writing – review & editing, Resources,
Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors are unable or have chosen not to specify which data
has been used.

Acknowledgements

This work is part of the projects PID2019-111262RB-I00, funded
by MCIN/AEI, Spain/10.13039/501100011033/, STARDUST (774094),
funded by European Union’s Horizon 2020 research and innovation
programme, HYBPLANT, Spain (0011-1411-2022-000039), funded by
Government of Navarre, Spain, and a Ph.D. scholarship, also funded
by Government of Navarre, Spain. Open access funding provided by
Universidad Pública de Navarra, Spain.

References

[1] International Energy Agency. Global EV outlook 2021. 2021, http://dx.doi.org/
10.1787/d394399e-en.

[2] Curry C. Lithium-ion battery costs and market. BNEF; 2017, 5 July 2017.
[3] Hossain E, Murtaugh D, Mody J, Faruque HMR, Haque Sunny MS, Mohammad N.

A comprehensive review on second-life batteries: Current state, manufacturing
considerations, applications, impacts, barriers amp; potential solutions, business
strategies, and policies. IEEE Access 2019;7:73215–52. http://dx.doi.org/10.
1109/ACCESS.2019.2917859.

[4] Podias A, Pfrang A, Di Persio F, Kriston A, Bobba S, Mathieux F, Messagie M,
Boon-Brett L. Sustainability assessment of second use applications of automotive
batteries: Ageing of Li-ion battery cells in automotive and grid-scale applications.
World Electr Veh J 2018;9:24. http://dx.doi.org/10.3390/wevj9020024.

[5] Nissan. Second life LEAF batteries to power Amsterdam Aren A.

http://dx.doi.org/10.1787/d394399e-en
http://dx.doi.org/10.1787/d394399e-en
http://dx.doi.org/10.1787/d394399e-en
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb2
http://dx.doi.org/10.1109/ACCESS.2019.2917859
http://dx.doi.org/10.1109/ACCESS.2019.2917859
http://dx.doi.org/10.1109/ACCESS.2019.2917859
http://dx.doi.org/10.3390/wevj9020024


Applied Energy 329 (2023) 120235E. Braco et al.
[6] Gohla-Neudecker B, Bowler M, Mohr S. Battery 2nd life: Leveraging the sus-
tainability potential of EVs and renewable energy grid integration. In: 5th
international conference on clean electrical power: renewable energy resources
impact, ICCEP 2015. IEEE; 2015, p. 311–8. http://dx.doi.org/10.1109/ICCEP.
2015.7177641.

[7] Daimler. World’s largest 2nd-use battery storage is starting up. 2016, p. 1–2,
URL https://media.daimler.com/marsMediaSite/en/instance/ko/Worlds-largest-
2nd-use-battery-storage-is-starting-up.xhtml?oid=13634457.

[8] Nissan, Eaton. Xstorage buildings - eaton nissan energy storage systems for
buildings. 2017.

[9] Mercedes-Benz. Mercedes-Benz energy storage. A new dimension of energy
management. Tech. rep, 2019.

[10] BeePlanet Factory. BeeBattery home datasheet. 2018, URL http:
//beeplanetfactory.com/wp-content/uploads/2019/12/190727-Datasheet-
BeeBatteryHome-EN.pdf.

[11] SNT. Spiers new energy. URL http://www.spiersnewtechnologies.com/energy-
storage.

[12] White C, Thompson B, Swan LG. Repurposed electric vehicle battery performance
in second-life electricity grid frequency regulation service. J Energy Storage
2020;28(November 2019):101278. http://dx.doi.org/10.1016/j.est.2020.101278.

[13] Li H, Alsolami M, Yang S, Alsmadi YM, Wang J. Lifetime test design for second-
use electric vehicle batteries in residential applications. IEEE Trans Sustain
Energy 2017;8(4):1736–46. http://dx.doi.org/10.1109/TSTE.2017.2707565.

[14] Tong SJ, Same A, Kootstra MA, Park JW. Off-grid photovoltaic vehicle charge
using second life lithium batteries: An experimental and numerical investigation.
Appl Energy 2013;104:740–50. http://dx.doi.org/10.1016/j.apenergy.2012.11.
046.

[15] Zhang Y, Li Y, Tao Y, Ye J, Pan A, Li X, Liao Q, Wang Z. Performance assessment
of retired EV battery modules for echelon use. Energy 2020;193:116555. http:
//dx.doi.org/10.1016/j.energy.2019.116555.

[16] Braco E, San Martin I, Berrueta A, Sanchis P, Ursua A. Experimental assessment
of first- and second-life electric vehicle batteries: Performance, capacity disper-
sion, and aging. IEEE Trans Ind Appl 2021;57(4):4107–17. http://dx.doi.org/10.
1109/TIA.2021.3075180.

[17] Braco E, San Martín I, Berrueta A, Sanchis P, Ursúa A. Experimental assessment
of cycling ageing of lithium-ion second-life batteries from electric vehicles.
J Energy Storage 2020;32(July):101695. http://dx.doi.org/10.1016/j.est.2020.
101695.

[18] Mathews I, Xu B, He W, Barreto V, Buonassisi T, Peters IM. Technoeconomic
model of second-life batteries for utility-scale solar considering calendar and
cycle aging. Appl Energy 2020;269(January):115127. http://dx.doi.org/10.1016/
j.apenergy.2020.115127.

[19] UL1974 - standard for evaluation for repurposing batteries. Standard,
Underwriters Laboratories; 2018.

[20] Alharbi T, Bhattacharya K, Kazerani M. Planning and operation of isolated
microgrids based on repurposed electric vehicle batteries. IEEE Trans Ind Inf
2019;15(7):4319–31. http://dx.doi.org/10.1109/TII.2019.2895038.

[21] Neubauer J, Smith K, Wood E, Pesaran A. Identifying and overcoming critical
barriers to widespread second use of PEV batteries. Energy Rep 2015;23–62,
doi:NREL/TP-5400-63332.

[22] Jiang Y, Jiang J, Zhang C, Zhang W, Gao Y, Guo Q. Recognition of battery aging
variations for LiFePO4 batteries in 2nd use applications combining incremental
capacity analysis and statistical approaches. J Power Sources 2017;360:180–8.
http://dx.doi.org/10.1016/j.jpowsour.2017.06.007.

[23] Ahmeid M, Muhammad M, Lambert S, Attidekou PMZ. A rapid capacity evalu-
ation of retired electric vehicle battery modules using partial discharge test. J
Energy Storage 2022;50:104562. http://dx.doi.org/10.1016/j.est.2022.104562.

[24] Gogoana R, Pinson MB, Bazant MZ, Sarma SE. Internal resistance matching
for parallel-connected lithium-ion cells and impacts on battery pack cycle life.
J Power Sources 2014;252:8–13. http://dx.doi.org/10.1016/j.jpowsour.2013.11.
101.

[25] Gong X, Xiong R, Mi CC. Study of the characteristics of battery packs in electric
vehicles with parallel-connected lithium-ion battery cells. IEEE Trans Ind Appl
2015;51(2):1872–9. http://dx.doi.org/10.1109/TIA.2014.2345951.

[26] Barai A, Uddin K, Dubarry M, Somerville L, McGordon A, Jennings P, Bloom I. A
comparison of methodologies for the non-invasive characterisation of commercial
Li-ion cells. Prog Energy Combust Sci 2019;72:1–31. http://dx.doi.org/10.1016/
j.pecs.2019.01.001.

[27] Lai X, Qiao D, Zheng Y, Ouyang M, Han X, Zhou L. A rapid screening and
regrouping approach based on neural networks for large-scale retired lithium-
ion cells in second-use applications. J Cleaner Prod 2019;213:776–91. http:
//dx.doi.org/10.1016/j.jclepro.2018.12.210.
11
[28] Zhou P, He Z, Han T, Li X, Lai X, Yan L, Lv T, Xie J, Zheng Y. A rapid
classification method of the retired LiCoxNiyMn1xyO2 batteries for electric
vehicles. Energy Rep 2020;6:672–83. http://dx.doi.org/10.1016/j.egyr.2020.03.
013.

[29] Li Y, Li K, Liu X, Wang Y, Zhang L. Lithium-ion battery capacity estimation
— A pruned convolutional neural network approach assisted with transfer
learning. Appl Energy 2021;285:116410. http://dx.doi.org/10.1016/j.apenergy.
2020.116410.

[30] Ma Y, Yao M, Liu H, Tang Z. State of health estimation and remaining useful
life prediction for lithium-ion batteries by improved particle swarm optimization-
back propagation neural network. J Energy Storage 2022;52:104750. http://dx.
doi.org/10.1016/j.est.2022.104750.

[31] Zhou Z, Duan B, Kang Y, Shang Y, Cui N, Chang L, Zhang C. An efficient
screening method for retired lithium-ion batteries based on support vector
machine. J Cleaner Prod 2020;267:121882. http://dx.doi.org/10.1016/j.jclepro.
2020.121882.

[32] Shu X, Li G, Shen J, Lei Z, Chen Z, Liu Y. A uniform estimation framework
for state of health of lithium-ion batteries considering feature extraction and
parameters optimization. Energy 2020;204:117957. http://dx.doi.org/10.1016/j.
energy.2020.117957.

[33] Zhu Z, Zheng Y, Lai X, Feng X, Li X. A novel fast estimation and regroup method
of retired lithium-ion battery cells. Int J Energy Res 2020;44(14):11985–97.
http://dx.doi.org/10.1002/er.5847.

[34] Yang D, Wang Y, Pan R, Chen R, Chen Z. State-of-health estima-
tion for the lithium-ion battery based on support vector regression.
Appl Energy 2018;227:273–83. http://dx.doi.org/10.1016/j.apenergy.2017.08.
096, Transformative Innovations for a Sustainable Future – Part III.

[35] Li X, Yuan C, Wang Z. State of health estimation for Li-ion battery via
partial incremental capacity analysis based on support vector regression. Energy
2020;203:117852. http://dx.doi.org/10.1016/j.energy.2020.117852.

[36] Jiang B, Dai H, Wei X. Incremental capacity analysis based adaptive capacity
estimation for lithium-ion battery considering charging condition. Appl Energy
2020;269:115074. http://dx.doi.org/10.1016/j.apenergy.2020.115074.

[37] Braco E, San Martin I, Sanchis P, Ursúa A, Stroe D-I. Health indicator selection
for state of health estimation of second-life lithium-ion batteries under extended
ageing. J Energy Storage 2022;55:105366. http://dx.doi.org/10.1016/j.est.2022.
105366.

[38] Li Y, Sheng H, Cheng Y, Stroe D-I, Teodorescu R. State-of-health estimation of
lithium-ion batteries based on semi-supervised transfer component analysis. Appl
Energy 2020;277:115504. http://dx.doi.org/10.1016/j.apenergy.2020.115504.

[39] Schaltz E, Stroe D-I, Nrregaard K, Ingvardsen LS, Christensen A. Incremental ca-
pacity analysis applied on electric vehicles for battery state-of-health estimation.
IEEE Trans Ind Appl 2021;57(2):1810–7. http://dx.doi.org/10.1109/TIA.2021.
3052454.

[40] Zhang Q, Li X, Zhou C, Zou Y, Du Z, Sun M, Ouyang Y, Yang D, Liao Q. State-
of-health estimation of batteries in an energy storage system based on the actual
operating parameters. J Power Sources 2021;506:230162. http://dx.doi.org/10.
1016/j.jpowsour.2021.230162.

[41] Zhang Q, Li X, Du Z, Liao Q. Aging performance characterization and state-
of-health assessment of retired lithium-ion battery modules. J Energy Storage
2021;40(May):102743. http://dx.doi.org/10.1016/j.est.2021.102743.

[42] Luo F, Huang H, Ni L, Li T. Rapid prediction of the state of health of retired
power batteries based on electrochemical impedance spectroscopy. J Energy
Storage 2021;41(May):102866. http://dx.doi.org/10.1016/j.est.2021.102866.

[43] Ugarte MD, Militino AF, Arnholt A. Probability and statistics with R. 1st ed..
Chapman & Hall/CRC; 2008, p. 728.

[44] Zhou Z, Ran A, Chen S, Zhang X, Wei G, Li B, Kang F, Zhou X, Sun H.
A fast screening framework for second-life batteries based on an improved
bisecting K-means algorithm combined with fast pulse test. J Energy Storage
2020;31(May):101739. http://dx.doi.org/10.1016/j.est.2020.101739.

[45] Schuster SF, Brand MJ, Campestrini C, Gleissenberger M, Jossen A. Correlation
between capacity and impedance of lithium-ion cells during calendar and cycle
life. J Power Sources 2016;305:191–9. http://dx.doi.org/10.1016/j.jpowsour.
2015.11.096.

[46] Reichert M, Andre D, Rösmann A, Janssen P, Bremes H, Sauer DU. Influence of
relaxation time on the lifetime of commercial lithium-ion cells. J Power Sources
2013;239:45–53. http://dx.doi.org/10.1016/j.jpowsour.2013.03.053.

[47] Lai X, Deng C, Li J, Zhu Z, Han X, Zheng Y. Rapid sorting and regrouping
of retired lithium-ion battery modules for Echelon utilization based on partial
charging curves. IEEE Trans Veh Technol 2021;70(2):1246–54. http://dx.doi.org/
10.1109/TVT.2021.3055068.

http://dx.doi.org/10.1109/ICCEP.2015.7177641
http://dx.doi.org/10.1109/ICCEP.2015.7177641
http://dx.doi.org/10.1109/ICCEP.2015.7177641
https://media.daimler.com/marsMediaSite/en/instance/ko/Worlds-largest-2nd-use-battery-storage-is-starting-up.xhtml?oid=13634457
https://media.daimler.com/marsMediaSite/en/instance/ko/Worlds-largest-2nd-use-battery-storage-is-starting-up.xhtml?oid=13634457
https://media.daimler.com/marsMediaSite/en/instance/ko/Worlds-largest-2nd-use-battery-storage-is-starting-up.xhtml?oid=13634457
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb8
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb8
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb8
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb9
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb9
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb9
http://beeplanetfactory.com/wp-content/uploads/2019/12/190727-Datasheet-BeeBatteryHome-EN.pdf
http://beeplanetfactory.com/wp-content/uploads/2019/12/190727-Datasheet-BeeBatteryHome-EN.pdf
http://beeplanetfactory.com/wp-content/uploads/2019/12/190727-Datasheet-BeeBatteryHome-EN.pdf
http://beeplanetfactory.com/wp-content/uploads/2019/12/190727-Datasheet-BeeBatteryHome-EN.pdf
http://beeplanetfactory.com/wp-content/uploads/2019/12/190727-Datasheet-BeeBatteryHome-EN.pdf
http://www.spiersnewtechnologies.com/energy-storage
http://www.spiersnewtechnologies.com/energy-storage
http://www.spiersnewtechnologies.com/energy-storage
http://dx.doi.org/10.1016/j.est.2020.101278
http://dx.doi.org/10.1109/TSTE.2017.2707565
http://dx.doi.org/10.1016/j.apenergy.2012.11.046
http://dx.doi.org/10.1016/j.apenergy.2012.11.046
http://dx.doi.org/10.1016/j.apenergy.2012.11.046
http://dx.doi.org/10.1016/j.energy.2019.116555
http://dx.doi.org/10.1016/j.energy.2019.116555
http://dx.doi.org/10.1016/j.energy.2019.116555
http://dx.doi.org/10.1109/TIA.2021.3075180
http://dx.doi.org/10.1109/TIA.2021.3075180
http://dx.doi.org/10.1109/TIA.2021.3075180
http://dx.doi.org/10.1016/j.est.2020.101695
http://dx.doi.org/10.1016/j.est.2020.101695
http://dx.doi.org/10.1016/j.est.2020.101695
http://dx.doi.org/10.1016/j.apenergy.2020.115127
http://dx.doi.org/10.1016/j.apenergy.2020.115127
http://dx.doi.org/10.1016/j.apenergy.2020.115127
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb19
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb19
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb19
http://dx.doi.org/10.1109/TII.2019.2895038
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb21
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb21
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb21
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb21
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb21
http://dx.doi.org/10.1016/j.jpowsour.2017.06.007
http://dx.doi.org/10.1016/j.est.2022.104562
http://dx.doi.org/10.1016/j.jpowsour.2013.11.101
http://dx.doi.org/10.1016/j.jpowsour.2013.11.101
http://dx.doi.org/10.1016/j.jpowsour.2013.11.101
http://dx.doi.org/10.1109/TIA.2014.2345951
http://dx.doi.org/10.1016/j.pecs.2019.01.001
http://dx.doi.org/10.1016/j.pecs.2019.01.001
http://dx.doi.org/10.1016/j.pecs.2019.01.001
http://dx.doi.org/10.1016/j.jclepro.2018.12.210
http://dx.doi.org/10.1016/j.jclepro.2018.12.210
http://dx.doi.org/10.1016/j.jclepro.2018.12.210
http://dx.doi.org/10.1016/j.egyr.2020.03.013
http://dx.doi.org/10.1016/j.egyr.2020.03.013
http://dx.doi.org/10.1016/j.egyr.2020.03.013
http://dx.doi.org/10.1016/j.apenergy.2020.116410
http://dx.doi.org/10.1016/j.apenergy.2020.116410
http://dx.doi.org/10.1016/j.apenergy.2020.116410
http://dx.doi.org/10.1016/j.est.2022.104750
http://dx.doi.org/10.1016/j.est.2022.104750
http://dx.doi.org/10.1016/j.est.2022.104750
http://dx.doi.org/10.1016/j.jclepro.2020.121882
http://dx.doi.org/10.1016/j.jclepro.2020.121882
http://dx.doi.org/10.1016/j.jclepro.2020.121882
http://dx.doi.org/10.1016/j.energy.2020.117957
http://dx.doi.org/10.1016/j.energy.2020.117957
http://dx.doi.org/10.1016/j.energy.2020.117957
http://dx.doi.org/10.1002/er.5847
http://dx.doi.org/10.1016/j.apenergy.2017.08.096
http://dx.doi.org/10.1016/j.apenergy.2017.08.096
http://dx.doi.org/10.1016/j.apenergy.2017.08.096
http://dx.doi.org/10.1016/j.energy.2020.117852
http://dx.doi.org/10.1016/j.apenergy.2020.115074
http://dx.doi.org/10.1016/j.est.2022.105366
http://dx.doi.org/10.1016/j.est.2022.105366
http://dx.doi.org/10.1016/j.est.2022.105366
http://dx.doi.org/10.1016/j.apenergy.2020.115504
http://dx.doi.org/10.1109/TIA.2021.3052454
http://dx.doi.org/10.1109/TIA.2021.3052454
http://dx.doi.org/10.1109/TIA.2021.3052454
http://dx.doi.org/10.1016/j.jpowsour.2021.230162
http://dx.doi.org/10.1016/j.jpowsour.2021.230162
http://dx.doi.org/10.1016/j.jpowsour.2021.230162
http://dx.doi.org/10.1016/j.est.2021.102743
http://dx.doi.org/10.1016/j.est.2021.102866
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb43
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb43
http://refhub.elsevier.com/S0306-2619(22)01492-1/sb43
http://dx.doi.org/10.1016/j.est.2020.101739
http://dx.doi.org/10.1016/j.jpowsour.2015.11.096
http://dx.doi.org/10.1016/j.jpowsour.2015.11.096
http://dx.doi.org/10.1016/j.jpowsour.2015.11.096
http://dx.doi.org/10.1016/j.jpowsour.2013.03.053
http://dx.doi.org/10.1109/TVT.2021.3055068
http://dx.doi.org/10.1109/TVT.2021.3055068
http://dx.doi.org/10.1109/TVT.2021.3055068

	Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles
	Introduction
	Methodology
	Stage 1: initial analysis
	Selecting the level of the study
	Complete characterization and analysis

	Stage 2: fast estimation

	Experimental Setup
	Battery description
	Experimental procedure
	Test bench

	Results and discussion
	Initial analysis
	Fast estimation
	Cells
	Modules
	Battery packs

	Influence of sample size on accuracy
	Impact of the proposed method on testing resources

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


