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Abstract: There are distinct techniques to generate fuzzy implication functions. Despite most of them
using the combination of associative aggregators and fuzzy negations, other connectives such as
(general) overlap/grouping functions may be a better strategy. Since these possibly non-associative
operators have been successfully used in many applications, such as decision making, classification
and image processing, the idea of this work is to continue previous studies related to fuzzy implication
functions derived from general overlap functions. In order to obtain a more general and flexible
context, we extend the class of implications derived by fuzzy negations and t-norms, replacing the
latter by general overlap functions, obtaining the so-called (GO, N)-implication functions. We also
investigate their properties, the aggregation of (GO, N)-implication functions, their characterization
and the intersections with other classes of fuzzy implication functions.

Keywords: implication functions; aggregation functions; general overlap functions; overlap functions;
grouping functions

MSC: 03E72

1. Introduction

In recent years, a plethora of fuzzy implication functions have been proposed in the
literature [1–4]. These functions have been investigated from a more theoretical point of
view [2,5,6] to the one involving practical applications [7–9]. They can be used in various
fields such as approximate reasoning [10–13], decision making [14], image processing [15],
and fuzzy mathematical morphology [16].

The first impact of fuzzy implications functions was the formalization of the “if. . .
then. . .” rules in the fuzzy inference process used, for example, in fuzzy rule-based systems.
Roughly speaking, it allows one to deduce a possible imprecise conclusion from a collection
of imprecise premises. Therefore the implication operator is taken as a fuzzy relation,
known as the generalized modus ponens/tollens [17–19]. For instance, in classification
problems, the following schema may be applied in the fuzzy inference process, taking A, B
as being fuzzy concepts:

Premise: A belongs to class P;
Relation 1: A and B are close;
Relation 2: B is slightly smaller than A;
Conclusion: B belongs to class P.
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There are many strategies to define fuzzy implication functions that either combine
logical connectives (for instance, (S,N), R or QL-implications), or use univariate functions,
such as Yager’s f and g-generated implications [13].

The class of implication functions constructed from a t-norm T and a fuzzy negation
N was revisited by Pinheiro et al. [20] where the focus was on their properties and also
the definition of fuzzy subsethood measures using the fuzzy implication functions called
(T,N)-implications.

Most studies on fuzzy implication functions use t-norms and t-conorms [21,22]. How-
ever, different operators have been applied to construct implication-like functions, notably,
uninorms or semi-uninorms [23–25], pseudo-t-norms [26,27], (dual) copulas, quasi- (semi-)
copulas [28–31]. We also highlight the ones given from weaker operators such as overlap
and grouping functions which are non-necessarily associative aggregation operators [32–35]
and their interval-valued extensions. Notice that, in contrast with the work by Pinheiro
et al. [20] mentioned above, Dimuro et al. [33] developed the more flexible concept of QL-
operations and fuzzy implications functions derived from overlap and grouping functions,
with the applications to the construction of fuzzy subsethood and entropy measures.

Note that, in classical logic, one can define the implication connective in distinct ways,
meaning that if the truth tables are equal, then the operators are equivalent [36]. However,
when one generalizes those equivalences to the unit interval [0, 1], different classes of fuzzy
implication functions are obtained. For example, when we generalize the ∨ operator and
replace it by the grouping function G, the ∧ operator by the overlap function O and ¬ by a
fuzzy negation N, we can mention (G, N)-implication functions [34], which generalize the
material implication used in Kleene algebra that can be defined according to the tautology:
p→ q ≡ ¬p ∨ q.

In [32], RO-implication functions were proposed using overlap functions inspired on
the generalization of Boolean implications resulted as the residuum of the conjunction
of Heyting algebra considered in the intuitionistic logic and defined according to the
identity: A′ ∪ B = (A− B)′ =

⋃{C ∈ X : (A ∩ C) ⊆ B}, where X is a universe set and
A, B ⊆ X. Moreover, the implication functions defined in the quantum logic framework,
were also generalized [33], using the following tautology: p → q ≡ ¬p ∨ (p ∧ q), called
QL-implication functions. Finally, we have D-implication functions [35] (also known as
Dishkant implication), derived from the following generalization: p→ q ≡ q ∨ (¬p ∧ ¬q).

Therefore, following the natural sequence of the investigation on fuzzy implication
functions constructed from overlap and grouping functions, the tautology p → q ≡
¬(p ∧ ¬q) still can be used to defined a new class. Despite being generalized by t-norms,
and called (T, N)-implication functions, it seems that applying a more general and flexible
context may be feasible when using general overlap functions instead of the standard
overlap functions.

The aim of this paper is to provide a theoretical study on a new family of fuzzy
implications entitled (GO, N)-implications, where GO is the set of general overlap functions
and N is a fuzzy negation. The objectives are threefold: (i) the study of the main properties
satisfied by this new class, (ii) (GO, N)-implication characterization, and (iii) analysis of
the intersections between (GO, N)-implications and other families of implications defined
via overlap and grouping functions.

The remaining sections of the paper is structured as follows. Section 2 recalls some
definitions and important concepts used in our work. The major contributions related to
the new class of (GO, N)-implication functions and the intersections between other classes
are seen in Sections 3 and 4. At last, we discuss the final remarks and future works in
Section 5.

2. Preliminaries
2.1. Fuzzy Negations

Fuzzy negations have been deeply investigated [5,34,37]. Let us recall some impor-
tant ideas.
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Definition 1. A fuzzy negation is a function N : [0, 1]→ [0, 1] satisfying:

(N1) N is decreasing, i.e., N(x) ≤ N(y) if y ≤ x;
(N2) N(0) = 1 and N(1) = 0.

A fuzzy negation N is strict if (N3) N is continuous and (N4) N(x) < N(y) whenever
y < x.

A fuzzy negation N is strong if (N5) N(N(x)) = x, for each x ∈ [0, 1] and crisp if (N6)
N(x) ∈ {0, 1}, for all x ∈ [0, 1].

A fuzzy negation N is said to be frontier if it satisfies (N7) N(x) ∈ {0, 1} if and only if x = 0
or x = 1.

The standard (or Zadeh) negation is: NZ(x) = 1− x.

Remark 1. By [33], a fuzzy negation N : [0, 1]→ [0, 1] is crisp if and only if there exists α ∈ [0, 1)
such that N = Nα or there exists α ∈ (0, 1] such that N = Nα, where

Nα(x) =

{
0, if x > α

1, if x ≤ α
and Nα(x) =

{
0, if x ≥ α

1, if x < α.

The smallest fuzzy negation N⊥ and the greatest fuzzy negation N> are examples of
crisp fuzzy negations. They are defined by N⊥ = Nα=0 and N> = Nα=1, respectively.

In our next developments, the N-duality notion will play an important role.

Definition 2. Let N be a fuzzy negation and f : [0, 1]n → [0, 1] be any function. The N-dual
function of f , for all x1, . . . , xn ∈ [0, 1], is given by:

fN(x1, . . . , xn) = N( f (N(x1), . . . , N(xn))). (1)

2.2. From Aggregation Functions to General Overlap Functions

Definition 3 ([38]). An n-ary aggregation function is a mapping A : [0, 1]n → [0, 1] satisfying
the following properties:

(A1) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1;
(A2) If xi ≤ y, then A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn), for each i ∈

{1, . . . , n}.

Proposition 1 (Corollary 3.8 [12]). Let A : [0, 1]n → [0, 1] be an aggregation function and
N be a fuzzy negation. The N-dual function of A, denoted by AN : [0, 1]n → [0, 1], is also an
aggregation function.

Definition 4 (Definition 1.1 [39]). A bivariate aggregation function T : [0, 1]2 → [0, 1] is called
a t-norm if it satisfies, for all x, y, z ∈ [0, 1],

(T1) T(x, y) = T(y, x); (commutativity)
(T2) T(x, T(y, z)) = T(T(x, y), z); (associativity)
(T3) T(x, y) ≤ T(x, z) whenever y ≤ z; (monotonicity)
(T4) T(x, 1) = x. (boundary condition)

Definition 5 (Definition 15 [40]). A bivariate function O : [0, 1]2 → [0, 1] is an overlap function
if it holds, for all x, y, z ∈ [0, 1]:

(O1) O(x, y) = O(y, x);
(O2) O(x, y) = 0 if and only if x = 0 or y = 0;
(O3) O(x, y) = 1 if and only if x = y = 1;
(O4) O is increasing, i.e., if x ≤ y then O(x, z) ≤ O(y, z);
(O5) O is continuous.
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Remark 2. Note that whenever an overlap function has a neutral element, then, by (O3), it is
necessarily 1.

Definition 6 (Definition 3 [41]). A bivariate function G : [0, 1]2 → [0, 1] is a grouping function
if it holds, for all x, y, z ∈ [0, 1],

(G1) G(x, y) = G(y, x);
(G2) G(x, y) = 0 if and only if x = y = 0;
(G3) G(x, y) = 1 if and only if x = 1 or y = 1;
(G4) G is increasing, i.e., if x ≤ y then G(x, z) ≤ G(y, z);
(G5) G is continuous.

Remark 3. Note that whenever a grouping function has a neutral element, then, by (G2), this
element is necessarily 0.

For further properties and related concepts on overlap/grouping functions, refer
to [32–34,42–45].

Theorem 1 (Theorem 2 [41]). Let O be an overlap function, and let N be a strict fuzzy negation.
Then,

G(x, y) = N(O(N(x), N(y))) (2)

is a grouping function. Reciprocally, if G is a grouping function, then

O(x, y) = N(G(N(x), N(y))) (3)

is an overlap function.

In the following remark we show that if an overlap function O admits a neutral
element, and if N is not a strong negation, then the dual grouping function G does not have
a neutral element.

Remark 4. Let N be a strict and non-strong fuzzy negation and O be an overlap function. If O has
a neutral element, then the grouping function G given by Equation (2) has no neutral element.

It is clear that since O has a neutral element, then O(x, 1) = x, for all x ∈ [0, 1]. However,
as N is a non-strong fuzzy negation, there is x̃ ∈ [0, 1] such that N(N(x̃)) 6= x̃, so: G(x̃, 0) =
N(O(N(x̃), 1)) = N(N(x̃)) 6= x̃. Therefore, G has no neutral element.

Next, we present the concept of general overlap function. Note that any t-norm is, in
particular, a general overlap function in two variables.

Definition 7 (Definition 8 [46]). A function GO : [0, 1]n → [0, 1] is a general overlap function
(GOF, for short) if it satisfies the following properties, for all #„x = (x1, . . . , xn) ∈ [0, 1]n,

(GO1) GO(x1, . . . , xn) = GO(xj1 , . . . , xjn), where
(xj1 , . . . , xjn) is any permutation of (x1, . . . , xn);

(GO2) If ∏n
i=1 xi = 0 then GO( #„x ) = 0;

(GO3) If ∏n
i=1 xi = 1 then GO( #„x ) = 1;

(GO4) GO is increasing;

(GO5) GO is continuous.

Some examples of overlap functions and GOF are given in Table 1, where GOL is

defined by GOL(
#„x ) = max{((

n
∑

i=1
xi)−(n− 1), 0)} [46]. Notice that any overlap function is

a bivariate general overlap function, but the converse does not necessarily hold.
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2.3. Some New Results on General Overlap Functions

Proposition 2. Let O be an overlap function and take a ∈ (0, 1). Therefore, Oa : [0, 1]2 → [0, 1]
defined, for all x, y ∈ [0, 1], by

Oa(x, y) =
max(0, O(x, y)−O(max(x, y), a))

1−O(max(x, y), a)

is a bivariate GOF which is not an overlap function.

Proof. By (O3), O(max(x, y), a) 6= 1 and, therefore, Oa is well defined. Clearly, Oa is
commutative, increasing, satisfies (GO2) and (GO3) but does not satisfy (O2). In addition,
let xi ∈ [0, 1] be a sequence, such that limi→∞ xi = a. So, for each y ∈ [0, 1], we have two
situations: (i) if y ≤ a, then limi→∞ Oa(xi, y) = 0 = Oa(a, y) and (ii) if y > a then, since
O is continuous and commutative, limi→∞ Oa(xi, y) = limi→∞

max(0,O(xi ,y)−O(y,a))
1−O(y,a) = 0 =

Oa(a, y). Therefore, Oa is continuous.

Table 1. Examples of overlap functions O and general overlap functions GO.

Overlap Functions General Overlap Functions

OmM(x, y) = min{x, y}max{x2, y2} GOmax(x, y) = max{0, x2 + y2 − 1}

ODB(x, y) =

{
2xy
x+y , if x + y 6= 0;
0, if x + y = 0.

GOTL (x, y)=(min{x, y})p ·max{0, x+y−1}, for
p > 0

OP(x, y) = xpyp, with p > 0.
GOPN( #„x ) =

n
∏
i=1

xi ·




0, if
n
∑

i=1
xi ≤ 1,∧

( #„x ) =
∧
(x1, . . . , xn),

otherwise.



OV(x, y) =


1+(2x−1)2(2y−1)2

2 ,
if x, y ∈ [0.5, 1],

min{x, y},
otherwise.

GOGN( #„x )=

n

√
n
∏
i=1

xi ·




0, if
n
∑

i=1
xi ≤ 1,∧

( #„x ) =
∧
(x1, . . . , xn),

otherwise.


Omin(x, y) = min{x, y} GOG(

#„x )=
{

nGOL(
#„x ), if GOL(

#„x ) ≤ 1
n ,

1, otherwise.

Proposition 3. Consider a strict negation N and a bivariate general overlap function GO. If GO
satisfies the following conditions, for all x, y ∈ [0, 1],

(GO2a) If GO(x, y) = 0 then xy = 0;

(GO3a) If GO(x, y) = 1 then xy = 1,

then

G(x, y) = N(GO(N(x), N(y))) (4)

is a grouping function. Reciprocally, if G is a grouping function, then

GO(x, y) = N(G(N(x), N(y))) (5)

is a GOF satisfying (GO2a) and (GO3a).

Proof. Since such GOF is also an overlap function, then the result follows straight from
Theorem 1.
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An element a ∈ [0, 1] is a neutral element of GO if for each x ∈ [0, 1], GO(x, a, . . . , a︸ ︷︷ ︸
(n−1)−times

) = x.

Proposition 4. Let GO be a bivariate general overlap function. Then 1 is a neutral element of GO
if and only if GO satisfies (GO3a) and has a neutral element.

Proof. If GO(x, y) = 1 then, by (GO4) and since 1 is a neutral element of GO, one has that
x = GO(x, 1) = 1 and y = GO(1, y) = 1, i.e., xy = 1. Conversely, if a bivariate general
overlap function GO satisfies (GO3a) and has a neutral element a then a = 1. In fact,
GO(a, 1) = 1 and therefore, by (GO3a), a = 1.

Remark 5. Observe that the result stated by Proposition 4 does not mean that when a bivariate
GOF has a neutral element then it is equal to 1. In fact, for each e ∈ (0, 1], the function

GO(x, y) =


min(x, y), if max(x, y) ≤ e
max(x, y), if min(x, y) ≥ e
xy
e , if min(x, y) < e < max(x, y)

is a GOF with e as the neutral element.

Since GO is an aggregation function, the following proposition is immediate.

Proposition 5. If 1 is the neutral element of a general overlap function GO and GO is idempotent,
then GO is the minimum.

Lemma 1. Let A : [0, 1]n → [0, 1] be an aggregation function and GO∗ = {GOi : [0, 1]k →
[0, 1] | i ∈ {1, 2, . . . , n}} be a family of general overlap functions. Then GO∗A is a GOF whenever
A is continuous.

Proof. We will verify that GO∗A satisfies the conditions that define a GOF:
(GO1) Indeed, for all x1, . . . , xk ∈ [0, 1], since GOi is commutative for all i ∈ {1, . . . , n}, we
have for any r, s ∈ {1, . . . , k}: GO∗A(x1, . . . , xr, . . . , xs, . . . , xk) =

= A(GO1(x1, . . . , xr, . . . , xs, . . . , xk), . . . ,GOn(x1, . . . , xr, . . . , xs, . . . , xk))

= A(GO1(x1, . . . , xs, . . . , xr, . . . , xk), . . . ,GOn(x1, . . . , xs, . . . , xr, . . . , xk))

= GO∗A(x1, . . . , xs, . . . , xr, . . . , xk).

(GO2) If ∏k
i=1 xi = 0, then, by (GO2), GOi(x1, . . . , xk) = 0 for all i ∈ {1, . . . , n},

GO∗A(x1, . . . , xk) = A(GO1(x1, . . . , xk), . . . ,GOn(x1, . . . , xk))

= A(0, . . . , 0)
(A1)
= 0.

(GO3) If ∏k
i=1 xi = 1, then, by (GO3), GOi(x1, . . . , xk) = 1 for all i ∈ {1, . . . , n},

GO∗A(x1, . . . , xk) = A(GO1(x1, . . . , xk), . . . ,GOn(x1, . . . , xk))

= A(1, . . . , 1)
(A1)
= 1.

(GO4) The result is immediate, since A and GOi are increasing, ∀i ∈ {1, 2, . . . , n}.
(GO5) Since A and GOi are continuous, ∀i ∈ {1, 2, . . . , n}, the result follows.

Therefore, GO∗A is a general overlap function.

2.4. Fuzzy Implications Derived from Overlap and Grouping Functions

The definition of fuzzy implication functions in [5,47,48], is given as follows:
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Definition 8. A function I : [0, 1]2 → [0, 1] is a fuzzy implication function if, for all x, y, z ∈ [0, 1],
the following properties are satisfied:

(I1) If x ≤ z then I(x, y) ≥ I(z, y); (left antitonicity)
(I2) If y ≤ z then I(x, y) ≤ I(x, z); (right isotonicity)
(I3) I(0, y) = 1; (left boundary condition)
(I4) I(x, 1) = 1; (right boundary condition)
(I5) I(1, 0) = 0.

We denote by FI the set of all fuzzy implications.

Definition 9 (Definition 11 [49]). A fuzzy implication function is said to be crisp if I(x, y) ∈
{0, 1}, for each x, y ∈ [0, 1].

Proposition 6 (Proposition 2 [49]). Let I : [0, 1]2 → [0, 1] be a fuzzy implication function. Then
I is crisp if and only if one of the following conditions are satisfied, for all x, y ∈ [0, 1]:

(C1) If there exists α ∈ (0, 1] and β ∈ [0, 1) such that I = Iβ
α , where

Iβ
α (x, y) =

{
0, if x ≥ α and y ≤ β

1, otherwise.

(C2) If there exists α ∈ [0, 1) and β ∈ (0, 1] such that I = Iβ
α , where

Iβ
α (x, y) =

{
0, if x > α and y < β

1, otherwise.

(C3) If there exists α, β ∈ (0, 1] such that I = Iβ
α , where

Iβ
α (x, y) =

{
0, if x ≥ α and y < β

1, otherwise.

(C4) If there exists α, β ∈ [0, 1) such that I = Iβ
α , where

Iβ
α (x, y) =

{
0, if x > α and y ≤ β

1, otherwise.

Definition 10 (Definition 1.4.15 [5]). Let I ∈ FI . The function NI : [0, 1]→ [0, 1] defined by

NI(x) = I(x, 0), x ∈ [0, 1] (6)

is called natural negation of I or negation induced by I.

It is clear NI is indeed a fuzzy negation. If I is crisp then NI is a crisp fuzzy negation.
Other properties may be demanded for fuzzy implication functions. In the following, we
highlight some of them:

Definition 11. A fuzzy implication function I : [0, 1]2 → [0, 1] satisfies, for all x, y, z ∈ [0, 1],
the:

(NP) Left neutrality property if and only if I(1, y) = y;
(IP) Identity principle if and only if I(x, x) = 1;
(EP) Exchange principle if and only if I(x, I(y, z)) = I(y, I(x, z));
(EP1) Exchange principle for 1 if and only if I(x, I(y, z)) = 1⇒ I(y, I(x, z)) = 1;
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(IB) Iterative Boolean law if and only if I(x, I(x, y)) = I(x, y);
(LOP) Left-ordering property, if I(x, y) = 1 whenever x ≤ y;
(ROP) Right-ordering property, if I(x, y) 6= 1 whenever x > y;
(CP) Law of contraposition (or the contrapositive symmetry) with respect to fuzzy

negation N, if and only if I(x, y) = I(N(y), N(x));
(L-CP) Law of left contraposition with respect to fuzzy negation N if and only if

I(N(x), y) = I(N(y), x);
(R-CP) Law of right contraposition with respect to fuzzy negation N if and only if

I(x, N(y)) = I(y, N(x)).

If I satisfies the (left, right) contrapositive symmetry with respect to N, then we also
will denote this by L-CP(N), R-CP(N), and CP(N), respectively.

A well-known result is that from bivariate operations on the unit interval [0, 1], it is
possible to construct families (classes) of fuzzy implication functions [5]. Hence, one can
also use overlap and grouping functions to obtain other classes of implication functions,
such as (G, N), QL, RO and D-implication functions, defined as follows.

Definition 12. Let O : [0, 1]2 → [0, 1] be an overlap function, G : [0, 1]2 → [0, 1] be a grouping
function and N : [0, 1] → [0, 1] be a fuzzy negation. Then, the functions IG,N , IO,G,N> , IO, ID

G
: [0, 1]2 → [0, 1] are called:

1. (G, N)-implication function, given by [34], if

IG,N(x, y) = G(N(x), y). (7)

2. QL-implication function, given by [33] (where N> is the crisp fuzzy negation defined accord-
ing to Remark 1) if

IO,G,N>(x, y) =
{

G(0, O(1, y)), if x = 1;
1, if x < 1.

3. A residual RO-implication function, given by [32], if

IO(x, y) = max{z ∈ [0, 1] | O(x, z) ≤ y}.

4. D-implication function derived from G, given by [35], if

ID
G (x, y) =

{
G(0, y), if x = 1;
1, otherwise.

3. (GO, N)-Implications

A class of fuzzy implication functions entitled (T, N)-implications was investigated
in [20]. They were derived from the composition of a fuzzy negation and a t-norm, and
many relevant properties were discussed. In the current study, a similar class of implication
functions is investigated. However, we substitute the t-norm by a bivariate GOF. Thus, we
provide a new class of implication function called (GO, N)-implications, defined as follows.

Definition 13. A function I : [0, 1]2 → [0, 1] is said to be a (GO, N)-implication if there exists
a bivariate general overlap function GO : [0, 1]2 → [0, 1] and a fuzzy negation N : [0, 1]→ [0, 1]
such that, for all x, y ∈ [0, 1]

I(x, y) = N(GO(x, N(y))). (8)

If N is strict, then I is called strict (GO, N)-implication. Analogously, if N is strong, I is called
strong (GO, N)-implication.
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Remark 6. The above definition agrees with the result given by Theorem 4.3 [50], which states that
a function I(x, y) = N(A(x, N(y))) is an implication function if and only if A is a conjunctor.
This result is dual to Theorem 33 [11].

From now on, whenever I is a (GO, N)-implication function generated from GO and
N, it will be denoted by IN

GO .

Example 1. We can construct some examples of IN
GO .

(i) Consider the GOF: GOmax(x, y) = max{0, x2 + y2 − 1} and the standard fuzzy negation
NZ(x) = 1− x, then we have that:

INZ
GOmax

(x, y) = min{1, 1− x2 − y2 + 2y}.

(ii) Take the GOF: GOTL(x, y) = (min{x, y})p ·max{0, x + y− 1}, for p = 2 and NZ(x) =
1− x, so:

INZ
GOTL

(x, y) = 1− (min{x2, y2 − 2y + 1} ·max{0, x− y}).

(iii) Consider the general overlap function GOmax and the crisp fuzzy negation Nα, then we have
that:

INα
GOmax

(x, y) =
{

0, if y ≤ α and x2 > α.
1, if y > α, or y ≤ α and x2 ≤ α.

(iv) Take the GOF GOTL , for p = 2 and the crisp fuzzy negation Nα, so:

INα

GOTL
(x, y) =

{
0, if y < α and x3 ≥ α.
1, if y ≥ α, or y < α and x3 < α.

Proposition 7. If I is a (GO, N)-implication function then I ∈ FI .

Proof. Indeed, let I be a (GO, N)-implication function generated by a general overlap
function GO and a fuzzy negation N, then
(I1) Given x, y ∈ [0, 1] such that x ≤ y, by (GO4), for all z ∈ [0, 1], it holds that GO(x, N(z))
≤ GO(y, N(z)). So, N(GO(y, N(z))) ≤ N(GO(x, N(z))), that is, IN

GO(y, z) ≤ IN
GO(x, z).

(I2) Analogous to (I1).

(I3) For all y ∈ [0, 1], IN
GO(0, y) = N(GO(0, N(y)))

(GO2)
= N(0) = 1.

(I4) For all x ∈ [0, 1], IN
GO(x, 1) = N(GO(x, N(1))) = N(GO(x, 0))

(GO2)
= N(0) = 1.

(I5) IN
GO(1, 0) = N(GO(1, N(0))) = N(GO(1, 1))

(GO3)
= N(1) = 0.

Therefore, IN
GO is a fuzzy implication function.

The next result presents the conditions under which the class of (T,N)-implication
functions is different from he class of (GO, N)-implication functions.

Proposition 8. Let N be a strict fuzzy negation and GO be a GOF. If GO has no neutral element,
then IN

GO 6= IN
T for any t-norm T.

Proof. By hypothesis, GO has no neutral element, so there is ỹ ∈ (0, 1) such that GO(1, ỹ) 6=
ỹ. Since N is strict, given ỹ ∈ (0, 1), there is x̃ ∈ (0, 1) such that N(x̃) = ỹ. So,

GO(1, N(x̃)) 6=N(x̃) N strict⇒ N(GO(1, N(x̃))) 6= N(N(x))

⇒ IN
GO(1, x̃) 6= N(N(x̃)).
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On the other hand, for any t-norm T, we have IN
T (1, x̃) = N(T(1, N(x̃))) = N(N(x̃)) 6=

IN
GO(1, x̃). Therefore, IN

GO 6= IN
T .

Corollary 1. Let N be a strict fuzzy negation and GO1 and GO2 be general overlap functions. If
GO1 has no neutral element, then IN

GO1
6= IN
GO2

.

Example 2. Consider the GOF and the strict fuzzy negation respectively defined by GOmax(x, y) =
max{0, x2 + y2 − 1} and N(x) = 1− x2. So, one has that:

IN
GOmax

(x, y) = N(GOmax(x, N(y)))

= 1−
(

max{0, x2 + (1− y2)2 − 1}
)2.

Observe that IN
GOmax

(1, y) = 1−
(

max{0, 1 + (1− y2)2 − 1}
)2

= 1−
(
1− y2)4 and for any

t-norm T, we have that IN
T (1, y) = N(T(1, N(y))) = N(N(y)) = 1− (1− y2)2. Therefore, for

all y ∈ (0, 1), IN
GOmax

(1, y) 6= IN
T (1, y).

Observe that it is possible to recover the bivariate general overlap function from any
(GO, N)-implication function which was constructed from such GOF and a strict fuzzy
negation, as shown in the following proposition.

Proposition 9. Let GO : [0, 1]2 → [0, 1] be a bivariate GOF and N be a fuzzy negation. If N is
strict, then, for all x, y ∈ [0, 1],

GO(x, y) = N−1(IN
GO(x, N−1(y))).

Proof. Straightforward.

Corollary 2. Let GO be a bivariate GOF and N be a fuzzy negation. If N is strong, then
GO(x, y) = N(IN

GO(x, N(y))), for all x, y ∈ [0, 1].

Proposition 10. Let GO and N be a GOF and a fuzzy negation, respectively. Then,

(i) If 1 is the neutral element of GO, then NIN
GO

= N;

(ii) If N is strict and NIN
GO

= N, then 1 is the neutral element of GO.

Proof. Indeed
(i) For all x ∈ [0, 1], one has that NIN

GO
(x) = IN

GO(x, 0) = N(GO(x, N(0))) = N(GO(x, 1)) =

N(x).
(ii) Since N is strict and NIN

GO
= N, for all x ∈ [0, 1], we have: GO(x, 1) = N−1(N(GO

(x, N(0)))) = N−1(IN
GO(x, 0)) = N−1(N(x)) = x.

Note that the converse of Proposition 10(i) is not always valid. There are non-
strict negations N that satisfy NIN

GO
= N, but GO has no neutral element. See the

following example:

Example 3. Take the fuzzy negation N> given by

N>(x) =

{
0, if x = 1;
1, if x 6= 1,

(9)
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and consider a bivariate general overlap function GO that satisfies (GO3a). Then, for all x ∈ [0, 1],
one has that:

N
I

N>
GO

(x) = IN>
GO(x, 0) = N>(GO(x, 1))

=

{
0, if GO(x, 1) = 1
1, if GO(x, 1) 6= 1

(GO3a)
=

{
0, if x = 1
1, if x 6= 1

= N>(x).

However, GO does not necessarily have a neutral element.

Proposition 11. Let GO be a bivariate GOF and N be a fuzzy negation such that x ≤ N(N(x)),
for all x ∈ [0, 1]. Then:

(i) If GO(1, y) ≤ y, then y ≤ IN
GO(x, y);

(ii) If N is strict and y ≤ IN
GO(x, y), then GO(1, y) ≤ y.

Proof. Indeed,

(i) By hypothesis, take GO(1, N(y)) ≤ N(y). Then, applying N on both sides, N(N(y)) ≤
N(GO(1, N(y))). On the other hand,

x ≤ 1
(GO4)⇒ GO(x, N(y)) ≤ GO(1, N(y))

⇒ N(GO(1, N(y))) ≤ N(GO(x, N(y)))

for all x, y ∈ [0, 1]. So, it follows that y ≤ N(N(y)) ≤ N(GO(1, N(y))) ≤ N(GO(x,
N(y))), and, therefore, y ≤ IN

GO(x, y).
(ii) Since y ≤ IN

GO(x, y), for all x, y ∈ [0, 1], so, in particular, y ≤ IN
GO(1, y), for all

y ∈ [0, 1]. Moreover, y ≤ N(GO(1, N(y)))
(N1)⇒ N(N(GO(1, N(y)))) ≤ N(y). Hence,

by hypothesis,

GO(1, N(y)) ≤ N(N(GO(1, N(y)))) ≤ N(y),

for all y ∈ [0, 1]. So, GO(1, y) = GO(1, N(N−1(y))) ≤ N(N−1(y)) = y, since N is
strict. Therefore, for all y ∈ [0, 1], GO(1, y) ≤ y.

Proposition 12. Let IN
GO be a (GO, N)-implication function. Then:

(i) IN
GO satisfies L-CP(N);

(ii) If N is a strict negation, then IN
GO satisfies R-CP(N−1);

(iii) If IN
GO satisfies R-CP(N) with a strict negation N and 1 is the neutral element of GO, then N

is a strong negation;
(iv) If N is a strong negation, then IN

GO satisfies CP(N);
(v) If IN

GO satisfies CP(N) with a strict negation N and 1 is the neutral element of GO, then N is
a strong negation.

Proof. (i) For all x, y ∈ [0, 1], it holds that: IN
GO(N(x), y) = N(GO(N(x), N(y)))

(GO1)
=

N(GO(N(y), N(x))) = IN
GO(N(y), x).

(ii) For all x, y ∈ [0, 1], one has that IN
GO(x, N−1(y)) = N(GO(x, N(N−1(y)))) = N(GO(x,

y))
(GO1)
= N(GO(y, x)) = N(GO(y, N(N−1(x)))) = IN

GO(y, N−1(x)).
(iii) Since IN

GO satisfies R− CP(N), then IN
GO(1, N(y)) = IN

GO(y, N(1)). Hence, since N is a
strict negation, GO(1, N(N(y))) = GO(y, N(N(1))) for all y ∈ [0, 1], i.e., GO(1, N(N(y)))
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= GO(y, 1) for all y ∈ [0, 1]. So, since 1 is the neutral element of GO, N(N(y)) = y, for all
y ∈ [0, 1].
(iv) For all x, y ∈ [0, 1], since N is strong: IN

GO(N(y), N(x)) = N(GO(N(y), N(N(x)))) =

N(GO(N(y), x))
(GO1)
= N(GO(x, N(y))) = IN

GO(x, y).
(v) Since IN

GO satisfies CP(N) and N is a strict negation, then GO(x, N(0)) = GO(N(0),
N(N(x))) ∀x ∈ [0, 1], i.e., GO(x, 1) = GO(1, N(N(x))) ∀x ∈ [0, 1]. So, since 1 is the neutral
element of GO, N(N(x)) = x, for all x ∈ [0, 1].

Example 4. Consider a bivariate general overlap function GO with 1 being its neutral element,
and the fuzzy negation N> given by Equation (9). Then, for x = 1 and for all y ∈ [0, 1], one
has that:

IN>
GO(N>(y), N>(1)) = IN>

GO(N>(y), 0) = N>(GO(N>(y), 1))

=

{
N>(GO(0, 1)), if y = 1
N>(GO(1, 1)), if y 6= 1

(GO2)(GO3)
=

{
1, if y = 1
0, if y 6= 1

.

So,

IN>
GO(1, y) = N>(GO(1, N>(y))) =

{
N>(GO(1, 0)), if y = 1
N>(GO(1, 1)), if y 6= 1

(GO2)(GO3)
=

{
1, if y = 1
0, if y 6= 1

= IN>
GO(N>(y), N>(1)).

Now, for x 6= 1 and for all y ∈ [0, 1]:

IN>
GO(N>(y), N>(x)) = IN>

GO(N>(y), 1) = N>(GO(N>(y), 0))
(GO2)
= 1.

So,

IN>
GO(x, y) = N>(GO(x, N>(y))) =

{
N>(GO(x, 0)), if y = 1
N>(GO(x, 1)), if y 6= 1

=

{
N>(0), if y = 1
N>(x), if y 6= 1

(1 neutral element)
= 1 = IN>

GO(N>(y), N>(x)).

However, N does not need to necessarily be a strong fuzzy negation to IN
GO satisfies the

CP(N) property.

Proposition 13. Let IN
GO be a (GO, N)-implication. If N is a strong negation, then

(i) IN
GO satisfies (NP) if and only if 1 is the neutral element of GO.

(ii) IN
GO satisfies (EP) if and only if GO is associative.

Proof. Indeed,
(i) Consider IN

GO(1, y) = y, for all y ∈ [0, 1]. Then, since N is strong, for all y ∈ [0, 1],
(∗) GO(1, N(y)) = N(y).

So, one has that GO(1, x)
(N5)
= GO(1, N(N(x)))

(∗)
= N(N(x))

(N5)
= x, for all x ∈ [0, 1].

Conversely, since 1 is neutral element of GO, then for all y ∈ [0, 1], we have that IN
GO(1, y) =

N(GO(1, N(y))) = N(N(y))
(N5)
= y.
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(ii) Consider that IN
GO satisfies (EP). Then, for all x, y, z ∈ [0, 1], since N is a strong negation,

N(GO(x,GO(y, z))) = N(GO(x, N(N(GO(y, N(N(z)))))))

= IN
GO(x, IN

GO(y, N(z))) = IN
GO(y, IN

GO(x, N(z)))

= N(GO(y,GO(x, z)))

and so, GO(x,GO(y, z)) = GO(y,GO(x, z), for all x, y, z ∈ [0, 1]. Therefore, GO is associative.
Conversely, ∀x, y, z ∈ [0, 1], since N is strong and GO is associative, then

IN
GO(x, IN

GO(y, z)) = N(GO(x,GO(y, N(z))))
GO Assoc.

= N(GO(GO(x, y), N(z)))
(GO1)
= N(GO(GO(y, x), N(z)))

GO Assoc.
= N(GO(y,GO(x, N(z))))

= IN
GO(y, IN

GO(x, z)).

Therefore, IN
GO satisfies (EP).

Proposition 14. Let IN
GO be a (GO, N)-implication. If N is a strict negation, so IN

GO(x, IN−1

GO (y, z))

= IN
GO(y, IN−1

GO (x, z)) if and only if GO is associative.

Proof. Indeed, consider that IN
GO(x, IN−1

GO (y, z)) = IN
GO(y, IN−1

GO (x, z)). Then, for all x, y, z ∈
[0, 1],

N(GO(x,GO(y, z))) = N(GO(x, N(N−1(GO(y, N−1(N(z)))))))

= IN
GO(x, IN−1

GO (y, N(z))) = IN
GO(y, IN−1

GO (x, N(z)))

= N(GO(y,GO(x, z))).

So, GO(x,GO(y, z)) = GO(y,GO(x, z)), for all x, y, z ∈ [0, 1], since N is a strict negation.
Therefore, GO is associative. Conversely, ∀x, y, w ∈ [0, 1], since GO is associative, then

IN
GO(x, IN−1

GO (y, N(w))) = N(GO(x,GO(y, w)))

GO Assoc.
= N(GO(y,GO(x, w)))

= IN
GO(y, IN−1

GO (x, N(w))).

So, for all z ∈ [0, 1], since N is continuous, there is w ∈ [0, 1] such that N(w) = z. Thus
IN
GO(x, IN−1

GO (y, z)) = IN
GO(y, IN−1

GO (x, z)), for all x, y, z ∈ [0, 1].

Proposition 15. Let GO be a bivariate GOF satisfying (GO2a), and IN
GO be a (GO, N)-implication.

If N is a frontier fuzzy negation, then IN
GO satisfies (EP1).

Proof. Suppose that IN
GO(x, IN

GO(y, z)) = 1, for all x, y, z ∈ [0, 1]. This means that N(GO(x
, N(N(GO(y, N(z)))))) = 1. In this case, since N is a frontier negation, then: GO(x, N(N(
GO(y, N(z))))) = 0.
By (GO2a), either x = 0 or N(N(GO(y, N(z)))) = 0. Then, one has the following cases:

(1) For x = 0, it follows: IN
GO(y, IN

GO(0, z)) = IN
GO(y, 1) = N(GO(y, 0))

(GO2)
= 1.

(2) For N(N(GO(y, N(z)))) = 0, since N is a frontier negation, so GO(y, N(z)) = 0. So, by
(GO2a), y = 0 or z = 1. If y = 0, then IN

GO(0, IN
GO(x, z)) = 1. On the other hand, if z = 1,

then IN
GO(y, IN

GO(x, 1)) = IN
GO(y, 1) = 1.

Thus, in any case, it holds that IN
GO(y, IN

GO(x, z)) = 1.
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Proposition 16. Let IN
GO be a (GO, N)-implication with a strict fuzzy negation N.

(i) If IN
GO satisfies (IB) and GO has 1 as neutral element, then N is strong and GO is idempotent.

(ii) If N is strong and GO is idempotent and associative, then IN
GO satisfies (IB) and GO has 1 as

neutral element.

Proof. Indeed,
(i) Since IN

GO satisfies (IB), we have for x = 1, IN
GO(1, IN

GO(1, y)) = IN
GO(1, y), ∀y ∈ [0, 1].

So, N(GO(1, N(N(GO(1, N(y)))))) = N(GO(1, N(y))). Therefore, N(N(N(N(y)))) =
N(N(y)), for all y ∈ [0, 1], since 1 is neutral element of GO. However, N being a strict
negation, then N(N(y)) = y, for all y ∈ [0, 1] and, then, N is strong. Moreover, since
IN
GO(x, IN

GO(x, N(y))) = IN
GO(x, N(y)), we have that N(GO(x,GO(x, y))) = N(GO(x, y)),

since N is strong. So, GO(x,GO(x, y)) = GO(x, y). In particular, for y = 1, GO(x, x) = x,
for all x ∈ [0, 1], since 1 is the neutral element of GO. Therefore, the general overlap
function GO is idempotent.
(ii) For all x, y ∈ [0, 1],

IN
GO(x, IN

GO(x, y)) = N(GO(x,GO(x, N(y)))) = N(GO(x,GO(N(y), x)))
GO Assoc.

= N(GO(N(y),GO(x, x))) GO Idem.
= N(GO(N(y), x))

= N(GO(x, N(y))) = IN
GO(x, y).

So, IN
GO satisfies (IB). In case x = 1, since N is strong, IN

GO(1, IN
GO(1, N−1(y))) = IN

GO(1, N−1

(y)). So, for all y ∈ [0, 1], GO(1,GO(1, y)) = GO(1, y). Since GO is continuous and
increasing, for all z ∈ [0, 1], there is y ∈ [0, 1] such that GO(1, y) = z. Thus, for all z ∈ [0, 1],
GO(1, z) = GO(1,GO(1, y)) = GO(1, y) = z. Therefore, 1 is a neutral element of GO.

Corollary 3. Let IN
GO be a (GO, N)-implication with a strict fuzzy negation N. If IN

GO satisfies
(IB) and 1 is the neutral element of the bivariate general overlap function GO, then GO is the
minimum t-norm.

Proof. Straightforward from Propositions 16 and 5.

Remark 7. Observe that, trivially, IN
GO is crisp if and only if N is crisp. In fact, for each α ∈ (0, 1),

if 1 is a neutral element of GO then INα

GO = Iα
α and INα

GO = Iα
α .

Proposition 17. Let IN
GO be a crisp (GO, N)-implication, and let 1 be a neutral element of GO,

then:

(i) IN
GO satisfies (EP) but it does not satisfy (NP);

(ii) IN
GO satisfies (LOP) but it does not satisfy (ROP);

(iii) IN
GO satisfies (IP);

(iv) IN
GO satisfies (IB);

(v) IN
GO satisfies (CP) with respect to N;

(vi) IN
GO satisfies (R-CP) with respect to N.

Proof. Indeed,

(i) Straightforward from Proposition 6 [49], considering Remark 7.
(ii) Since N is crisp and 1 is a neutral element of GO, it follows that:

(LOP) For all x, y ∈ [0, 1] such that x ≤ y, two situations are possible:
(1) If there exists α ∈ (0, 1) such that N = Nα, so, by Remark 7 and (C4), we

have that IN
GO(x, y) = Iα

α (x, y). Therefore,

IN
GO(x, y) =

{
0, if x > α and y ≤ α.
1, if y > α or x ≤ α.

(10)
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For y ≤ α, as x ≤ y, it holds that x ≤ α. Hence one concludes that
IN
GO(x, y) = 1. For y > α, it is immediate that IN

GO(x, y) = 1.
(2) If there exists α ∈ (0, 1) such that N = Nα, so, by Remark 7 and (C3), we

have IN
GO(x, y) = Iα

α (x, y). Thus,

IN
GO(x, y) =

{
0, if x ≥ α and y < α.
1, if x < α or y ≥ α.

(11)

For y < α, as x ≤ y, it holds that x < α. So one concludes that IN
GO(x, y) = 1.

For y ≥ α, it is immediate that IN
GO(x, y) = 1.

Therefore, it holds that IN
GO satisfies (LOP).

(ROP) We also consider two situations:
(1) If N = Nα, for some α ∈ (0, 1), then take x, y ∈ [0, 1] such that x > y > α.

Consequently, by Equation (10), IN
GO(x, y) = 1.

(2) If N = Nα, for some α ∈ (0, 1), then take x, y ∈ [0, 1] such that y < x < α.
Thus, by Equation (11), IN

GO(x, y) = 1.

In both situations, there exists x > y, but IN
GO(x, y) = 1. So IN

GO does not satisfy
(ROP).

(iii) Given x ∈ [0, 1], since N is crisp, either N(x) = 0 or N(x) = 1. If N(x) = 0, then

IN
GO(x, x) = N(GO(x, N(x))) = N(GO(x, 0))

(GO2)
= 1. On the other hand, if N(x) = 1,

then IN
GO(x, x) = N(GO(x, N(x))) = N(GO(x, 1)) = N(x) = 1, since 1 is the neutral

element of GO.
(iv) Given y ∈ [0, 1], as N is crisp, either N(y) = 0 or N(y) = 1.

(1) Take N(y) = 0, and for all x ∈ [0, 1],

IN
GO(x, IN

GO(x, y)) = N(GO(x, N(N(GO(x, N(y))))))

= N(GO(x, N(N(GO(x, 0)))))
(GO2)
= N(GO(x, N(N(0)))) = N(GO(x, 0))

(GO2)
= 1

and IN
GO(x, y) = N(GO(x, N(y))) = N(GO(x, 0))

(GO2)
= 1.

(2) Now, N(y) = 1, and ∀x ∈ [0, 1], since 1 is the neutral element of GO,

IN
GO(x, IN

GO(x, y)) = N(GO(x, N(N(GO(x, N(y))))))

= N(GO(x, N(N(GO(x, 1)))))

= N(GO(x, N(N(x))))

and IN
GO(x, y) = N(GO(x, N(y))) = N(GO(x, 1)) = N(x). So, if N(x) = 0, then

IN
GO(x, IN

GO(x, y)) = N(GO(x, 1)) = N(x) = 0 and IN
GO(x, y) = N(x) = 0. Now, if

N(x) = 1, then, by (GO2), IN
GO(x, IN

GO(x, y)) = N(GO(x, 0)) = 1 and IN
GO(x, y) =

N(x) = 1. Therefore, in any case, IN
GO(x, IN

GO(x, y)) = IN
GO(x, y).

(v) Given y ∈ [0, 1], as N is crisp, either N(y) = 0 or N(y) = 1.

(1) For N(y) = 0, then IN
GO(x, y) = N(GO(x, 0))

(GO2)
= 1, and therefore IN

GO(N(y),

N(x)) = N(GO(0, N(N(x))))
(GO2)
= 1, for all x ∈ [0, 1].

(2) For N(y) = 1, since 1 is the neutral element of GO, IN
GO(x, y) = N(GO(x, N(y))) =

N(GO(x, 1)) = N(x) and, we also have that

IN
GO(N(y), N(x)) = N(GO(N(y), N(N(x))))

= N(GO(1, N(N(x)))) = N(N(N(x))),
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for all x ∈ [0, 1]. Since N is crisp, N(N(N(x))) = N(x) for all x ∈ [0, 1]. Therefore,
IN
GO(N(y), N(x)) = IN

GO(x, y).
(vi) Given y ∈ [0, 1], as N is crisp, either N(y) = 0 or N(y) = 1.

(1) For N(y) = 0, since 1 is the neutral element of GO, for all x ∈ [0, 1],

IN
GO(x, N(y)) = N(GO(x, N(0))) = N(GO(x, 1)) = N(x)

and IN
GO(y, N(x)) = N(GO(y, N(N(x)))). If N(x) = 0, consequently, IN

GO(x, N(y)) =
0 = N(y) = N(GO(y, 1)) = IN

GO(y, N(x)). Moreover, if N(x)=1 then, IN
GO(x, N(y)) =

1= N(0) = N(GO(y, 0)) = IN
GO(y, N(x)).

(2) For N(y) = 1, since 1 is the neutral element of GO, IN
GO(x, N(y)) = N(GO(x,

N(1)))=N(GO(x, 0))
(GO2)
= 1. Moreover,

IN
GO(y, N(x)) = N(GO(y, N(N(x)))), for all x ∈ [0, 1]. So, if N(x) = 0, then IN

GO(y,
N(x)) = N(GO(y, N(0))) = N(GO(y, 1)) = N(y) = 1. However, if N(x) = 1, then,
by (GO2), we have that IN

GO(y, N(x)) = N(GO(y, N(1))) = N(GO(y, 0)) = 1. So, in
any case, IN

GO(x, N(y)) = IN
GO(y, N(x)).

Aggregating (GO, N)-Implications

In [12], the authors performed a study on IA fuzzy implications obtained by the
composition of an aggregation function A and a family I of fuzzy implication functions.
Here we verify under which conditions an IA-operator is a (GO, N)-implication, whenever
I is a family of (GO, N)-implication functions.

Definition 14 (Definition 5.1 [12]). Let A : [0, 1]n → [0, 1] be an aggregation function and take
F = {Fi : [0, 1]k → [0, 1] | i ∈ {1, 2, . . . , n}} as a family of k-ary functions. An (A,F )-operator
on [0, 1], denoted by FA : [0, 1]k → [0, 1], is given by:

FA(x1, . . . , xk) = A(F1(x1,. . ., xk), F2(x1,. . ., xk),. . ., Fn(x1,. . ., xk)). (12)

In [12], it has been shown that FA preserves some properties of Fi for i ∈ {1, 2, . . . , n}.
For example, if Fi are fuzzy implication functions then FA is also a fuzzy implication
function.

Proposition 18. Let A : [0, 1]n → [0, 1] be a continuous aggregation function and let I =

{INi
GOi

: [0, 1]2 → [0, 1] | i ∈ {1, . . . , n}} be a family of (GO, N)-implication functions. Then, IA

is a (GO, N)-implication whenever Ni = N for i ∈ {1, 2, . . . , n} and N is a strong negation.

Proof. Consider the family of (GO, N)-implication functions represented by I = {INi
GOi

: [0, 1]2 → [0, 1] | i ∈ {1, 2, . . . , n}}. Then, since Ni = N and N is a strong negation, for all
0 ≤ i ≤ n,

IA(x, y)
Equation (12)

= A(IN1
GO1

(x, y), . . . , INn
GOn

(x, y))

Equation (8)
= A(N1(GO1(x, N1(y))), . . . , Nn(GOn(x, Nn(y))))

= A(N(GO1(x, N(y))), . . . , N(GOn(x, N(y))))
Equation (1)/(N5)

= N(AN(GO1(x, N(y)), . . . ,GOn(x, N(y))))
Equation (12)

= N(GO∗AN
(x, N(y)))

Equation (8)
= IN

GO∗AN
(x, y).
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By Proposition 1, AN is an aggregation function. Furthermore, by the continuity of A and
N, we have that AN is continuous. So, by Lemma 1, GO∗AN

is a general overlap function.
Therefore, since IA = IN

GO∗AN
, then IA is a (GO, N)-implication function.

Corollary 4. Let A : [0, 1]n → [0, 1] be a continuous aggregation function and let I = {INi
GOi

: [0, 1]2 → [0, 1] | i ∈ {1, 2, . . . , n}}, for i ∈ {1, 2, . . . , n}, be a family of (GO, N)-implication
functions. If N is a strong negation, then for IA with Ni = N for i ∈ {1, 2, . . . , n}, it holds that:

(i) IA satisfies L-CP(N);
(ii) If N is also strict, then IA satisfies R-CP(N−1);
(iii) IA satisfies CP(N).

Proof. Straightforward from Propositions 12 and 18.

4. Intersections between Families of Fuzzy Implications

In this section we present results regarding the intersections that exist among the
families of fuzzy implications (GO, N), (G, N), QL, RO and D-implications derived from
(general) overlap and grouping functions O and G, respectively, and fuzzy negations N.
We will represent these families by INGO, IG,N, IO,G,N, IO and ID, respectively.

4.1. Intersections between (GO, N) and (G, N)-Implications

Proposition 19. Let N and N′ be fuzzy negations, GO be a bivariate general overlap function and
G be a grouping function such that IN

GO = IG,N′ .

(i) If N is strict and N′ is frontier, then GO is an overlap function.
(ii) If 1 is the neutral element of GO, then:

(a) If N is a strong negation, then N = N′;
(b) If N is continuous and N = N′, then N is strong;
(c) N is strong if and only if 0 is the neutral element of G.

(iii) If 0 is the neutral element of G, then:

(a) N′ is strong if and only if N′ = N;
(b) N′ is strong if and only if 1 is the neutral element of GO.

Proof. (i) Indeed, if GO(x, y) = 0, then

N(GO(x, y)) = 1 ⇒ IG,N(x, N−1(y)) = IN
GO(x, N−1(y)) = 1

⇒ G(N(x), N−1(y)) = 1
(G3)⇒ N(x) = 1 or N−1(y) = 1

(G3)⇒ x = 0 or y = 0.

Moreover, if GO(x, y) = 1, then

N(GO(x, y)) = 0 ⇒ IG,N(x, N−1(y)) = IN
GO(x, N−1(y)) = 0

⇒ G(N(x), N−1(y)) = 0
(G2)⇒ N(x) = 0 and N−1(y) = 0

(G2)⇒ x = 1 and y = 1.

Consequently, GO satisfies (O2) and (O3) and we conclude that GO is an overlap
function.

(ii) Indeed,
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(a) by Prop. 3.4(xxi) [34] we have that IG,N′ satisfies R-CP(N’), so

N(y) = IN
GO(y, 0) = IG,N′(y, 0)

R-CP(N’)
= IG,N′(1, N′(y))

= IN
GO(1, N′(y)) = N(GO(1, N(N′(y))))

(N5)
= N′(y),

for all y ∈ [0, 1]. Therefore, N = N′.
(b) Since IG,N′ satisfies R-CP(N’) and IN

GO = IG,N′ , IN
GO(x, N′(y)) = IN

GO(y, N′(x)).
So, for x = 1, IN

GO(1, N′(y)) = IN
GO(y, N′(1)), i.e.,

N(GO(1, N(N′(y)))) = N(GO(y, N(N′(1)))).

Since 1 is the neutral element of GO and N = N′, for all y ∈ [0, 1], N(N(N(y))) =
N(y). Now, since N is continuous, for every x ∈ [0, 1], there is y ∈ [0, 1] such
that x = N(y). So, N(N(x)) = x, for all x ∈ [0, 1].

(c) For all y ∈ [0, 1], N(N(y)) = N(GO(1, N(y))) = IN
GO(1, y) = IG,N′(1, y) =

G(N′(1), y) = G(0, y). So the result holds.

(iii) Indeed,

(a) by Prop. 3.4(ii) [34] we have that IG,N′ satisfies (NP), so

y
(NP)
= IG,N′(1, y) = IN

GO(N(0), y)
Prop. 12(i)

= IN
GO(N(y), 0)

= IG,N′(N(y), 0) = N′(N(y)),

for all y ∈ [0, 1]. Therefore, the result follows.
(b) Consider N′ as a strong negation, then by the previous item, N′ = N. So, x =

N′(N′(x)) = N′(G(N′(x), 0)) = N′(IG,N′(x, 0)) = N′(IN
GO(x, 0)) = N′(N(GO(x,

N(0)))) N’=N
= GO(x, 1), for all x ∈ [0, 1]. Therefore, 1 is the neutral element of

GO. Conversely, N(x) = N(GO(x, N(0))) = IN
GO(x, 0) = IG,N′(x, 0) = N′(x),

and therefore, by sub-item (a) of item (ii), N′ is a strong negation.

The next propositions show that strict (GO, N)-implication functions generated by
general overlap functions satisfying (GO2a) and (GO3a) are strict (G, N)-implication func-
tions and vice-versa.

Proposition 20. Let N be a strict fuzzy negation, GO be a GOF satisfying (GO2a) and (GO3a),
and let G be the grouping function defined according to Equation (4). Then, one has that
IN
GO = IG,N−1 .

Proof. For all x, y ∈ [0, 1], since N is strict, it follows:

IN
GO(x, y) = N(GO(x, N(y))) = N(GO(N(N−1(x)), N(y)))

Equation (4)
= G(N−1(x), y)

Equation (7)
= IG,N−1(x, y).

Proposition 21. Let N be a strict negation, G be a grouping function and GO be the general
overlap function defined in Equation (3). Then, IG,N = IN−1

GO .
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Proof. For all x, y ∈ [0, 1], since N is strict, it follows that:

IG,N(x, y)
Equation (7)

= N−1(N(G(N(x), N(N−1(y)))))
Equation (3)

= N−1(GO(x, N−1(y))
Equation (8)

= IN−1

GO (x, y).

Corollary 5. Let I be a fuzzy implication function. Then, I is a strict (GO, N)-implication with
GO satisfying conditions (GO2a) and (GO3a) if and only if I is a strict (G, N)-implication.

Proof. Straightforward from Propositions 20 and 21.

By Corollary 5 we have that the intersection of (GO, N) and (G, N)-implications is
non-empty: INGO ∩ IG,N 6= ∅. In addition, we also conclude that IN∗GO = IG,N∗ ⊆ INGO ∩ IG,N,
where IN∗GO is the family of all strict (GO, N)-implication functions and, analogously, IG,N∗
is the family of all strict (G, N)-implication functions.

Next, we provide an example presenting an implication function belonging to both
classes (GO, N) and (G, N)-implications.

Example 5. Take the strict fuzzy negation N, defined by N(x) = 1− x2 and consider the grouping
function G given by G(x, y) = 1− (1− x)2(1− y)2. Then, for all x, y ∈ [0, 1], IG,N(x, y) =
G(N(x), y) = 1− (1−N(x))2(1−N(y))2 = 1− x4(1− y)2. Now, consider the general overlap
fuction GO(x, y) = N(G(N(x), N(y))) (Equation (3)). Note that GO(x, y) = 1− (1− x4y4)2

and GO satisfies (GO2a) and (GO3a). So since N−1(x) =
√

1− x, we have that:

IN−1

GO (x, y) = N−1(GO(x, N−1(y))) =

√√√√1−
(

1−
(

1− x4
(√

1− y
)4
)2
)

= 1− x4(1− y)2 = IG,N(x, y).

Therefore, I(x, y) = 1− x4(1− y)2 is a (GO, N)-implication and a (G, N)-implication.

Proposition 22. Let I ∈ FI such that Ran(I) 6= [0, 1]. If I is a (GO, N)-implication function
then I is not a (G, N)-implication function.

Proof. Suppose that I is a (G, N)-implication function. Then, there is a grouping G and
a fuzzy negation N such that I(x, y) = G(N(x), y) for each x, y ∈ [0, 1]. However, since
G is continuous and G(N(0), 0) = 0, G(N(0), 1) = 1, then for any y ∈ [0, 1] there exists
x ∈ [0, 1] such that I(0, x) = G(1, x) = y. Therefore, Ran(I) = [0, 1].

Corollary 6. Each crisp (GO, N)-implication function is not a (G, N)-implication function.

Let INGO = {I ∈ INGO|Ran(I) 6= [0, 1]}. Proposition 22 proves that INGO ∩ IG,N = ∅.
Thus, there are (GO, N)-implication functions that are not (G, N)-implication functions
and therefore, the class of (GO, N)-implication functions is not contained in the class of
(G, N)-implication functions.

Note that the converse also holds as shown in the next proposition.

Proposition 23. There are (G, N)-implication functions that are not (GO, N)-implication functions.
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Proof. Take the (G, N)-implication function IG,N , where G(x, y) = max(x, y) and N = N>.
Thus,

IG,N(x, y) = max(N>(x), y) =

{
max(0, y), if x = 1
1, if x < 1

=

{
y, if x = 1
1, if x < 1.

Suppose there exists a GOF GO and a fuzzy negation N such that

IN
GO(x, y) =

{
y, if x = 1
1, if x < 1.

Thus, for x = 1, IN
GO(1, y) = y, for all y ∈ [0, 1],

N(GO(1, N(y))) = y. (13)

Furthermore, for x < 1, IN
GO(x, y) = 1, for all y ∈ [0, 1]. So, in particular, for y = 0,

since GO is commutative,

N(GO(1, x)) = 1 (14)

for all x < 1. Now, given y ∈ (0, 1), we have either N(y) = 1 or N(y) < 1. If N(y) = 1 then,
by Equation (13) and (GO3), it follows y = N(GO(1, N(y))) = N(GO(1, 1)) = N(1) = 0,

which is a contradiction, since y ∈ (0, 1). Furthermore, if N(y) < 1, then y
Equation (13)

=

N(GO(1, N(y)))
Equation (14)

= 1, which is a contradiction, since y ∈ (0, 1). In both cases we
have a contradiction, so Imax,N> is not a (GO, N)- implication function.

The last two results ensure that INGO * IG,N and IG,N * INGO.

4.2. Intersections between (GO, N) and QL-Implication Functions

A tuple (O, G, N), with O being an overlap function, G being a grouping function and
N being a fuzzy negation, known as a QL-operator [33] is in fact an implication function if
and only if N = N>. Then, we conclude that:

Proposition 24. There are no fuzzy implication functions that are simultaneously QL implication
functions and (GO, N)-implication functions.

Proof. Indeed, by Proposition 12(i), any (GO, N)-implication function IN
GO satisfies L-

CP(N). Moreover by Theorem 3.1(v) [33], any QL-implication IO,G,N> does not satisfy
(L-CP) for any negation N.

Corollary 7. There is no fuzzy implication function which is simultaneously a QL-implication
function and a strict (G, N)-implication function.

Proof. Straightforward from Corollary 5 and Proposition 24.

Therefore, one can conclude that the intersection of QL-implication functions and
(GO, N)-implication functions is empty, i.e., INGO ∩ IO,G,N = ∅. As a consequence, the
intersection of QL-implication functions and (G, N)-implication functions with N being
a strict negation, is also empty: IO,G,N ∩ IG,N∗ = ∅. In Theorem 5.1 [33], it is seen that
QL-implication functions are included in the class of (G, N)-implications. Example 6
illustrates that.
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Example 6. Consider the overlap function O(x, y) = xy, the grouping function G(x, y) =
1− (1− x)2(1− y)2 and the fuzzy negation N> given by Equation (9). Then, for all x, y ∈ [0, 1],
one has that:

IO,G,N>(x, y) = G(N>(x), O(x, y))) = 1− (1− N>(x))2(1−O(x, y))2

=

{
1− (1− y)2, if x = 1;
1, if x 6= 1

.

On the other hand,

IG,N>(x, y) = G(N>(x), y) = 1− (1− N>(x))2(1− y)2

=

{
1− (1− y)2, if x = 1
1, if x 6= 1

.

Therefore, I(x, y) =

{
1− (1− y)2, if x = 1
1, if x 6= 1

∈ IO,G,N ∩ IG,N.

4.3. Intersections between (GO, N) and RO-implication Functions

Proposition 25. There are no fuzzy implication functions that are simultaneously RO-implication
functions and (GO, N)-implication functions.

Proof. Indeed, by Proposition 12(i), any (GO, N)-implication IN
GO satisfies L-CP(N), how-

ever by Theorem 4.2 [32], it is guaranteed that every RO-implication, IO, does not satisfy
(L-CP) for any negation N.

Therefore, one can conclude that (GO, N)-implication functions and the family of
RO-implication functions do not intercept, i.e., INGO ∩ IO = ∅.

4.4. Intersections between (GO, N) and D-Implication Functions

From the results given in Theorem 4.1 [35] we know that every D-implication function
is a QL-operation considering the greatest fuzzy negation. Still, from Theorem 4.2 [35]
we know that every D-implication is a (G, N)-implication considering the greatest fuzzy
negation. Therefore, it is straightforward that there are no intersections between (GO, N)
implication functions and D-implication or (G, N)-implication functions. Moreover, by
Theorem 4.3 [35] one can say that there is no intersection between (GO, N)-implication
functions and D-implication functions.

In Figure 1, we illustrate the main results presented in this section. Note that the
intersections between the families of (G, N), QL, RO and D-implication functions had
already been presented in other works [32–35].

IG,N

IO,G,N

ID

INGO

IO

Figure 1. Intersections between families of fuzzy implication functions.
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5. Final Remarks

In propositional logics, one may consider the negation (¬) and other logical con-
nectives such as the implication (→), the disjunction (∨) or the conjunction (∧) as being
primitive. Other connectives can be defined in a standard form using only two primitive
connectives [36]. In particular, when the primitive connectives are the negation and the dis-
junction, the standard definition of the implication is given by (i) p→ q ≡ ¬p∨ q and when
the primitive connectives are the negation and the conjunction, the standard definition of
the implication is given by (ii) p→ q ≡ ¬(p ∧ ¬q). The first one, in fuzzy logics, had mo-
tived the introduction of several classes of fuzzy implication functions, such as the (S, N),
(G, N) and (A, N) implications, where the disjunction is given, respectively, by a t-conorm
S, a grouping function G or a disjunctive aggregation function A (e.g., see [11,34,51]). The
second one, using conjunctive operators, allowed the definition of implication functions
based on t-norms [20]. In this work we introduced a class of implication function based on
(ii), where the conjunction is given by generalized overlap functions.

The main contributions of this work are the investigation of properties satisfied by
such implication functions, their characterization, and a study of the intersections between
them and other classes of implication functions derived from (general) overlap/grouping
functions. The summary of these intersections is illustrated in Figure 1. Actually, we
complete this study by also considering the class of (T, N)-implication functions, denoted
by INT , which is also based on the standard definition of the implication given by (ii), but
using a t-norm instead of a general overlap function. Since each continuous t-norm is
a general overlap function but the converse does not hold, then trivially we have that:
INGO ∩ INT 6= ∅, INGO − INT 6= ∅ and INT − INGO 6= ∅. In addition, Table 2 shows some of the
properties satisfied by the (GO, N)-implication functions and (T, N)-implication functions
whenever we take into account: any fuzzy negation N, strong fuzzy negations (represented
by N∗), non-strong fuzzy negations (represented by N+) or crisp negations (represented by
Nc). For each property, yes/no means that the property is/is not held for each implication
of that class. Additional restrictions may appear as follows: nost means the property is not
valid if N is strict, yes(no)ne means the property is(not) valid when 1 is the neutral element
of GO, and yesa means the property holds when GO is associative. Empty table cells mean
that some implication functions of the class satisfy the property whereas others do not. We
can notice that indeed GO-implication functions are more general since more properties
are verified.

Table 2. Some properties of fuzzy implication functions.

Property IN∗T = IS,N∗IN∗T = IS,N∗IN∗T = IS,N∗ IN+

TI
N+

TIN
+

T INc
TI
Nc
TI
Nc
T IN∗GOIN∗GOIN∗GO INc

GOINc
GOINc
GO

EP yes nost yes yesa yesne

NP yes no no yesne none

ROP no none

LOP yes yesne

CP(N) yes nost yes yes yesne

L-CP(N) yes yes yes yes yes

R-CP(N) yes nost yes yes yesne

Our future works include studying the use of GO operators on other classes of impli-
cation functions and the construction of other classes of fuzzy subsethood measures like it
was made in [20,33], which can be used to generate fuzzy entropies, similarity measures
and penalty functions, and applied in many ways.
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