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Cell-free microbial culture
filtrates as candidate
biostimulants to enhance plant
growth and yield and activate
soil- and plant-associated
beneficial microbiota

Rafael Jorge León Morcillo1*†, Edurne Baroja-Fernández2*†,
Lidia López-Serrano1, Jesús Leal-López1,
Francisco José Muñoz2, Abdellatif Bahaji2,
Alberto Férez-Gómez1 and Javier Pozueta-Romero1*

1Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), Consejo Superior de
Investigaciones Científicas-Universidad de Málaga, Málaga, Spain, 2Instituto de Agrobiotecnologı́a
(IdAB), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Nafarroa, Spain
In this work we compiled information on current and emerging microbial-

based fertilization practices, especially the use of cell-free microbial culture

filtrates (CFs), to promote plant growth, yield and stress tolerance, and their

effects on plant-associated beneficial microbiota. In addition, we identified

limitations to bring microbial CFs to the market as biostimulants. In nature,

plants act as metaorganisms, hosting microorganisms that communicate with

the plants by exchanging semiochemicals through the phytosphere. Such

symbiotic interactions are of high importance not only for plant yield and

quality, but also for functioning of the soil microbiota. One environmentally

sustainable practice to increasing crop productivity and/or protecting plants

from (a)biotic stresses while reducing the excessive and inappropriate

application of agrochemicals is based on the use of inoculants of beneficial

microorganisms. However, this technology has a number of limitations,

including inconsistencies in the field, specific growth requirements and host

compatibility. Beneficial microorganisms release diffusible substances that

promote plant growth and enhance yield and stress tolerance. Recently,

evidence has been provided that this capacity also extends to

phytopathogens. Consistently, soil application of microbial cell-free culture

filtrates (CFs) has been found to promote growth and enhance the yield of

horticultural crops. Recent studies have shown that the response of plants to

soil application of microbial CFs is associated with strong proliferation of the

resident beneficial soil microbiota. Therefore, the use of microbial CFs to

enhance both crop yield and stress tolerance, and to activate beneficial soil

microbiota could be a safe, efficient and environmentally friendly approach to

minimize shortfalls related to the technology of microbial inoculation. In this

review, we compile information on microbial CFs and the main constituents
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(especially volatile compounds) that promote plant growth, yield and stress

tolerance, and their effects on plant-associated beneficial microbiota. In

addition, we identify challenges and limitations for their use as biostimulants

to bring them to the market and we propose remedial actions and give

suggestions for future work.
KEYWORDS

plant-microbe interaction, biostimulants, crop yield, stress tolerance, volatile organic
compounds, soil- and plant-associated microbiota
Introduction

Plant’ growth and development are influenced by

microorganisms occurring in the phytosphere that

communicate with plants by exchanging chemical signals

(Hartmann et al., 2014). Some of these microorganisms can

benefit host plants in a variety of ways, a scenario of utmost

interest when searching for new and efficient agricultural

approaches based on manipulation of plant-associated

microbiota. Beneficial microorganisms can directly promote

plant growth through mechanisms involving production of

bioactive compounds (e.g. phytohormones, volati le

compounds, peptides, etc.), dinitrogen fixation, solubilization

of minerals and organic material and enhancement of water and

nutrient uptake and use (Tsavkelova et al., 2006a; Rodrıǵuez

et al., 2007; Francis et al., 2010). These microorganisms can

also indirectly promote plant growth by antagonism/antibiosis

against pathogens, alleviation of stress caused by environmental

pollutants or other stressful abiotic conditions (e.g. drought and

salinity), or by triggering in the host plant enhanced defense

capacities against pathogen attack.

A decline in natural resources and the environmental

damage caused by practices relying on the excessive and

inappropriate application of fertilizers and depletion of soil

and water resources have become major limitations in

conventional agriculture. A more sustainable and eco-friendly

agriculture requires increases in product yield quality, while

reducing the negative environmental impact of agrochemicals

on soil fertility and biodiversity; potential solutions may be

fostered by microbial-based approaches (Calvo et al., 2014).

The aim of this review was to compile information on current

and emerging microbial-based fertilization practices,

particularly the use of microbial inoculants, microbial-derived

compounds and microbial culture filtrates (CFs), to promote

plant growth, yield and stress tolerance, and their effects on

plant-associated beneficial microbiota. In addition, we identify

challenges and limitations to bring microbial CFs to the market

as biostimulants compliant with scientific requirements of the

official regulations for fertilizer products.
02
Soil inoculation of beneficial
microorganisms: limitations of a
widely used practice to enhance
crop yield and/or protect plants
from (a)biotic stresses in an eco-
friendly manner
One environmentally safe and sustainable practice to promote

plant growth, increase crop yield and/or enhance stress tolerance

is based on the inoculation of soil with plant growth promoting

microorganisms (PGPM) (Miransari, 2011; Calvo et al., 2014;

Ahmad et al., 2018; Backer et al., 2018; Fiorentino et al., 2018;

Zhong et al., 2019; Noceto et al., 2021). Microbial inoculants

consist of one or a reduced number of microbial strains which are

grown separately or in mixed culture fermentation, concentrated

and then formulated with an appropriate carrier into the final

product form. Despite its undisputable success (Li et al., 2022), the

technology based on PGPM inoculation has faced a number of

limitations and inconsistences that are summarized in Table 1.

First, the efficiency of inoculation depends on soil pH,

temperature and nutrient content, interaction with the crop

species (host specificity), competition with native strains and

compatibility between the microbial inoculants (Svenningsen

et al., 2018; Emmanuel and Babalola, 2020). Second,

development of multi-strain bioinoculants on a large-scale level

is difficult since each co-inoculant requires specific culture media

and physical-chemical conditions (Reddy and Saravanan, 2013).

Third, inoculation with beneficial microorganisms without a

proper carrier or formulation may result in a rapid decline in

the applied microbial population, as the inoculated microbes must

compete with the often better-adapted native microbial

community (Bashan et al., 2014; Cardinale et al., 2015; Parnell

et al., 2016). For instance, the abundance in soil of some well-

known beneficial microbes such as Bacillus amyloliquefaciens

FZB42 and Trichoderma harzianum falls below detection limits

just a few weeks after application (Papavizas, 1982; Kröber et al.,

2014; Oskiera et al., 2017). Although seed coating with beneficial
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microorganisms may be a suitable option to maintain microbial

survival in soil over a longer period, an appropriate coating

requires a delicate balance between coating materials, microbe

and compatible chemistry, which is not always easy to obtain

(Glare et al., 2012; Parnell et al., 2016). Moreover, an adequate

delivery system for microorganisms in the soil is also required,

which represents a major challenge to industry since it involves

mass production, formulation, and application of the beneficial

microbes (Ravensberg, 2011; Glare et al., 2012; Vassilev et al.,

2020). Fourth, some PGPM including some Pseudomonas spp. are

opportunistic pathogens (Belimov et al., 2007; Sitaraman, 2015)

and thus their use is associated with a pathogenicity risk. Fifth, the

growth-promoting effect of inoculating beneficial microorganisms

strongly depends on the nutritional status of the plant in relation

to the extent that they can be rendered ineffective in promoting

plant growth (Hoeksema et al., 2010; Pineda et al., 2013). Thus,

plants respond better to mycorrhizal inoculation when grown in

soils with high microbial diversity and when subjected to

phosphorous limitation (Hoeksema et al., 2010). For instance,

Colletotrichum tofieldiae promotes growth in Arabidopsis thaliana

only under phosphorus deficiency conditions (Hiruma et al.,

2016). Inoculation with the growth-promoting rhizobacterium

B. amyloliquefaciens GB03 can have deleterious effects on plant

growth under phosphate deficiency conditions, due to an
Frontiers in Plant Science 03
activation of the phytohormone-mediated immune response

modulated by a phosphate-starvation response (Morcillo et al.,

2020). Sixth, the PGPM inoculation efficiency largely depends

upon production of bioactive compounds by the inoculated

microbes, which in turn strongly depends on abiotic and biotic

environmental contexts. Therefore, it can never be guaranteed

that inoculation of a particular microbe will result in the

production of compounds with plant growth-promoting or

stress tolerance-conferring properties. Seventh, most of soil and

plant-associated microorganisms cannot be cultured in reactors.

Eighth, inoculation of non-native, allochthonous microorganisms

is known to produce strong shifts in microbial communities

(Schmidt et al., 2014; Diagne et al., 2018; Berg et al., 2021), with

unpredictable and unwanted effects (Hart et al., 2018). For

instance, non-native mycorrhizal fungal commercial inoculants

may lead to undesirable promotion of exotic over native plant

species (Burkle and Belote, 2015; Middleton et al., 2015; Hart

et al., 2018).

Some of the constraints of the classic single and multi-

strain bioinoculation approach can be circumvented by

holistic approaches based on the use of SynComs (for

Synthetic microbial Communities), which has emerged as

a new paradigm not only to better understand plant-

microbe interactions, but also to benefit from them
TABLE 1 Limitations of soil inoculation of PGPM and application of microbial-derived compounds and microbial culture filtrates.

PGPM
inoculation

Application of microbial-
derived compounds

Application of microbial
culture filtrates

Efficiency depends on environmental factors, host compatibility
and competition with native microbes

x

Efficiency depends on microbial culture composition and age x x x

Difficulty to develop multi-strain bioinoculants x

Manner of application: necessity for a proper carrier or
formulation

x x x

Pathogenicity risk to indigenous microbial communities and/or
plants

x

Biostimulant effect depends on plant nutritional status x

Scaling-up: difficulty to culture plant-associated microbes in
reactors

x x x

Long and difficult process to isolate, identify and purify the
beneficial compound

x

Dose-dependence response x x

Complex synergic and cooperative interactions between different
compounds to promote plant growth

x

Contradictory effect on different plant species x

Antagonistic effects on native microbiota x

High production cost x x

“X” highlights the limitation of each microbial-derived method.
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(Castrillo et al., 2017; Durán et al., 2018; Kwak et al., 2018;

Carrión et al., 2019; Marin et al., 2021). SynComs are based on

the use of metagenomic tools to determine the structure and

potential function of plant-associated microbial communities,

followed by the isolation and co-culturing of multiple locally

adapted native microorganisms. Establishment and survival of

inoculated SynComs in the field are higher than that of single or

multi-strain bioinoculations, as SynComs are capable of

competing with the pre-existing microbiota present in the

plant or soil (Liu et al., 2022; Shayanthan et al., 2022).

However, despite the obvious theoretical advantages of

application of SynComs designed “à la carte” to mimic the

role of a particular microbiome, this technology still has some

constraints, including technical limitations in the correct

metagenomic identification of the isolated microorganisms

(Liu et al., 2020), development of SynComs inoculants at a

large-scale industrial level, dependence upon the nutritional

status of the plant, maintenance of the stability and function

of SynComs over time under changing environmental

conditions in open field, etc.
Application of microbial-derived
compounds: A step to minimize
shortfalls related to PGPM
inoculation technology

Depending on environmental conditions, microorganisms

can release diffusible compounds including phytohormones,

siderophores, proteins, peptides, sugar-derived molecules,

amino acids, exopolysaccharides, organic acids and volatile

compounds that alter metabolism, enhance photosynthesis,

promote plant growth, confer resistance to (a)biotic stresses

and cause massive lateral root formation, thus improving the

root´s exploratory capacity for nutrients and predisposing plants

for colonization and infection by microbes (Ryu et al., 2003;

Arkhipova et al., 2005; Tsavkelova et al., 2006b; Spaepen et al.,

2007; Berg, 2009; Contreras-Cornejo et al., 2009; Ortıź-Castro

et al., 2009; Chanclud and Morel, 2016; Saha et al, 2016;

Sánchez-López et al, 2016; Egamberdieva et al., 2017; Garcıá-

Gómez et al., 2019; Morcillo and Manzanera, 2021). Some of

these compounds are capable of activating soil microbial activity

(Rodrıǵuez-Morgado et al., 2017; Macias-Benitez et al, 2020). To

address limitations related to PGPM inoculation technology, the

application of small quantities of microbial bioactive compounds

in pure form, either as alternatives, supplements or

complements to microbial cells, has been proposed as a

possible approach for improving crop productivity and stress

tolerance while reducing agrochemical use (Kanchiswamy et al.,

2015; Naamala and Smith, 2021). This approach offers reliability

and the easy control of the quantity and quality of a compound

of interest (Table 1). Furthermore, compared with the PGPM
Frontiers in Plant Science 04
inoculation technology, the use of pure microbial compounds

can benefit a broader range of crops and minimize pathogenicity

risk (Table 1). Although the stability of many of these

compounds depends on abiotic environmental factors

(temperature, salt concentration in soil, pH, etc.) and biotic

factors (they could be used by native microorganisms as nutrient

source), their rapid perception by plants can prime them for

growth promotion. However, there are quite a number of

limitations associated with the use of microbe-derived

compounds including time-consuming processes of isolation,

identification and purification of bioactive compounds, dose-

dependence of the response, complex synergic and cooperative

interactions between different compounds to promote plant

growth, contradictory effects of the same compound on

different plants, antagonistic effects on beneficial microbiota,

etc. (Naamala and Smith, 2021) (Table 1).
Application of cell-free microbial
culture filtrates: A sustainable and
environmentally friendly approach
to activate the soil- and plant-
associated beneficial microbiota and
cope with constraints related to
PGPM inoculation and application of
microbial-derived compounds?

Some of the limitations related to the use of microbe-derived

compounds could be circumvented by the use of cell-free filtrates

of beneficial bacterial and fungal cultures, which are mixtures of

phytohormones, siderophores, proteins, peptides, amino acids,

exopolysaccharides, organic acids, volatile compounds, etc.

derived from broth cultures processed through centrifugation or

filtration (i.e. micro/ultra/nanofiltration and inverse osmosis) for

cell removal (Pellegrini et al., 2020). Agronomic studies have

provided evidence that application of these complex cocktails is an

efficient approach to promote plant growth and enhance yield and

stress tolerance in a wide range of crops while reducing the use of

agrochemicals. Notably, recent studies have shown that cell-free

CFs of phytopathogens can also be used to enhance yield and

stress tolerance (Baroja-Fernández et al., 2021 and unpublished

results). Table 2 summarizes details of the studies on effects of

microbial CF application. Most of these studies indicated that

phytohormones occurring in the microbial CFs (especially indole

acetic acid (IAA)) are major determinants of the response of

plants to these extracts. However, some studies indicated that

microbial amino acids, peptides, extracellular proteins,

lipopeptides and siderophores could also play important roles in

the response of plants to fungal CFs. For instance, Buensateai et al.

(2013) showed that application of Bacillus sp. strain CaSUT007

CFs enriched in extracellular proteins increased root and shoot
frontiersin.org
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TABLE 2 Studies on effects of microbial CF application on plant.

Microbial
species

Culture
medium

Plant
species

Application
manner

Effect on plant Mechanism/
mode of
action

Reference

Bacterial species

Azotobacter
vinelandii

Beneficial Specific medium
Solanum
lycopersicum

Root irrigation
with culture
supernatants

Increase shoot dry weight
and fruit production

CFs contain
auxins,
gibberellins and
cytokinin-like
substances

Azcón and
Barea (1975)Azotobacter

beijerinckii

Streptomyces
olivaceoviridis

Beneficial
Starch-casein
medium

Triticum
aestivum

Pretreatment of
wheat grain
with CFs

Enhance growth vigor and
crop yield

CFs contain
auxins,
gibberellins and
cytokinin-like
substances

Aldesuquy
et al. (1998)

Streptomyces
rimosus

Streptomyces
rochei

Streptomyces
atroolivaceus

Beneficial MBGM
Triticum
aestivum

Pretreatment of
wheat grain
with CFs

Increases the shoot length,
fresh and dry mass, root
fresh and dry mass but
suppresses the depth of the
root system

Effects probably
caused by
activity of plant
growth
regulators

El-Shanshoury
(1989)

Azospirillum
brasilense

Beneficial

NFb

Oryza sativa
CFs applied in
hydroponic
medium

Enhance root growth and
development

CFs contain
IAA

El-Khawas and
Adachi (1999)Klebsiella

pneumoniae
NFDM

Bacillus
amyloliquefaciens
(FZB24, FZB42,
FZB45) Beneficial GNB Zea mays

Coleoptiles
incubated with
CFs

Enhance length growth
CFs contain
IAA

Idris et al.
(2004)

Bacillus subtilis
FZB37

Bacillus
amyloliquefaciens
KPS46

Beneficial GNB Glycine max
Pretreatment of
seeds with CFs

Increases root and shoot
length and plant biomass

IAA and
extracellular
proteins

Buensanteai
et al (2008)

Streptomyces
coelicolor

Beneficial GYMA broth
Triticum
aestivum

Seed coating
with CFs

Improve plant growth
under water-stress
conditions

CFs contain
IAA

Yandigeri et al.
(2012)

Streptomyces
olivaceus

Streptomyces
geysiriensis

Methylobacterium
spp.

Beneficial AMS
Triticum
aestivum

Pretreatment of
seeds with CFs

Enhances seed germination
and seedling growth

CFs contain
CKs

Meena et al.
(2012)

Bacillus sp.
CaSUT007

Beneficial GNB
Manihot
esculenta

Preteatment of
stakes with CFs

Increases root and shoot
lengths

IAA and
extracellular
proteins

Bulgarelli et al.
(2013)

Bacillus subtilis
EA-CB0575

Beneficial TSB, SBM Musa spp.
Pretreatment of
germinated
seeds with CFs

Increases shoot length and
dry weight

CFs contain
Lipopeptides
and
siderophores

Posada et al.
(2016)

Burkholderia
seminalis

Beneficial Specific medium
Solanum
lycopersicum

In vitro
application of
CFs

Increases seed germination
CFs contain
IAA

Tallapragada
et al. (2015)

(Continued)
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TABLE 2 Continued

Microbial
species

Culture
medium

Plant
species

Application
manner

Effect on plant Mechanism/
mode of
action

Reference

Enterococcus
faecium

Neutral LB
Cucumis
melo

Soil irrigation
with CFs

Increases shoot and root
lengths, plant fresh weight,
and chlorophyll content

CFs contain
IAA and GAs

Lee et al.
(2015)

Streptomyces sp. Beneficial TYB
Solanum
lycopersicum

Soil irrigation
with CFs

Enhances plant growth
Effects probably
caused by IAA
production

Kaur et al.
(2019)

Azospirillum
brasilense
(Ab–V5, Ab–V6)

Beneficial DYGS Glycine max
Spraying of
leaves or seeds

Increase root nodulation
and root development

Indolic
compounds

Rondina et al.
(2020)

Pectobacterium
carotovorum

Pathogenic LB
Arabidopsis
thaliana

Soil irrigation
with CFs

Increase shoot and root
biomass but not production

Unkwnon
Ávila and
Poveda (2022)Pseudomonas

syringa

Fungal species

Piriformospora
indica

Beneficial Specific medium Zea mays
Root irrigation
with CFs

Enhances shoot but not
root growth

Unknown
Varma et al.
(1999)

Piriformospora
indica

Beneficial M+ medium
Arabidopsis
thaliana

In vitro
application of
CFs

Induces root branching

Production of a
diffusible factor
that is probably
IAA

Sirrenberg
et al. (2007)

Sebacina
vermifera

Beneficial MYP
Panicum
virgatum

Pretreatment of
seeds with CFs

Enhances seed germination
and biomass production

Unknown
Ghimire et al.
(2009)

Cladosporium sp.
MH-6

Beneficial Czapek’s broth
Cucumis
sativus

In vitro
application of
CFs

Increases shoot and root
lengths and plant dry and
fresh weight

CFs contain
GAs

Hamayun et al.
(2010)

Penicillium
minioluteum
LHL09

Beneficial Czapek’s broth
Oryza sativa
(waito-C)/
Glycine max

In vitro
application of
CFs

Promotes plant growth and
nitrogen assimilation, with
and without sodium
chloride-induced salinity

CFs contain
GAs

Khan et al.
(2011)

Piriformospora
indica

Beneficial
Aspergillusminimal
medium

Helianthus
annus L

Root irrigation
with CFs

Increases plant growth and
seed production. Increases
oil content in seeds

Unknown
Bagde et al.
(2011)

Shimizuomyces
paradoxus

Pathogenic PDB
Brassica
napus

Pretreatment of
seeds with CF
and foliar spray

Increases seed germination
and seedling growth

Unknown
Sung et al.
(2011)

Penicillium
citrinum
KACC43900

Beneficial Czapek’s broth
Carex
kobomugi

Injection/foliar
spray with CFs

Increases leaf blade length,
chlorophyll and carotenoids
contents and
photosynthesis

Unknown
Hwang et al.
(2011)

Fusarium
oxysporum

Pathogenic CYA
Cajanus
cajan

Pretreatment of
seeds with CF

Increases seed germination
and promotes plant growth

Unknown
Jalander and
Gachande
(2012)

Penicillium sp. Beneficial Czapek’s broth
Suaeda
japonica

In vitro
application of
CFs

Increases plant lenght
CFs contain
GAs

You (2012)

Trichoderma
virens

Beneficial Richard’s solution
Capsicum
annuum

Seed coating
with CFs

Enhance seed germination
and plant vigor

Unknown
Rahman et al.
(2012)Trichoderma

pseudokoningii

(Continued)
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TABLE 2 Continued

Microbial
species

Culture
medium

Plant
species

Application
manner

Effect on plant Mechanism/
mode of
action

Reference

Trichoderma
harzianum

Penicillium sp.
PNF2

Beneficial PDB
Sesamum
indicum

Pretreatment of
seeds with CFs

Increases shoot length and
fresh weight

CFs contain
IAA

Radhakrishnan
et al. (2013)

Fusarium
oxysporum Pathogenic LGN

Solanum
lycopersicum

Pretreatment of
seeds with CFs

Inhibit seed germination
and plant growth

CFs contain
toxins

Raithak and
Gachande
(2013)Alternaria solani

Penicillium spp.
Beneficial/
Pathogenic

ME
Triticum
aestivum

Pretreatment of
seeds with CFs

Increases seed germination
and plant biomass

Unknown
Khokhar et al.
(2013)

Piriformospora
indica

Beneficial
Aspergillusminimal
medium

Aristolochia
elegans

Soil irrigation
with CFs

Increases shoot and root
length and fresh and dry
weight

Unknown
Bagde et al.
(2013)

Trichoderma spp. Beneficial ME
Cicer
arietinum

Pretreatment of
seeds with CFs

Increases seed germination
and promote plant growth

Unknown Ali et al. (2014)

Penicillium spp.
(NICS01, DFC01)

Beneficial PDB
Sesamum
indicum

Pretreatment of
seeds with CFs

Increase shoot and root
length and fresh and dry
weight

Amino acids
Radhakrishnan
et al., 2014

Pseudomonas sp. Beneficial King´s B medium
Coriandrum
sativum

Pretreatment of
seeds with CF
and foliar spray

Increases fresh and dry
weight and oil production

Unknown
Hegazi et al.
(2015)

Alternaria
alternata Pathogenic Czapek’s broth

Triticum
aestivum

Pretreatment of
seeds with CF
and foliar spray

Increase seed germination
and plant growth

Unknown
Bhajbhuje
(2015)

Alternaria solani

Penicillium
nordicum

Pathogenic CYA
Sorghum
bicolor

Pretreatment of
seeds with CFs

Inhibit seed germination
CFs contain
mycotoxin

Vankudoth
et al. (2015)

Penicillium
citrinum,

Penicillium
chrysogenum

Penicillium
commune

Penicillium
verrucosum

Penicillium
camemberti

Penicillium
digitatum

Penicillium
oxalicum

Beneficial PDB
Pennisetum
glaucum

Pretreatment of
seeds with CFs

Increases seed germination
and seedling vigor

Unknown
Murali and
Amruthesh
(2015)

Fusarium
tricinctum RSF-4L

Pathogenic Czapek’s broth
Oryza sativa
L. cv.
Dongjin

In vitro
application of
CFs

Increase shoot and root
lengths, plant fresh weight,
and chlorophyll content

CFs contain
IAA

Khan et al.
(2015)Alternaria

alternata RSF-6L

(Continued)
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TABLE 2 Continued

Microbial
species

Culture
medium

Plant
species

Application
manner

Effect on plant Mechanism/
mode of
action

Reference

Purpureocillium
lilacinum

Beneficial Specific medium
Solanum
lycopersicum

Pretreatment of
seeds with CFs/
Soil irrigation
with CFs

Increases seed germination
and promotes plant growth

CFs contain
IAA

Cavello et al.
(2015)

Fusarium
oxysporum

Pathogenic Czapek’s broth

Triticum
aestivum
Hordeum
vulgare
Solanum
tuberosum

Pretreatment of
seeds with CFs

Inhibit seed germination
and plant growth

Unknown Ogórek (2016)

Fusarium
sulphureum

Gibberella
avenacea

Gibberella
intrincans

Trichoderma
harzianum WKY1

Beneficial Czapek’s broth Shorgum
Soil irrigation
with CFs

Increase shoot and root
lengths, plant fresh weight,
and total phenol content

CFs contain
IAA

Saber et al.
(2017)

Aspergillus
fumigatus TS1

Beneficial Czapek’s broth
Oryza sativa
(waito-C)

Application to
the apical
meristem

Enhance chlorophyll
content, root-shoot length,
and biomass production

CFs contain
IAA and GAs

Bilal et al.
(2018)Fusarium

proliferatum BRL1

Fusarium solani

Pathogenic

Richard’s solution

Solanum
lycopersicum
Brassica rapa
Raphanus
sativus
Trigonella
melongena

Pretreatment of
seeds with CFs

Enhances seed germination Unknown

Parveen et al.
(2019)

Trichothecium
roseum

Inhibit seed germination
CFs contain
mycotoxins

Aspergillus niger

Cladoporium
herbarum

Alternaria
alternata

Penicillium
chrysogenum

Penicillium
expansum

Trichoderma spp.

Beneficial Enhance seed germination Unknown
Trichoderma
asperellum

Trichoderma
harzianum

Piriformospora
indica

Beneficial CM
Cichorium
intybus

Foliar spray
Enhances growth and
morpho-physiological traits

Unknown
Rashnoo et al.
(2020)

Trichoderma
harzianum,

Beneficial

MS
Capsicum
annuum

Soil irrigation
with CFs and
DEs

Stimulate root growth and
enhance fruit yield

CFs produce
changes in
plant-associated
microbiota

Baroja-
Fernández
et al. (2021)

Alternaria
alternata

Pathogenic
Penicilium
aurantiogriseum

(Continued)
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lengths and total biomass of cassava stalks. Furthermore, Posada

et al. (2016) showed that application of B. subtilis EA-CB0575 CFs

enhanced dry weight of banana plants by the action of

lipopeptides and siderophores. Moreover, Buensanteai et al.

(2008) showed that extracts of B. amyloliquefaciens strain

KPS46 promoted soybean growth through the actions of the

antibiotic surfactin and proteins secreted by the bacterium,

including auxin biosynthetic enzymes, proteins related to

phosphate solubilization and nitrogen metabolism, antifungal

lipopeptides and proteins related to protection against oxidative

stress. Also, CFs enriched in amino acids secreted by several

Penicillium spp. enhanced shoot and root length as well as the

biomass of sesame plants under well-irrigated and drought

conditions (Radhakrishnan et al., 2014).

Baroja-Fernández et al. (2021) have recently shown that soil

application of CFs of beneficial and phytopathogenic fungi

cultured in Murashige & Skoog (MS) medium promoted root

growth, enhanced fruit yield and altered composition of fruits of

pepper plants. In the same study, the authors found that CFs of

the different fungal species possessed volatile organic compounds
Frontiers in Plant Science 09
(VOCs) that, once distilled and applied to soil, promoted

responses similar to those triggered by direct application of the

fungal CFs. These findings indicated that (i) CFs of both beneficial

and phytopathogenic fungi can be used to improve crop yield and

(ii) VOCs mediate the crops’ responses to fungal CF application.

Some bioactive VOCs present in the fungal CFs are shown in

Table 3. As further discussed below, it is conceivable that some

these compounds (particularly acetic acid) are involved in the

crop response to soil application of CFs. Notably, high-

throughput sequencing analyses revealed that soil application of

fungal CFs and distillates (DEs) promoted similar changes in the

soil microbiota, and promoted the proliferation of the same

beneficial microbial taxa (Baroja-Fernández et al., 2021)

(Table 4). Collectively, the findings of Baroja-Fernández et al.

(2021) indicated that (i) CFs of both beneficial and fungal

phytopathogens can be used to activate the soil and plant-

associated beneficial microbiota, and (ii) microbial VOCs

mediate the plants’ responses to soil application of fungal CFs

through mechanisms involving stimulation of the beneficial soil

microbiota as schematically illustrated in Figure 1.
TABLE 2 Continued

Microbial
species

Culture
medium

Plant
species

Application
manner

Effect on plant Mechanism/
mode of
action

Reference

Gibberella
intermedia

Beneficial Czapek’s broth
Oryza sativa
(waito-C)

Application to
the apical
meristem

Increases shoot growth
CFs contain
GAs

Khalmuratova
et al. (2021)

Fusarium
oxysporum

Pathogenic PDB
Arabidopsis
thaliana

Soil irrigation
with CFs

Increase shoot and root
biomass but not production

Unkwnon
Ávila and
Poveda (2022)

Pythium
irregulare

Rhizoctonia solani

Chaetomium
globosum

Beneficial ME
Cichorium
intybus

Soil irrigation
with CFs

Increase of biomass, shoots
and roots length, and leaf
area

Increases
phenylalanine
pathway and
chicoric acid Spinelli et al.

(2022)

Minimedusa
polyspora

Increases
phenylalanine
pathway and 4-
OH-benzoate

Geotrichum
candidum

Neutral PDB
Vigna
radiata

Pretreatment of
seeds with CFs

Increases seed germination
and promotes plant growth

CFs contain
IAA

George et al.
(2019)

Saccharomyces
cerevisiae

Beneficial Sucrose
Coreandrum
sativum

Pretreatment of
seeds with CF
and foliar spray

Increases fresh and dry
weight and oil production

Unknown
Hegazi et al.
(2015)

IAA, Indole-3-acetic acid; GAs, Gibberellins; AMS, Ammonium mineral salt medium supplemented with methanol; CM, Complex medium; CYA, Czapek yeast medium; GNB,
Glucose-enriched nutrient broth; GYMA broth, Glucose, yeast extract, malt extract; LB, Luria-Bertani broth; LGN, Liquid glucose nitrate medium; MBGM, Modified bouillon glycerol
medium; ME, Malt extract broth; MS, Murashige and Skoog medium; MYP broth, Malta Yeast Peptone broth; PDB, Potato Dextrose Broth; NFb, Nitrogen-free malate; NFDM,
Nitrogen-free dextrose; SBM, Sporulation Bacillus Medium; TSB, Trypticase Soy Broth; TYB, Tryptone-Yeast Extract Broth. Specific medium, see publication for details.
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Challenges and limitations of the
microbial CF technology

Despite having great potential as a strategy for improving

productivity in a sustainable and eco-friendly manner, the

technology based on microbial CF application is still at its infancy

and faces important challenges and limitations before it can be

widely used (Table 1). First, one challenging aspect of the microbial

CF-based technology is the manner of application of the extracts,

especially in cases in which bioactivity of CFs is based on

compounds with high evaporation rates such as VOCs. Most

studies on the effect of application of microbial CFs on plants are

based on seed coating and soil applications of CFs (Table 2), but

other means of delivery, should be explored to develop appropriate

and durable methods that can be used in the field. Second, another

challenging aspect of the microbial CF-based technology is the

scaling up from lab-scale shake flasks to stirred tanks-based pilot-

scale production (Figure 2). This also applies to the technologies of

soil inoculation of beneficial microorganisms and application of

microbial-derived compounds. Overcoming this limitation is not an

easy task due to marked differences in hydromechanical properties

and nutrients/oxygen gradients between flasks and large
Frontiers in Plant Science 10
fermentors. For successful scaling up, key parameters affecting

heat, momentum and mass transfer should be considered

(Trujillo-Roldán et al., 2013). Moreover, some physical

parameters should be combined to obtain dimensionless numbers

intended to be kept constant during the scaling up process. Third,

there are no studies on techno-economic viability of large-scale

production of microbial CFs involving (1) propagation of the

microbial strain until desired inoculum concentration is reached,

(2) fermentation of the microbial strains in large, industrial size

fermentors until desired cell concentration is reached and (3)

microbial cell removal. For the first two steps, some techno-

economic models have been developed for typical liquid

biofertilizer production plants (Pérez-Sánchez et al., 2018). These

models can be used to investigate the main factors that affect the

production process, in order to optimize plant productivity and

reliability, and also to reduce costs. Fourth, the limitations to

microbial CF use are closely related to the downstream processes

for production. However, there are no studies on the formulation

and shelf life of microbial CFs and on allocation of fitness costs for

resources for the large-scale synthesis of these extracts. Clearly, the

formulation of new products ready to be commercialized requires

further scientific and industrial up-scaling studies. Fifth, the effects
TABLE 3 List of potentially relevant bioactive VOCs present in at least one of the fungal CFs used by Baroja-Fernández et al. (2021) and their
effects on plant.

VOCs Effect on plant Reference

1-butanol-3-
methyl

Enhances fresh shoot and root biomass and chlorophyll content in Arabidopsis and increases both root length and
thickness in Agave salmiana.

Camarena-Pozos et al.
(2019)

Increases size, fresh weight and total chlorophyll content in Arabidopsis Lee et al. (2019a)

1-butanol-2-
methyl

Increases size, fresh weight and total chlorophyll content in Arabidopsis Lee et al. (2019a)

1-hexanol Promotes growth of Arabidopsis Blom et al. (2011)

benzaldehyde Increases the volatile oil accumulation in Atractylodes lancea Zhou et al. (2016)

2-phenylethyl
alcohol

Enhances fresh shoot and root biomass, chlorophyll content, in Arabidopsis and increases both root length and
thickness in A. salmiana

Camarena-Pozos et al.
(2019)

acetic acid
Enhances drought tolerance in Arabidopsis, rapeseed, maize, rice and wheat plants Kim et al. (2017)

Increases root biomass and photosynthesis in mung bean Rahman et al. (2019)

acetoin
Increases root length, shoot length and dry weight in L. sativa seedlings Fincheira et al. (2017)

Induces stomatal closure in Arabidopsis and Nicotiana benthamiana Wu et al. (2018)

2,3-butanediol

Promotes growth of Arabidopsis Ryu et al. (2003)

Induces stomatal closure in Arabidopsis and N. benthamiana Wu et al. (2018)

Increases root length, shoot length and dry weight in L. sativa seedlings Fincheira et al. (2017)

2-heptanone Promotes the growth of Arabidopsis seedlings Jiang et al. (2019)

2-nonanone Increases root length, shoot length and dry weight in L. sativa seedlings Fincheira et al. (2017)

acetophenone Elicits the increase of biomass in Arabidopsis
Camarena-Pozos et al.
(2019)

cis-thujopsene Induces lateral root formation of Arabidopsis seedlings and poplar plantlets Ditengou et al. (2015)
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of CFs on plants and associated microbiota may vary depending on

the plant and microbial species and ecotypes as well as on media

composition, age and growth conditions of the microbial culture.

Thus, whereas Khokhar et al. (2013) reported that application of

CFs of several Penicillium spp. cultured for 15 days at 20 °C in malt

extract broth exerted a positive effect on wheat germination and

growth, Vankudoth et al. (2015) reported that application of CFs of

the same fungal species cultured for 12 days at 27 °C in CYA broth

exerted a negative effect on sorghum germination. CFs of the

phytopathogen Fusarium oxysporum grown in Czapek-Dox and

potato dextrose liquid media exerted a negative effect on seed

germination and growth of cucumber and garden cress (Lepidium

sativum L.) plants (Melo and Piccinin, 1999; Ogórek, 2016),

whereas application of CFs of F. oxysporum cultured for 5 days at

25 °C in CYA broth enhanced pigeonpea (Cajanus cajan L.) seed

germination and growth (Jalander and Gachande, 2012).

Application of CFs of the fungal phytopathogen A. alternata

cultured in Czapek broth and MS media promoted growth of rice

and wheat plants and enhanced pepper fruit yield (Bhajbhuje, 2015;

Khan et al., 2015; Baroja-Fernández et al., 2021), whereas

application of CFs of the same species cultured in Richard´s

solution exerted a negative effect on germination of seeds of
Frontiers in Plant Science 11
several crop plants (Parveen et al., 2019). In many instances, the

growth inhibitory effect of the CFs of phytopathogens was due to

toxins released by the microorganism to the culture medium

(Raithak and Gachande, 2013; Vankudoth et al., 2015; Parveen

et al., 2019). Sixth, above threshold levels, many microbial

compounds are toxic to plants. Therefore, excess application of

microbial CFs has the potential to exert a negative effect on plants.

However, after due assessment of the dose-response effect on

specific crops, microbial CFs can be safely managed. Seventh,

although Baroja-Fernández et al. (2021) showed that application

of CFs of diverse microorganisms resulted in activation of beneficial

soil and plant-associated microbiota without significant changes in

the relative abundance of populations of pathogenic microbial

species, it is important to ensure that these results can be

extrapolated to other CFs in different soil types and

environmental scenarios. Eighth, CFs based on co-cultivation of

various microorganisms might be an efficient approach to obtain

widely range of bioactive compounds. Nevertheless, this practice

faces similar problems to those of multi-microbial bioinoculants,

since each co-inoculant requires specific culture conditions (Reddy

and Saravanan, 2013). Nineth, there are few studies on the

mechanisms and modes of action of microbial CFs on plants.
TABLE 4 List of microbial species whose populations are enriched by the soil application of fungal CFs and DEs used by Baroja-Fernández et al.
(2021).

Microbial species Mechanism/mode of action Reference

Bacterial species

Burkholderia arboris Solubilizes phosphate and produces IAA and siderophores Zhang et al. (2022)

Burkholderia silvatlantica
Has ACC deaminase activity
Fixes N2

Onofre-Lemus et al. (2009)

Perin et al. (2006)

Caballeronia udeis Solubilizes phosphate and produces siderophores Puri et al. (2020)

Duganella ginsengisoli Produces IAA Goodwin (2022)

Pseudomonas brassicacearum Has ACC deaminase activity Belimov et al. (2007)

Pseudomonas mediterranea Solubilizes organic phosphate and produces siderophores, proteases, ammonia and IAA Gu et al. (2020)

Pseudomonas Knackmussii Solubilizes phosphate and produces IAA and siderophores Rabhi et al. (2018)

Rhodanobacter glycinis Synthesizes osmolytes and biocontrol-related substances Lee et al. (2019b)

Fungal species

Candida subhashii Biological control of plant pathogenic fungi Hilber-Bodmer et al. (2017)

Geotrichum candidum

Produces phytohormones and reactive oxygen species Waqas et al. (2017)

Solubilizes phosphate Wu et al. (2012)

Produces IAA, ammonia and polyamines Fu et al. (2016)

Produces IAA and siderophores and has ACC deaminase activity George et al. (2019)

Pseudogymnoascus spp. Solubilizes phosphate Abdel-Ghany et al. (2019)
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The necessity of identifying the
mechanisms and modes of action of
cell-free microbial CFs for their use
as biostimulants

In our opinion, the exploitation of microbial CFs as

biostimulants (defined by the European Biostimulant Industry

Council (https://biostimulants.eu/) as “substances and/or

microorganisms whose function when applied to plants or to soil

is to stimulate natural processes to enhance or benefit nutrient

uptake, nutrient efficiency, tolerance to abiotic stress and crop

quality” (du Jardin, 2015)) is only just evolving and its broad

potential is now beginning to be demonstrated. The majority of

studies describing the positive effect(s) of the application of

microbial CFs on plant growth and yield did not identify modes

ormechanisms of action of these extracts (Table 1). At most, some

of these studies proposed that phytohormones and other growth
Frontiers in Plant Science 12
promoting compounds released by microbes in their culture

media are involved in the response of plants to microbial CFs.

This may result in the assumption by many that these complex,

multicomponent mixtures are “magic potions” or “snake oil” not

compliant with scientific requirements of the official regulations

for fertilizer products (Yakhin et al., 2017). The identification of

mechanisms and modes of action of microbial CFs on plants and

the characterization of the biological functions and ecological roles

of their bioactive components, based on reasonable scientific

hypotheses rather than a try-it-and-see approach, could be

important not only to develop novel products able to increase

yields in crops in a sustainable and environmentally benign

manner, but also to obtain clues for the biotechnological design

of more productive and efficient crops.

Baroja-Fernández et al. (2021) showed that VOCs are

important mediators in the response of plants and plant-

associated microbiota to soil application of microbial CFs.

However, the bioactive VOCs produced by fungal cultures and
B

A

FIGURE 1

Different scenarios of responses of plants and microbiota to soil application of cell-free microbial CFs. (A) illustrates direct action of microbial
CF compounds on roots and/or on beneficial microorganisms, which release compounds that exert antagonistic effects on pathogenic
microorganisms and/or promote plant growth. (B) illustrates direct action of microbial CF compounds on the root exudate composition, which
modulates rhizosphere microbiota by impovershing populations of pathogenic microorganisms and enriching those of beneficial
microorganisms, which in turn promote plant growth and enhance the capacity of plants to adapt to their environment.
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their mechanisms and modes of action remain unverified.

Furthermore, whether the effect exerted by soil application of

VOCs on plants is direct or mediated by changes induced in the

composition of the soil microbiota (or both) still needs to be

determined, as does whether the effect exerted by soil application

of VOCs on the plant-associatedmicrobiota is direct or mediated by

changes induced in the root metabolism (Figure 1). That VOCs

isolated from CFs of diverse beneficial and phytopathogenic

microorganisms promoted similar growth and fruit yield and

quality responses in crops indicate that plants respond similarly

to a wide range of bioactive microbial VOCs. Alternatively, it is

likely that many microorganisms produce the same growth

promoting VOCs. One of such compounds could be acetic acid,

which is present in soils, where microorganisms produce it in

response to biotic and abiotic stresses (Adeleke et al., 2017). Recent

studies have shown that soil application of acetic acid, but not other

organic acids, enhances drought tolerance in Arabidopsis and

important crops including maize, wheat, rice and cassava (Kim

et al., 2017; Utsumi et al., 2019) and tolerance to bacterial wilt

disease (Wang et al., 2021). In Arabidopsis, the enhancement of

drought resistance promoted by soil application of acetic acid

involves JA signaling and an ON/OFF switching epigenetic

mechanism dependent on histone deacetylase HDA6 (Kim et al.,

2017). However, the biochemical and molecular mechanisms

underlying the enhancement of drought tolerance promoted by

soil application of acetic acid in crops remain to be elucidated.

Several lines of evidence indicate that the manner of

application of microbial volatile compounds and/or plant

growth conditions are important determinants of the

biochemical and molecular mechanisms triggered in plants.

Application of these compounds via the air promotes plant
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growth and metabolic and developmental changes, enhances

photosynthesis and improves nutrient and water acquisition

(Ryu et al., 2003; Zhang et al., 2008; Zhang et al., 2009; Ezquer

et al., 2010; Gutiérrez-Luna et al, 2010; Garnica-Vergara et al.,

2016; Sánchez-López et al., 2016; Garcıá-Gómez et al., 2019;

Garcıá-Gómez et al., 2020). In Arabidopsis, these responses are

associated with changes in the transcriptome, proteome,

metabolome, hormonome and redox-proteome through

mechanisms involving long-distance communication between

roots and the aerial part of the plant and proteostatic regulation

of central metabolic pathways in the plastidial compartment

(Zhang et al., 2007; Zhang et al., 2008; Zhang et al., 2009;

Sánchez-López et al., 2016; Ameztoy et al., 2019; Garcıá-

Gómez et al., 2020; Ameztoy et al., 2021; Gámez-Arcas et al.,

2022). However, Baroja-Fernández et al. (2021) showed that no

such mechanisms operate in crops irrigated with VOC-

containing microbial CFs and DEs. Needless to say, further

work will be necessary to understand how plants respond to

microbial volatiles.

The discovery that soil application of VOCs from diverse

microorganisms can enhance crop yield and promote similar

changes in the soil microbiota extends knowledge on the

mechanisms modulating the physiology of the plant and their

interaction with plant-associated microbes, raising questions on

their ecological significance and biotechnological applications.

Because microbes respond to microbial VOCs, it is likely that the

fungal VOC-promoted enrichment of the soil beneficial microbiota

is due to direct action of these compounds on the microorganisms,

which in turn determine plant growth and metabolism through

emission of semiochemicals. These compounds trigger the

production of molecules by roots that, once transported to the
FIGURE 2

Scheme illustrating the scaling-up process of cell-free microbial culture filtrates (CFs) production to industrial level. Figure was created using BioRender.com.
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aerial part of the plant, act as long-distance signals that promote

growth and enhance yield (Figure 1A). In line with this

presumption, Yuan et al. (2017) showed that exposure of soil to

VOCs of B. amyloliquefaciensNJN-6 altered the composition of soil

microbial communities. Compounds secreted by roots in their

exudates attract beneficial microorganisms which, in turn,

strongly influence plant fitness and enhance the capacity of plants

to adapt to environmental changes and stress (Baudoin and Benizri,

2003; Badri and Vivanco, 2009; Badri et al., 2013; Bulgarelli et al.,

2013; Schulz-Bohm et al., 2017; Sasse et al., 2018; Zhalnina et al.,

2018; Huang et al., 2019; Chen et al., 2020; Vıĺchez et al., 2020; He

et al., 2022). Therefore, it is conceivable that enrichment in the

plant-associated beneficial microbiota triggered by application of

fungal CFs and DEs is due to an alteration of composition of root

exudates (Figure 1B). This capacity of root exudates to influence the

soil microbiota is not static since the composition of root exudates is

not uniform over time (Zhalnina et al., 2018) and depends on the

plant species or genotype (Bulgarelli et al., 2012; Bodenhausen et al.,

2014; Bouffaud et al., 2014; Zhong et al., 2019). For instance, it has

been shown that soybean genotype significantly influences the

structure and composition of its associated rhizosphere and

affects connections in rhizobacterial networks (Zhong et al., 2019).
Additional remarks

According to the Regulation (EU) 2019/1009 of the

European Parliament and of the Council of 5 June 2019 laying

down rules on the making available on the market of EU

fertilising products, a microbial plant biostimulant may

contain micro-organisms belonging to the Azotobacter

Rhizobium, Azospirillum genera and mycorrhizal fungi,

including dead or empty-cell micro-organisms and non-

harmful residual elements of the media on which the

microorganisms were cultured (https://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32019R1009). Although

regulations are of great importance for guaranteeing food

security and preserving environmental integrity, the stringency

and exclusivity of the list of microorganisms that can be used for

the production of biostimulants may strongly limit the potential

benefits of these products. As shown in the review, growing
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evidence has been compiled demonstrating that application of

cell-free CFs of beneficial and phytopathogenic microorganisms

is an efficient approach to promote plant growth and enhance

yield and stress tolerance in a wide range of crops while reducing

the use of agrochemicals. Therefore, it may be appropriate to

enlarge the list of microorganisms that can be used for the

production of cell-free CF-based biostimulants according to EU

regulation on fertilising products, assuming scientific evidence

can demonstrate that these products are safe for both the

environment and consumers.
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Arcas, S., De Diego, N., et al. (2021). Enhanced yield of pepper plants promoted by
soil application of volatiles from cell-free fungal culture filtrates is associated with
activation of the beneficial soil microbiota. Front. Plant Sci. 12. doi: 10.3389/
fpls.2021.752653

Bashan, Y., de-Bashan, L. E., Prabhu, S. R., and Hernandez, J.-P. (2014).
Advances in plant growth-promoting bacterial inoculant technology:
formulations and practical perspective–2013). Plant Soil. 378 (1), 1–33.
doi: 10.1007/s11104-013-1956-x

Baudoin, E., and Benizri, E. (2003). Impact of artificial root exudates on the
bacterial community structure in bulk soil and maize rhizosphere. Soil Biol.
Biochem. 35, 1183–1192. doi: 10.1016/S0038-0717(03)00179-2

Belimov, A. A., Dodd, I. C., Safronova, V. I., Hontzeas, N., and Davies, W. J.
(2007) . Pseudomonas bras s i cacearum s tra in Am3 conta in ing 1-
aminocyclopropane-1-carboxylate deaminase can show both pathogenic and
growth-promoting properties in its interaction with tomato. J. Exp. Bot. 58 (6),
1485–1495. doi: 10.1093/JXB/ERM010

Berg, G. (2009). Plant-microbe interactions promoting plant growth and health:
perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol.
Biotechnol. 84 (1), 11–18. doi: 10.1007/s00253-009-2092-7

Berg, G., Kusstatscher, P., Abdelfattah, A., Cernava, T., and Smalla, K. (2021).
Microbiome modulation–toward a better understanding of plant microbiome
response to microbial inoculants. Front. Microbiol. 12. doi: 10.3389/
fmicb.2021.650610

Bhajbhuje, M. N. (2015). Response of metabolites from culture filtrates of
Alternaria species against Triticum aestivum l. Int. J. Life Sci. 3, 55–62.

Bilal, L., Asaf, S., Hamayun, M., Gul, H., Iqbal, A., Ullah, I., et al. (2018). Plant
growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium
proliferatum BRL1 produce gibberellins and regulates plant endogenous
hormones. Symbiosis. 76, 117–127. doi: 10.1007/s13199-018-0545-4

Blom, D., Fabbri, C., Connor, E. C., Schiestl, F. P., Klauser, D. R., Boller, T., et al.
(2011). Production of plant growth modulating volatiles is widespread among
rhizosphere bacteria and strongly depends on culture conditions. Environ.
Microbiol. 13 (11), 3047–3058. doi: 10.1111/j.1462-2920.2011.02582.x

Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M., and Vorholt, J. A. (2014). A
synthetic community approach reveals plant genotypes affecting the phyllosphere
microbiota. PloS Genet. 10 (4), e1004283. doi: 10.1371/journal.pgen.1004283

Bouffaud, M. L., Poirier, M. A., Muller, D., and Moënne-Loccoz, Y. (2014). Root
microbiome relates to plant host evolution in maize and other poaceae. Environ.
Microbiol. 16 (9), 2804–2814. doi: 10.1111/1462-2920.12442
Frontiers in Plant Science 15
Buensanteai, N., Yuen, G. Y., and Prathuangwong, S. (2008). The biocontrol
bacterium Bacillus amyloliquefaciens KPS46 produces auxin, surfactin and
extracellular proteins for enhanced growth of soybean plant. Thai J. Agric. Sci.
41 (3–4), 101–116.

Buensateai, N., Sompong, M., Thamnu, K., Athinuwat, D., Brauman, A., and
Plassard, C. (2013). The plant growth promoting bacterium Bacillus sp. CaSUT007
produces phytohormone and extracellular proteins for enhanced growth of cassava.
Afr. J. Microbiol. Res. 7 (42), 4949–4954. doi: 10.5897/AJMR12.1839

Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad,
N., Assenza, F., et al. (2012). Revealing structure and assembly cues for arabidopsis
root-inhabiting bacterial microbiota. Nature. 488 (7409), 91–95. doi: 10.1038/
nature11336

Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L., and Schulze-
Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants.
Annu. Rev. Plant Biol. 64, 807–838. doi: 10.1146/annurev-arplant-050312-120106

Burkle, L. A., and Belote, R. T. (2015). Soil mutualists modify priority effects on
plant productivity, diversity, and composition. Appl. Veg. Sci. 18, 332–342.
doi: 10.1111/avsc.12149

Calvo, P., Nelson, L., and Kloepper, J. W. (2014). Agricultural uses of plant
biostimulants. Plant Soil 383 (1–2), 3–41. doi: 10.1007/S11104-014-2131-8/
TABLES/1
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Bucio, J. (2009). The role of microbial signals in plant growth and development.
Plant Signal. Behav. 4 (8), 701–712. doi: 10.4161/PSB.4.8.9047

Oskiera, M., Szczech, M., Stępowska, A., Smolińska, U., and Bartoszewski, G.
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Schulz-Bohm, K., Martıń-Sánchez, L., and Garbeva, P. (2017). Microbial
volatiles: small molecules with an important role in intra- and interkingdom
interactions. Front. Microbiol. 8. doi: 10.3389/fmicb.2017.02484

Shayanthan, A., Ordoñez, P. A. C., and Oresnik, I. J. (2022). The role of synthetic
microbial communities (SynCom) in sustainable agriculture. Front. Agron. 4.
doi: 10.3389/fagro.2022.896307

Sirrenberg, A., Göbel, C., Grond, S., Czempinski, N., Ratzinger, A., Karlovsky, P.,
et al. (2007). Piriformospora indica affects plant growth by auxin production.
Physiol. Plant 131 (4), 581–589. doi: 10.1111/J.1399-3054.2007.00983.X

Sitaraman, R. (2015). Pseudomonas spp. as models for plant-microbe
interactions. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00787

Spaepen, S., Vanderleyden, J., and Remans, R. (2007). Indole-3-acetic acid in
microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31 (4), 425–
448. doi: 10.1111/J.1574-6976.2007.00072.X

Spinelli, V., Brasili, E., Sciubba, F., Ceci, A., Giampaoli, O., Miccheli, A., et al.
(2022). Biostimulant effects of Chaetomium globosum and Minimedusa polyspora
culture filtrates on Cichorium intybus plant: growth performance and metabolomic
traits. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.879076

Sung, G. H., Shrestha, B., Park, K. B., Han, S. K., and Sung, J. M. (2011).
Enhancing effect of Shimizuomyces paradoxus on seed germination and seedling
growth of canola, plant growth of cucumber, and harvest of tomato. Mycobiology.
39 (1), 7. doi: 10.4489/MYCO.2011.39.1.007

Svenningsen, N. B., Watts-Williams, S. J., Joner, E. J., Battini, F., Efthymiou, A.,
Cruz-Paredes, C., et al. (2018). Suppression of the activity of arbuscular
mycorrhizal fungi by the soil microbiota. ISME J. 12 (5), 1296–1307.
doi: 10.1038/s41396-018-0059-3

Tallapragada, P., Dikshit, R., and Seshagiri, S. (2015). Isolation and optimization
of IAA producing Burkholderia seminalis and its effect on seedlings of tomato.
Songklanakarin J. Sci. Technol. 37 (5), 553–559.

Trujillo-Roldán, M. A., Valdez-Cruz, N. A., González-Monterrubio, C. F.,
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