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Abstract: In humans, the variation in resting metabolic rate (RMR) might be associated with health-
related factors, as suggested by previous studies. This study explored whether the intra-assessment
RMR variability (expressed as a coefficient of variation (CV; %)) is similar in men and women and if
it is similarly associated with diverse health-related factors. The RMR of 107 young, and relatively
healthy adults, was assessed using indirect calorimetry. Then, the CV for volumes of oxygen
consumption (VO2) and carbon dioxide production (VCO2), respiratory exchange ratio (RER), and
resting energy expenditure (REE) were computed as indicators of intra-assessment RMR variability.
Body composition, cardiorespiratory fitness (peak VO2 uptake), circulating cardiometabolic risk
factors, and heart rate and its variability (HR and HRV) were assessed. Men presented higher CVs for
VO2, VCO2, and REE (all p ≤ 0.001) compared to women. Furthermore, in men, the intra-assessment
RER variability was associated with vagal-related HRV parameters and with mean HR (standardized
β = −0.36, −0.38, and 0.41, respectively; all p < 0.04). In contrast, no associations were observed in
women. In conclusion, men exhibited higher variability (CVs for VO2, VCO2, and REE) compared to
women. The CV for RER could be a potential marker of cardiometabolic risk in young men.

Keywords: metabolic cart; CCM Express; CPX Ultima CardiO2; indirect calorimetry; sexual dimorphism;
cardiovascular diseases

1. Introduction

It is well known that the energy cost of self-maintenance varies within species, within
and between days, and between sexes [1–4]. This self-maintenance component of energy
cost is commonly referred to as the basal or resting metabolic rate (RMR). Neverthe-
less, whether this is a “basal” or a “resting” assessment depends on the methodology
followed in the experiment [5,6]. The RMR, which is widely defined as the minimum
energy needed for maintaining body homeostasis and normal body functions (organ func-
tions, thermoregulation, etc.), may account for 60–70% of the 24-h energy expenditure of
sedentary individuals [7].

The RMR component can be assessed in a relatively easy manner using indirect
calorimetry and metabolic carts [8], which are considered the reference tool for its assess-
ment [5,6]. Thus, metabolic carts allow us to assess and study the RMR of individuals.
The variation in RMR between species is undoubtedly and mostly explained by differ-
ences in body mass, although other factors may also influence these differences [1–3,9]. In
mammals (e.g., humans), the variation in RMR appears to influence behavioral traits and
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fitness (e.g., peak volume of oxygen consumption [VO2] uptake), among others [10–13].
Importantly, the RMR seems to be a repeatable component over time, showing within-
and between-day reproducibility of 3–8%—that reproducibility percentage range corre-
sponds to humans’ RMR assessments using a metabolic cart system [9]. Nowadays, in
humans, studying the differences between sexes, and, more concretely, the variability in
energy expenditure (EE), is a matter of interest. In a study by Halsey et al. [14], they
observed a greater men vs. women variability in total EE, activity EE (estimated as:
0.9 × total EE − basal EE, aiming to determine EE cost from physical and/or exercise), and
basal EE components. Interestingly, even after comparing men and women of the same age,
height, and fat and fat-free mass-characteristics that directly influence EE—men exhibited
more variability than women [14].

Concerning RMR assessments using metabolic carts, the variability (expressed as
the coefficient of variation (CV) in percentage) of the measured parameters, such as the
VO2, the volume of carbon dioxide production (VCO2), and the respiratory exchange
ratio (RER), have also been of interest. In fact, the CV for these parameters is widely
employed as criteria for determining the “gas exchange stability” and, thus, as a cut-off
point for selecting the RMR data [15]. Of note, the CV for RMR itself (i.e., the CV for resting
EE) is not commonly used as a cut-off point for this data selection. A previous study by
Irving et al. [16], conducted in healthy participants, showed that 12 individuals (16% of
the sample) exhibited elevated intra-assessment variability (CV for VO2 and VCO2 > 10%)
during the entire 45-min RMR assessment. Intriguingly, they observed that 17% of them
presented extreme low and high body mass index (BMI) values (BMIs < 17.5 and > 48,
respectively) [16]. Thus, they suggested that an extreme BMI could influence the intra-
assessment RMR variability, i.e., the higher the BMI, the higher the CVs for VO2 and VCO2.
In addition, Reeves et al. [17] observed that 55% out of a sample of 39 participants did not
accomplish the gas exchange stability criteria, or, in other words, they presented an elevated
intra-assessment variability. It is important to acknowledge that more than half of the study
cohort were cancer patients, which may influence that intra-assessment variability to an
unknown extent [17]. In this line, the more ill the participant, the greater the variability in
the RMR [17–23], an observation supported by studies performed in different populations
with varying health status (e.g., patients suffering from cancer, hemodialysis, traumatic
brain injuries, eating disorders, and mechanically ventilated patients). In addition, critically
ill patients reduced their RMR daily variability later during their hospital course and
stabilization [24]. However, daily RMR variability does not inherently correlate with lower
or higher resting EE values during the assessment (i.e., lower or higher kilocalories per
day), and hence, all daily variability cannot be completely explained by confounding
factors such as nursing care procedures or surgery [24]. Therefore, it is plausible that
the individuals’ intra-assessment variability could be influenced by their gender [14],
age [21,25], and health status [16–23]. Unfortunately, whether a relationship exists between
the intra-assessment variability (i.e., intra-assessment CV for VO2, VCO2, RER, and resting
EE) and health-related markers (e.g., body composition, circulating cardiometabolic risk
factors, and cardiac autonomic function) has not been deeply explored. Considering all of
these factors together, we hypothesized that men will present a higher intra-assessment
RMR variability compared to women and that this intra-assessment RMR variability will
be associated with classical health-related factors.

Thus, in the present exploratory study, we aimed to examine: (i) the intra-assessment
RMR variability (expressed as CV (in percentage) for VO2, VCO2, RER, and resting EE)
exhibited by men and women, separately; and (ii) whether the intra-assessment RMR
variability (expressed as CV for VO2, VCO2, RER, and resting EE) is associated with health-
related factors such as body composition, cardiorespiratory fitness (i.e., peak VO2 uptake),
circulating cardiometabolic risk factors, heart rate (HR), and heart rate variability (HRV)
parameters in a cohort of relatively healthy young adults. To the best of the authors’
knowledge, our present work is the first study exploring the relationship between the
intra-assessment RMR variability and objectively determined health-related markers.
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2. Materials and Methods
2.1. Study Subjects

The present cross-sectional study used pre-intervention (i.e., baseline) data from the
ACTIBATE randomized control trial (RCT; ClinicalTrials.gov ID: NCT02365129) study [26,27].
A total of 107 relatively healthy young adults were included in the present study. All
subjects provided both oral and written informed consent (see the Institutional Review Board
Statement Section presented below for extended information). In brief, the inclusion criteria
were: (i) being sedentary; (ii) maintaining a stable body weight (change lower than 3 kg
over the last months); (iii) not being on a weight loss program; (iv) presenting a normal
electrocardiogram; (v) not suffering from chronic (or acute) illness; (vi) not being a smoker;
and (vii) not being pregnant or lactating. Extended and detailed information concerning
the ACTIBATE study can be found elsewhere [26,27].

2.2. Resting Indirect Calorimetry Assessments

The VO2 and VCO2 gas exchanges were measured using either a CPX Ultima CardiO2
or a CCM Express metabolic cart (Medical Graphics Corp., St. Paul, MN, USA) during a
30-min period, while subjects were at rest (i.e., laying on bed in the supine position), in
the morning (~9 AM), and following a 12 h overnight fast. Subjects were instructed not
to perform moderate (24 h) and/or vigorous (48 h) exercise or physical activity before
the assessment. Subjects were instructed to come to the lab by public transportation or
motorized vehicle to avoid physical activity after they woke up. In addition, an acclimation
period of 20–30 min was performed before the RMR assessment, as recommended by
current guidelines [15]. During the entire gas exchange measurement, subjects were
instructed to stay awake, remain silent, breathe normally, and avoid fidgeting [15].

Both metabolic carts mentioned above require a neoprene face mask equipped with
a Directconnect™ low-flow sensor (Medical Graphics Corp., St. Paul, MN, USA), mea-
sured the VO2 and VCO2 using the same galvanic fuel cell and non-dispersive infrared
analyzers [28], and require exactly the same calibration procedures. Before each RMR
assessment, flow (using a 3 L syringe) and gas analyzers (using 2 gas bottles of standard
gas concentrations) were calibrated accordingly to the manufacturers’ recommendations
and instructions.

After each RMR assessment, the resulting gas exchange data was downloaded using
the metabolic carts’ specific software (MGCDiagnostic® Breeze Suite, v. 8.1.0.54 SP7; Medi-
cal Graphics Corp., St. Paul, MN, USA) at a sampling frequency of 1 min, as extensively
detailed elsewhere [29]. As recommended by current guidelines, the first 5 min of data
were discarded [15], and thus, the remaining 25 min of data were processed and used for
further calculations detailed below. The RMR (i.e., resting energy expenditure [REE]) was
estimated using the equation proposed by Weir [30] and assuming no urinary nitrogen
excretion (see Figure 1A). Then, the RER was calculated as the VCO2-to-VO2 ratio (see
Figure 1A). In addition, for descriptive purposes, we computed the RMR relative to body
weight (i.e., RMR/kg of body weight; RMRBW) and the RMR relative to fat-free mass
(RMR/kg of fat-free mass; RMRFFM). Finally, as surrogate parameters of intra-assessment
RMR variability, the CV for VO2, VCO2, RER, and RMR (thereinafter CV for REE) was
calculated and expressed as a percentage for each subject (see Figure 1B). As an example,
the CV for VO2 was computed for each participant as: (VO2 standard deviation/VO2
average) × 100. A summary of this entire process is depicted in Figure 1.
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Figure 1. Representation of the procedure for computing the respiratory exchange ratio (RER) and
the resting metabolic rate (RMR; i.e., resting energy expenditure [REE] estimated using the equation
proposed by Weir [30] and assuming no urinary nitrogen excretion) using the measured volume of
oxygen consumption (VO2) and volume of carbon dioxide production (VCO2) gas exchange (Panel
(A)), and the procedure for computing each coefficient of variation (CV, in percentage; Panel B). These
are actual data from a participant included in the present study. The blue line represents the VO2,
the yellow line represents the VCO2, the black line represents the RER, and the red line represents
the RMR (i.e., REE). In both panels, the data highlighted in gray represents the 5 min data discarded
following current recommendations [15]. In Panel (B), the dashed line represents the data used to
compute the CV for each gas exchange parameter (i.e., CV for VO2, VCO2, RER, and REE). In Panel
B, the left y-axis represents the gas exchange in milliliters per minute (mL/min) and RER, and the
right y-axis represents the REE in kilocalories per day (kcal/day).
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2.3. Anthropometry and Body Composition Assessments

The subject’s body weight and height were determined using a scale and a stadiometer
(SECA model 799, Hamburg, Germany), respectively. Then, we computed BMI as body
weight (kg)/height (m) squared. In addition, waist circumference was assessed twice, using
a plastic tape, and the mean of both assessments was used for analyses. In this regard,
we calculated a Z-score for waist circumference and used it to compute two different
cardiometabolic risk Z-scores, which are detailed below.

Finally, body composition (fat mass, lean mass, and fat mass percentage) was assessed
by a whole-body Dual Energy X-ray Absorptiometry scanner (Discovery Wi, Hologic Inc.,
Bedford, MA, USA).

2.4. Cardiorespiratory Fitness Assessment

The peak VO2 uptake (i.e., the cardiorespiratory fitness; CRF) was determined by
indirect calorimetry (CPX Ultima CardiO2, Medical Graphics Corp., St. Paul, MN, USA;
metabolic cart information was detailed above), while subjects elicited a maximum-effort
graded exercise protocol [31]. As for the resting assessments, we calibrated both the
volume (using a 3 L syringe and a high-flow sensor [Medical Graphics Corp., St. Paul,
MN, USA]) and gas analyzers (using 2 gas bottles of standard gas concentrations) prior
to every test, following the manufacturers’ recommendations. The CPX Ultima CardiO2
is a breath-by-breath metabolic cart that equipped a galvanic fuel cell for measuring
VO2 and a non-dispersive infrared analyzer for measuring VCO2 (resolution of both gas
analyzers ± 0.1%). Regarding the exercise protocol, briefly, every 1-min, the slope of
the treadmill (H/P/cosmos pulsar; H/P/cosmos sports & medical GmbH, Nussdorf-
Traunstein, Germany) increased by 1%, while subjects walked at 5.3 km/h until volitional
exhaustion (self-reported by the subject). In addition, during the entire exercise protocol,
the heart rate was monitored using an electrocardiogram. We considered that subjects
performed their maximum effort when they met the following criteria [32]: (i) the RER was
≥1.1; (ii) the self-reported perceived exertion was >9 using the rating of perceived exertion
category-ratio scale (RPE-CR10) [33]; and (iii) the heart rate was ≥90% of the age-predicted
maximum heart rate (i.e., 209 − 0.73 × age). Lastly, all subjects were instructed not to
consume any stimulant substance (e.g., caffeine) before the test (24 h), not to eat (3–5 h), and
perform neither intense/vigorous nor moderate physical activity during the previous 48 h
and/or the previous 24 h, respectively. Extended information can be found elsewhere [34].

To compute the peak VO2 uptake, we first downloaded the data at a sample frequency
of 5 s. Subsequently, from the entire set of recorded data, we looked for the highest
VO2 uptake value and then averaged the peak (i.e., highest) VO2 uptake value and the
immediately 5-s values prior and after the peak VO2 uptake value (i.e., we used a 15-s data
average to be used as that peak VO2 uptake value) [34]. Of note, as an approach to detect
possible artefacts in the assessment (e.g., artefacts that may unmask the real VO2 value), we
checked the entire data set from the 2nd to the 10th subsequent highest VO2 uptake values
(i.e., the 2nd peak VO2 uptake value, the 3rd, the 4th, etc.) [34]. In addition, we computed
the CRF relative to body weight (i.e., peak VO2 uptake/kg of body weight; CRFBW) and
the CRF relative to fat-free mass (peak VO2 uptake/kg of fat-free mass; CRFFFM).

2.5. Circulating Cardiometabolic Risk Factors and Blood Pressure Assessments

For determining circulating cardiometabolic risk factors, subjects rested (sat) for at
least 10 min and underwent an overnight fast of at least 12 h. Then, blood samples
were collected from the antecubital vein in Vacutainer® SST™ II Advance tubes (Becton
Dickinson, Plymouth, UK) to obtain serum. After collection, tubes were centrifuged,
aliquoted, and stored (−80 ◦C) for later analyses.

Total cholesterol, high- and low-density lipoprotein cholesterol (HDL-C and LDL-C,
respectively), triglycerides, and glucose were determined by spectrophotometry (model
AU5800; Beckman Coulter, Brea, CA, USA), while insulin was determined by chemilumi-
nescence immunoassay involving UniCel DxI 800 paramagnetic particles (Beckman Coulter,
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Brea, CA, USA). Finally, using the determined blood glucose and insulin values, the home-
ostatic model assessment of insulin resistance index (HOMA index) was computed:

HOMA index =
Insulin × Glucose

22.5

An automatic monitor (HEM 705 CP; Omron Healthcare Co., Kyoto, Japan) was used
to assess blood pressure (BP). Two BP measurements were performed (in the right arm)
while subjects were resting, and mean values were used for further analyses.

Finally, we computed a cardiometabolic risk Z-score (hereinafter cardiometabolic
risk Z-score 1) using classical metabolic syndrome markers, i.e., glucose, triglycerides,
HDL-C, BP, and waist circumference. To compute that cardiometabolic risk Z-score, we
computed the individual Z-score for each of these markers as: (value − mean)/standard
deviation. Regarding the Z-score for the HDL-C, only for this marker were its values
inverted (i.e., multiplied by −1); thus, higher values in the Z-score can be interpreted as
higher cardiometabolic risk. After computing all individual Z-scores, the cardiometabolic
risk Z-score (i.e., the Z-score including all the individual Z-scores) was computed as
detailed below:

Cardiometabolic risk Z − score 1
= (Z−score glucose + Z−score triglycerides + Z−score HDL − C + Z−score mean blood pressure + Z−score waist circumference)

5

Moreover, we computed a second cardiometabolic risk Z-score (hereinafter cardiometabolic
risk Z-score 2), adding to the metabolic syndrome markers mentioned above in the car-
diometabolic risk Z-score 1 the TC, the LDL-C, the insulin, and the HOMA index Z-score values.

2.6. Heart Rate and Heart Rate Variability Assessment

The heart rhythm was recorded over a 15-min period using a Polar RS800CX (Polar
Electro, Kempele, Finland; sample frequency 1000 Hz), early in the morning (between
8 and 9 AM), while the subjects were lying on a bed (awake, in the supine position). Of note,
this measurement was performed immediately before the indirect calorimetry assessment
(i.e., in the same room and under the same ambient temperature and humidity conditions).
In addition, subjects were instructed to stay awake, not move too much (i.e., be motionless),
and remain silent while the heart rhythm was recorded.

The heart rhythm data was processed using the Kubios software (free version, v.3.0.0,
HRV analysis, University of Eastern Finland) [35]. In brief, we excluded the first 5 min of
data and manually selected the 5-min period [36,37]. Subsequently, in the selected 5-min
period, we applied the medium Kubios threshold-based artefact correction level following
current recommendations [38]. Finally, the R-R interval series were detrended using the
smoothness prior method with alpha set at 500 ms and a cubic interpolation at the default
rate of 4 Hz [36,38].

From the heart rhythm recorded, we derived the HR (in beats per minute). In addition,
and following the Guidelines of The European Society of Cardiology task force and The
North American Society of Pacing and Electrophysiology [39], we derived the vagal-
related HRV variables from time and frequency domains. In the first domain, we derived:
(i) the squared root of the mean of the sum of the squares of successive R-R interval
differences (RMSSD); (ii) the standard deviation of all normal R-R intervals (SDNN); and
(iii) the percentage of pairs of adjacent R-R intervals differing by more than 50 milliseconds
(pNN50). In the frequency-domain, we derived the power of the high frequency band (HF;
0.15–0.4 Hz) using the Fast Fourier transformation algorithm.

Finally, we also computed the vagal-related HRV score as proposed in our previous
study [40]. In brief, we calculated an individual Z-score for all the aforementioned time
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and frequency domain parameters (i.e., the RMSSD, the SDNN, the pNN50, and the HF),
and subsequently, we ran the following equation [40]:

HRV score =
(Z − score RMSSD + Z − score SDNN + Z − score pNN50 + Z − score HF)

4

2.7. Statistical Analyses

The normal distribution of the variables was examined using the Kolmogorov-Smirnov
test and the visual inspection of histograms. As part of our descriptive analyses, for all
health-related outcomes and for both RMR ratios, we compared men vs. women using
non-paired t-tests. Then, for analytical purposes, the variables that presented a skewed
distribution were transformed using a natural logarithm (ln). Analyses were performed
separately for men and women as suggested by previous literature (e.g., [14]). Although
the sample sizes were different (n = 35 and n = 72 for men and women, respectively), we
performed an analysis of covariance (ANCOVA) with Bonferroni comparisons to exam-
ine sex-adjusted mean differences (age as a confounder factor) on indirect calorimetry
parameters (CVs for VO2, VCO2, RER, and REE). Multiple linear regressions analyses,
adjusting for age, were conducted to test the associations between the CVs obtained for
the assessed indirect calorimetry parameters (i.e., the CVs for VO2, VCO2, RER, and REE)
and: (i) anthropometric and body composition parameters; (ii) CRF (expressed as absolute
and relative values); (iii) circulating cardiometabolic risk factors and BP; and (iv) HR and
HRV derived parameters. In addition, the associations between the abovementioned CVs
and both cardiometabolic risk Z-scores (i.e., cardiometabolic risk Z-scores 1 and 2) and the
vagal-related HRV score, adjusting for age, were also conducted.

Analyses were performed using the Statistical Package for the Social Sciences v.22.0
(IBM SPSS Statistics, IBM Corporation, Chicago, IL, USA). The significance level was set at
p < 0.05. The results are presented as mean ± standard deviation (SD), and as standardized
β unless otherwise stated. Graphs were created using the software Graph Pad Prism
(GraphPad, v. 8.0.2, San Diego, CA, USA).

3. Results

A total of 35 men (age = 23 ± 2 years old) and 72 women (age = 22 ± 2 years old)
were included in the study. Table 1 provides descriptive data for the participants in both
groups (i.e., men and women). In brief, mean differences were observed in all anthropome-
try and body composition parameters except fat mass (expressed in kilograms; Table 1).
In addition, mean CRF and CRFBW were higher in men compared to women (Table 1).
Concerning circulating cardiometabolic risk factors and blood pressure parameters, men
showed lower mean HDL-C, higher mean systolic BP, and higher cardiometabolic risk Z-
score values (Table 1). Finally, no mean differences were observed for HR and HRV-related
outcomes (Table 1). Regarding RMR ratios, we observed no mean differences in RMRBW
between men and women (21.2 ± 4.5 kcal/kg/day vs. 22.1 ± 3.4 kcal/kg/day; p = 0.299),
but mean differences were observed for the RMRFFM ratio (30.1 ± 5.0 kcal/kg/day vs.
36.4 ± 4.7 kcal/kg/day for men and women, respectively; p < 0.001).
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Table 1. Participants’ descriptive characteristics.

Men (n = 35) Women (n = 72)

Mean SD Mean SD p

Anthropometry and body composition
parameters

Weight (kg) 82 16 63 12 <0.001
Height (cm) 175 7 164 7 <0.001

BMI (kg/m2) 27 5 23 4 <0.001
Fat mass (kg) 25 11 24 8 0.558
Fat mass (%) 30 7 38 6 <0.001

Fat free mass (kg) 55 7 38 5 <0.001
Waist circumference (cm) 89 14 76 11 <0.001

Cardiorespiratory fitness parameters

CRF (ml/min) 3745 710 2528 433 <0.001
CRFBW (ml/[kg/BW]/min) 46.2 8.9 40.7 5.9 0.002

CRFFFM (ml/[kg/FFM]/min) 67.7 9.5 67.0 8.1 0.708
Circulating cardiometabolic risk factors and

blood pressure parameters

Glucose (mg/dl) 89 7 86 5 0.052
Insulin (UI/ml) 9 6 7 3 0.257
HOMA index 2 2 2 1 0.185

Total cholesterol (mg/dl) 161 32 167 32 0.431
HDL-C (mg/dl) 45 8 55 11 <0.001
LDL-C (mg/dl) 98 28 96 24 0.707

Triglycerides (mg/dl) 88 45 77 42 0.256
Systolic BP (mm Hg) 127 12 112 11 <0.001
Diastolic BP (mm Hg) 70 12 67 8 0.122

Cardiometabolic risk Z-score 1 0.60 0.70 −0.30 0.50 <0.001
Cardiometabolic risk Z-score 2 0.40 0.80 −0.20 0.50 0.002

Heart rate and heart rate variability
parameters

Mean HR (bpm) 67 11 69 9 0.537
RMSSD (ms) 59 34 62 32 0.694
SDNN (ms) 54 25 53 23 0.888
pNN50 (%) 33 23 36 21 0.513
HF (ms2) 7 1 7 1 0.380

HRV Z-score 0.01 1.00 0.10 1.00 0.700
Results are presented as mean and standard deviation (SD), and p-values from students t-test analyses. BMI: body
mass index; CRF: cardiorespiratory fitness (i.e., peak VO2 uptake); CRFBW: CRF relative to body weight (peak VO2
uptake/kg of body weight); CRFFFM: CRF relative to fat-free mass (peak VO2 uptake/kg of fat-free mass); HOMA:
homeostatic model assessment of insulin resistance index; HDL-C, high-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; BP, blood pressure; Cardiometabolic risk Z-scores 1 and 2: the first Z-score
included classical metabolic syndrome markers (glucose, triglycerides, HDL-C, BP, and waist circumference),
while the second included these classical metabolic syndrome markers and insulin related markers (insulin and
HOMA index) and total cholesterol and LDL-C Z-score values; HR, heart rate (in beats per minute [bpm]); RMSSD,
the square root of the mean of the sum of the squares of the R-R interval differences; SDNN, standard deviation of
normal R-R intervals; pNN50, the percentage of R-R intervals that show a difference higher than 50 milliseconds
(ms); HF, the power of the high-frequency band (HF: 0.15–0.4 Hertz); HRV Z-score: heart rate variability Z-score
including the RMSSD, the SDNN, the pNN50, and the HF time and frequency domain parameters’ Z-score values.

The intra-assessment variability, the individual CVs for VO2, VCO2, RER, and REE
for men and women, are depicted in Figure 2. In general terms, men had a higher intra-
assessment variability for all parameters. Men presented higher CVs for VO2 (adjusted
mean difference of 5.9 ± 1.5%; p < 0.001; Figure 2A), for VCO2 (adjusted mean difference
of 4.8 ± 1.3%; p < 0.001; Figure 2B), and for REE (adjusted mean difference of 3.4 ± 1.0%;
p = 0.001; Figure 2D), compared to women. No differences were observed for CV for
RER (adjusted mean difference of 0.59 ± 0.71%; p = 0.409; Figure 2C). Of note, some men
presented CVs for VO2, VCO2, and REE (only one participant for this parameter) > 35%
(Figure 2, red circles).
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Figure 2. Column plots for each coefficient of variation (CV, expressed as a percentage) of the data
separated by men (red circles) and women (blue circles). Results are presented as mean and standard
deviation, and all data points (i.e., individual values). CV were calculated for each individual and pa-
rameter, i.e., for the volume of oxygen consumption (VO2; Panel (A)), for the volume of carbon dioxide
production (VCO2; Panel (B)), for the respiratory exchange ratio (RER; Panel (C)), and for the resting
metabolic rate (RMR; i.e., resting energy expenditure [REE] estimated using the equation proposed
by Weir [30] and assuming no urinary nitrogen excretion; Panel (D)). * represents p-values < 0.05
derived from analysis of covariance (ANCOVA) to examine between sex (i.e., men vs. women)
adjusted mean differences while taking participants’ age into account as a confounder (i.e., ANCOVA
models adjusted for age). N = 35 and 72 for men and women, respectively.

Table 2 shows the results from multiple linear regression analyses between the CVs
obtained for the indirect calorimetry parameters and the anthropometric and body com-
position parameters, the CRF (expressed as absolute and relative values), circulating car-
diometabolic risk factors and BP, HR and HRV derived parameters, both cardiometabolic
risk Z-scores, and the vagal-related HRV score (all associations were performed separately
for men and women and adjusted for age). For men, we observed a negative association
between the CV for RER and vagal-related HRV parameters, specifically the RMSSD and
the pNN50 (β = −0.36 and −0.38, respectively; both p < 0.04; Table 2). Moreover, a positive
association was observed between the CV for RER and the mean HR (β = 0.41; p < 0.03)
for men. Concerning the women group, we observed no associations between the CVs for
VO2, VCO2, RER, and REE and the health-related parameters (all p > 0.05; Table 2).
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Table 2. Association between the intra-assessment resting metabolic rate (RMR) variability expressed as a coefficient of variation (CV) for each of the assessed
indirect calorimetry parameters, i.e., the CVs for volume of oxygen consumption (VO2), volume of carbon dioxide production (VCO2), respiratory exchange ratio
(RER), and resting energy expenditure (REE), and different health-related parameters.

CV for VO2 CV for VCO2 CV for RER CV for REE
Men Women Men Women Men Women Men Women

β p β p β p β p β p β p β p β p

Anthropometry and body composition parameters

Weight (kg) −0.100 0.558 0.103 0.851 −0.172 0.308 0.030 0.800 −0.158 0.351 −0.066 0.598 −0.154 0.362 −0.025 0.838
Height (cm) 0.070 0.695 0.067 0.580 0.067 0.709 −0.043 0.716 0.079 0.656 −0.123 0.317 0.134 0.453 −0.045 0.709

BMI (kg/m2) −0.143 0.393 0.054 0.661 −0.215 0.193 0.040 0.740 −0.195 0.240 −0.009 0.942 −0.214 0.197 −0.013 0.916
Fat mass (kg) −0.190 0.272 0.117 0.336 −0.244 0.155 0.064 0.594 −0.109 0.530 −0.065 0.603 −0.218 0.205 −0.022 0.855
Fat mass (%) −0.210 0.231 0.081 0.508 −0.235 0.177 0.083 0.493 −0.061 0.729 −0.037 0.769 −0.228 0.192 −0.021 0.865

Fat free mass (kg) 0.093 0.585 0.040 0.745 0.010 0.953 −0.033 0.784 −0.177 0.291 −0.040 0.751 0.012 0.943 −0.033 0.783
Waist circumference (cm) −0.086 0.613 0.126 0.301 −0.167 0.320 0.032 0.794 −0.257 0.122 −0.161 0.195 −0.256 0.125 −0.091 0.453

Cardiorespiratory fitness parameters

CRF (mL/min) 0.042 0.821 −0.017 0.894 −0.054 0.769 −0.048 0.698 −0.283 0.116 −0.006 0.964 −0.104 0.576 −0.060 0.623
CRFBW (mL/[kg/BW]/min) 0.082 0.650 −0.135 0.273 0.068 0.706 −0.085 0.489 −0.112 0.530 0.084 0.507 0.063 0.728 −0.038 0.758

CRFFFM (mL/[kg/FFM]/min) 0.005 0.978 −0.075 0.543 −0.038 0.835 −0.028 0.818 −0.177 0.325 0.049 0.696 −0.019 0.918 −0.048 0.693
Circulating cardiometabolic risk factors and blood

pressure parameters

Glucose (mg/dL) −0.158 0.390 0.071 0.560 −0.037 0.839 −0.014 0.907 0.260 0.153 −0.072 0.564 −0.025 0.893 −0.044 0.713
Insulin (UI/mL) −0.185 0.299 0.199 0.096 −0.253 0.150 0.098 0.408 −0.017 0.925 −0.020 0.872 −0.277 0.123 0.081 0.499

HOMA index −0.162 0.367 0.218 0.072 −0.140 0.436 0.159 0.186 0.022 0.904 −0.020 0.876 −0.157 0.391 0.127 0.289
Total cholesterol (mg/dL) 0.099 0.589 0.016 0.896 0.149 0.412 0.115 0.330 −0.056 0.761 0.004 0.974 0.030 0.873 0.074 0.528

HDL-C (mg/dl) 0.206 0.253 −0.148 0.224 0.182 0.313 −0.158 0.187 −0.119 0.514 −0.082 0.509 0.108 0.559 −0.162 0.177
LDL-C (mg/dl) 0.086 0.638 −0.014 0.906 0.132 0.468 0.092 0.435 −0.065 0.723 0.009 0.939 0.021 0.912 0.065 0.584

Triglycerides (mg/dl) −0.002 0.990 −0.057 0.640 −0.051 0.781 −0.067 0.575 0.091 0.623 −0.043 0.728 −0.083 0.659 −0.140 0.240
Systolic BP (mm Hg) 0.081 0.656 0.046 0.701 −0.013 0.944 0.069 0.562 −0.231 0.196 0.049 0.692 −0.046 0.800 0.073 0.542
Diastolic BP (mm Hg) −0.023 0.898 0.043 0.726 −0.148 0.395 −0.090 0.454 −0.235 0.170 −0.133 0.286 −0.264 0.123 −0.114 0.345

Cardiometabolic risk Z-score 1 −0.097 0.600 0.066 0.588 −0.152 0.409 0.046 0.701 −0.090 0.628 0.010 0.934 −0.229 0.218 −0.046 0.702
Cardiometabolic risk Z-score 2 −0.062 0.740 0.062 0.614 −0.129 0.487 0.070 0.562 −0.096 0.606 0.009 0.940 −0.195 0.296 −0.015 0.900

Heart rate and heart rate variability parameters

Mean HR (bpm) −0.145 0.443 −0.039 0.771 −0.069 0.717 0.054 0.680 0.407 0.025 0.088 0.521 0.086 0.651 0.066 0.616
RMSSD (ms) 0.085 0.643 0.030 0.823 −0.015 0.933 −0.012 0.928 −0.364 0.039 −0.071 0.602 −0.040 0.828 −0.021 0.873
SDNN (ms) 0.070 0.702 −0.046 0.730 −0.023 0.900 −0.028 0.834 −0.330 0.062 0.071 0.606 −0.074 0.686 −0.028 0.833
pNN50 (%) 0.121 0.503 0.120 0.362 0.010 0.955 0.023 0.862 −0.376 0.031 −0.082 0.550 −0.047 0.795 0.036 0.787
HF (ms2) 0.074 0.683 0.018 0.891 −0.013 0.943 −0.076 0.563 −0.288 0.101 −0.074 0.586 −0.033 0.855 −0.025 0.848

HRV Z-score 0.047 0.800 −0.008 0.949 0.002 0.989 −0.044 0.737 −0.231 0.201 −0.070 0.611 −0.003 0.988 −0.026 0.844

Results are presented as standardized β and p-values from multiple linear regression analyses (adjusted for age). BMI: body mass index; CRF: cardiorespiratory fitness (i.e., peak VO2
uptake); CRFBW: CRF relative to body weight (peak VO2 uptake/kg of body weight); CRFFFM: CRF relative to fat free mass (peak VO2 uptake/kg of fat-free mass); HOMA: homeostatic
model assessment of insulin resistance index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; BP, blood pressure; Cardiometabolic risk Z-scores
1 and 2: the first Z-score included classical metabolic syndrome markers (glucose, triglycerides, HDL-C, BP, and waist circumference), while the second included these classical metabolic
syndrome markers and insulin-related markers (insulin and HOMA index) and total cholesterol and LDL-C Z-score values; HR: heart rate (in beats per minute [bpm]); RMSSD: the
square root of the mean of the sum of the squares of the R-R interval differences; SDNN: standard deviation of normal R-R intervals; pNN50: the percentage of R-R intervals that shows a
difference higher than 50 milliseconds (ms); HF: the power of the high frequency band (HF: 0.15–0.4 Hertz); HRV Z-score: heart rate variability Z-score including the RMSSD, the SDNN,
the pNN50, and the HF time and frequency domains parameters’ Z-score values.
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4. Discussion

This study represents a first exploration of the intra-assessment RMR variability
(expressed as CV for VO2, VCO2, RER, and REE) exhibited by young and relatively healthy
men and women and its relationship with health-related parameters. Our results show
a remarkable intra-assessment RMR variability, which was significantly greater in men
than in women (Figure 2A,B,D). We also found that in men, the intra-assessment RMR
variability for the assessed RER variability (i.e., CV for RER) was negatively associated
with RMSSD and pNN50 and positively associated with mean HR (Table 2). However, in
women, no associations were observed between the intra-assessment RMR variability and
the different parameters included in the study.

Previous literature showed that certain anthropometric characteristics such as body
weight and height and body composition (e.g., fat-free mass) are directly related to energy
expenditure and RMR [41–43]. We should highlight that our groups were different in all
anthropometric and body composition parameters, except fat mass. In brief, men were
heavier, taller, and presented a higher FFM compared to women (Table 1). However, these
anthropometric differences may be explained by the fact that men presented an obese
phenotype (based on BMI and waist circumference values; Table 1). After accounting for
“body size”, the mean RMR of men was similar to that yielded by women, as suggested
by the RMRBW ratio (p = 0.299). However, after considering the FFM (i.e., RMRFFM), we
observed that men expended less energy during resting compared to women 30.1 ± 5.0 vs.
36.4 ± 4.7 kcal/kg/day (p < 0.001). Interestingly, this issue should be acknowledged, as
low RMR values could predispose to weight (re)gain [44], since the RMR component could
account for up to 70% of the 24-h energy expenditure of sedentary individuals [7]. On the
other hand, and regarding variation in EE components, a recent study by Halsey et al. [14]
observed that after comparing men and women of similar characteristics (i.e., same age,
height, and fat and fat-free masses), men presented a larger variation in different EE
components, including total EE, activity EE (the authors estimated this component as:
0.9 × total EE − basal EE), and basal EE. Thus, based on their results, it is reasonable
to hypothesize that morphometric and body composition parameters would have an
impact on the intra-assessment RMR variability (i.e., CV for VO2, VCO2, RER, and REE).
However, we did not observe a relationship between intra-assessment RMR variability and
morphometric and body composition parameters (Table 2). Notably, this lack of association
was consistent in both men and women.

Concerning CRF, no association was observed between the intra-assessment RMR vari-
ability and the CRF, regardless of whether it was expressed as absolute or relative (CRFBW
or CRFFFM) values (Table 2). As occurred previously for the anthropometric parameters,
the same results were observed for men and women. This absence of association could
be explained, at least partially, by the fact that our sample was composed of sedentary
individuals, thus this issue may have influenced our results to an unknown extent, as
regular exercise and/or physical activity directly influence several systems and organs [45].
Halsey et al. [14] suggested that the dimorphism (i.e., greater basal energy expenditure vari-
ability) observed in men compared to women could be influenced by adaptations produced by
exercise and training. Congruently, it is known that physical activity levels are more variable
in men than in women [46], and thus Halsey et al. [14] proposed that these adaptations may
partially drive the observed differences in variability between men and women.

Contrary to our expectations, no associations were observed between the intra-
assessment RMR variability and all the circulating cardiometabolic risk factors included in
our study. In this case, the absence of associations was consistent in men and women, as
were the systolic and diastolic BP assessments (Table 2). This could be partially explained
by the fact that participants were young and metabolically healthy according to their body
composition and cardiometabolic risk factor levels (Table 1). In fact, these results concur
with previous literature in which an exercise intervention carried out in relatively healthy
individuals did not induce changes in the assessed cardiometabolic risk factors [47,48],
as well as with the results observed in the ACTIBATE study [27], an RCT from which
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the data of the present study arose. Trying to overcome this possible limitation, we com-
puted two different cardiometabolic risk Z-scores (see Materials and Methods Section) to
further study the association between intra-assessment RMR variability and circulating
cardiometabolic risk factors. However, the results remained unaltered even after computing
both cardiometabolic risk Z-scores (Table 2).

Finally, we observed that certain vagal-related HRV-derived parameters, which are
widely employed as surrogate markers of cardiometabolic health [40], were inversely
associated with CV for RER in men (Table 2). In a previous study, we also observed that
HRV was differently associated with circulating cardiometabolic risk factors in men and
women [49]. In brief, we computed three different HRV ratios and studied whether they
were similarly associated with circulating cardiometabolic risk factors in young men and
women [49]. Interestingly, we observed that the HRV ratios were associated with the
circulating cardiometabolic risk factors in the group of young women but not in men.
Here, we observed a positive association between the intra-assessment RER variability
and HR and a negative association with vagal-related HRV parameters such as RMSSD
and pNN50 in men (Table 2). Previous literature showed that, while the subjects are in
the resting state (e.g., sitting or lying), those individuals exhibiting lower values of vagal-
related HRV parameters (e.g., low RMSSD values) present a higher risk of suffering from
cardiovascular diseases and an increased morality risk [39,50–52]. Moreover, literature
have also suggested that these individuals presenting higher HR values in the resting
state present a worse health status compared to these individuals presenting lower HR
values [34,40,53,54]. This is in line with a recent meta-analysis of prospective studies,
in which Aune et al. [55] observed an increased risk of suffering from cardiovascular
diseases and all-cause mortality in those subjects exhibiting greater resting HR values.
Therefore, our results show that men exhibiting a higher CV for RER presented a higher
cardiometabolic risk (as suggested by the directions of the associations mentioned above;
Table 2). To the best of our knowledge, this is the first study investigating whether the intra-
measurement RMR variability is related to HR and HRV in young men and women, and
therefore, we cannot perform comparisons between studies. Nevertheless, this relationship
is of interest as it could be related to metabolic flexibility, a parameter of interest due to
its possible relationship with cardiometabolic health [56]. In brief, metabolic flexibility is
considered the ability to shift from one substrate (e.g., carbohydrates) to another (e.g., fat)
based on fuel availability [56], an ability that is widely considered a cardiometabolic
health marker. In this regard, during prolonged fasting, the endogenous fat concentration
increases, stimulating fat oxidation [57]. Based on the fasting state of our participants
(12 h), they should theoretically be predominantly oxidizing fat, and thus, the expected
CV for RER should be low. However, we observed a high CV for RER in men (Figure 2),
which may indicate that they were alternating from one substrate to another, thereby
suggesting a putatively impaired metabolic flexibility in comparison to women. This
issue suggests that exhibiting a high CV for RER in resting conditions could be a potential
marker of cardiometabolic risk. Of note, about 90% of VO2 is coupled to adenosine
triphosphate production by the mitochondria, with nearly 19−28% being used by the
sodium–potassium pump [3], and approximately 20−30% being coupled to the basal
mitochondrial proton and electron leak [58]. Thus, variation in RMR between individuals,
populations, and/or species could be mostly attributed to differences in mitochondrial
function [59], although individual differences in humans are mostly explained by a different
mitochondrial O2 affinity [60]. Unfortunately, our study design precludes further study
of this issue and whether differences in mitochondrial O2 affinity might be mediating our
observations. Future studies involving different study populations (e.g., unhealthy vs.
healthy participants), study designs (e.g., muscle biopsies and mitochondrial respiration
analyses), and larger cohorts are needed to confirm our results.

Growing evidence also highlights the potential effect of the subjects’ dietary habits
on the RMR and the energy balance of the individuals [61–63]. In fact, diet seems not only
to modulate gut microbiota composition but also energy balance [63,64]. In line with this,
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a recent study that compared the effects of the Mediterranean diet—the dietary pattern
that likely resembles the diet followed by our study participants—vs. a vegan diet found
that the Mediterranean diet positively shaped salivary microbiota composition (higher
abundance of Subflava and Prevotella species) [61]. Specifically, Prevotella abundance was
inversely associated with RER, whereas Subflavan abundance was positively associated
with RMR [61]. Unfortunately, in their study, the authors did not analyze whether salivary
microbiota were further associated with any of the intra-assessment RMR variability pa-
rameters of our study [61]. Considering all these findings, future studies evaluating the
association between intra-assessment RMR variability and health-related factors should
also consider not only the impact of the diet followed by the individuals but also the
individuals’ gut and/or salivary microbiota composition as possible modulators of human
metabolism and energy balance.

Considering all of this together, and although no associations were observed between
the intra-assessment RMR variability and certain health-related factors included in our
present study (only associations with HR, RMSSD, and pNN50 were observed), we rec-
ommend its inclusion in future studies. In this regard, computing the CV for the gas
exchange outcomes is an easy and feasible procedure that does not require additional
measurements and, furthermore, can be retrospectively calculated. Thus, considering our
results and these advantages, the intra-assessment RMR variability expressed as CV should
be considered in the future as a potential marker for evaluating cardiometabolic health.
There were a few limitations to our study that deserve attention. The assessment of RMR
(thus, intra-assessment RMR variability) was performed using two different metabolic
carts equipped with a face mask. Therefore, the use of other metabolic carts or other gas
exchange collection systems (e.g., a canopy hood system) may influence the results. The
cross-sectional design of our study does not allow us to establish any cause-and-effect
relationships, thus, longitudinal studies in which the intra-assessment RMR variability
as well as the health-related parameters are measured at different time points within the
same participant are needed. Furthermore, it is important to consider that our study was
performed in young and relatively healthy adults; thus, studies carried out in other pop-
ulations (e.g., older populations, ill patients, etc.) and in larger cohorts to increase the
statistical power of the analyses are warranted. Finally, we assessed the heart rhythm using
a heart rate monitor instead of an electrocardiograph. However, we used the Polar RS800CX
heart rate monitor, which has been validated against the gold-standard technique (i.e.,
electrocardiography); in this regard, the heart rate monitor used in our study is considered
a valid instrument for the heart rhythm recording [65,66].

5. Conclusions

Young and relatively healthy men exhibit a remarkable intra-assessment RMR vari-
ability in terms of CV for VO2, VCO2, and REE that is greater than that observed for
women. Conversely, no differences in CV for RER were observed between men and women.
Moreover, in men, the intra-assessment RER variability was negatively associated with
RMSSD and pNN50 and positively associated with mean HR. Interestingly, in women, no
associations were observed between the intra-assessment RMR variability and the diverse
health-related parameters included. Our results suggest that intra-assessment RMR vari-
ability, and specifically the CV for RER, could be a potential marker of cardiometabolic
risk in young and relatively healthy men. The present study provides novel, preliminary
findings suggesting a sexual dimorphism in the association between intra-assessment RMR
variability and health-related factors in young, relatively healthy adults.
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