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ABSTRACT:

Semantic segmentation of remote sensing images has many practical applications such as urban planning or disaster assessment.
Deep learning-based approaches have shown their usefulness in automatically segmenting large remote sensing images, helping
to automatize these tasks. However, deep learning models require large amounts of labeled data to generalize well to unseen
scenarios. The generation of global-scale remote sensing datasets with high intraclass variability presents a major challenge. For
this reason, data augmentation techniques have been widely applied to artificially increase the size of the datasets. Among them,
photometric data augmentation techniques such as random brightness, contrast, saturation, and hue have been traditionally applied
aiming at improving the generalization against color spectrum variations, but they can have a negative effect on the model due
to their synthetic nature. To solve this issue, sensors with high revisit times such as Sentinel-1 and Sentinel-2 can be exploited
to realistically augment the dataset. Accordingly, this paper sets out a novel realistic multi-temporal color data augmentation
technique. The proposed methodology has been evaluated in the building and road semantic segmentation tasks, considering a
dataset composed of 38 Spanish cities. As a result, the experimental study shows the usefulness of the proposed multi-temporal
data augmentation technique, which can be further improved with traditional photometric transformations.

1. INTRODUCTION

In the last decade, the remote sensing community has rapidly
grown, mainly due to the great deal of potential applications
that have emerged. In fact, insights derived from the foto-inter-
pretation of earth observation products can be used for urban
planning (Guo et al., 2021) or disaster assessment (Ghaffarian
and Emtehani, 2021) among other use cases.

Traditionally, the foto-interpretation of large remote sensing
images has been manually performed by experts, demanding a
great deal of human effort and thus, entailing high costs. How-
ever, recent advances in deep learning, especially with Convolu-
tional Neural Networks (CNNs), have made it possible to pro-
cess vast amounts of remote sensing data, reducing costs and
saving time (Zhu et al., 2017).

Deep learning models are data-hungry since they require large
amounts of labeled data to generalize to unseen scenarios. Fur-
thermore, this problem may be even more evident in remote
sensing imagery than in problems involving natural images, sin-
ce earth observation images are subject to color spectrum vari-
ations caused by the sun’s position, adverse atmospheric condi-
tions, etc. (Guo et al., 2020). Therefore, it is very costly and
time-consuming to develop deep learning models that general-
ize well even to cases where spatial and temporal shifts occur.

In deep learning, Data Augmentation (DA) is commonly used
to face the lack of labeled data by artificially introducing small
changes to the inputs without altering the outputs, giving the
models more variety without increasing the size of the data-
set. DA techniques may be seen as a powerful tool to face the
∗ Corresponding author

lack of labeled data, artificially expanding the dataset (Taylor
and Nitschke, 2018). When working with images, geometric
DA techniques such as random rotations, flips, crops, and scale
transformations are commonly applied to prevent over-fitting
and improve generalization (Dieleman et al., 2015). However,
geometric DA techniques do not make the model robust against
color spectrum variations. In this regard, photometric DA tech-
niques such as color jittering, random brightness, contrast, hue,
and saturation transformations are applied (Wu et al., 2015).

Despite photometric DA techniques have been proved benefi-
cial in a wide range of remote sensing tasks, the resulting im-
ages may contain synthetic artifacts such as saturated pixels
or null values, losing valuable spectral information. Further-
more, the parameters of photometric DA techniques are diffi-
cult to tune, since they depend on each specific problem. More-
over, there are events such as shadows casted by near buildings,
seasonal rhythms, crop cycles, etc., that can not be simulated
through photometric DA techniques.

To address these problems, this paper proposes a simple meth-
odology that takes advantage of the high revisit times provided
by sensors such as Sentinel-1 (S1) and Sentinel-2 (S2) to per-
form a realistic multi-temporal color data augmentation (multi-
temporal DA). The idea is to consider multiple observations for
the same area of interest to have a variety of color spectrums
coming from real images. In this regard, for a given area of in-
terest, multiple observations are considered, varying the color
spectrum without including synthetic artifacts.

To assess the usefulness of the proposed approach both building
and road semantic segmentation problems have been considered
following the experimental framework in (Ayala et al., 2021).
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It must be noted that buildings and roads have different degrees
of variations in their shapes and colors, which makes them ideal
for this study. For evaluating the proposed approach, a dataset
composed of 38 Spanish cities has been considered. Moreover,
for each city, four observations have been chosen correspond-
ing to the four seasons of a year. The experiments, which have
been evaluated using the Intersection over Union (IoU) and F-
score metrics, showed that the proposed methodology improves
the results from traditional DA techniques in the two scenarios.
Furthermore, when the proposed multi-temporal DA technique
is combined with the traditional photometric DA transforma-
tions, the results are further enhanced.

2. RELATED WORKS

DA techniques such as geometric and photometric prevent over-
fitting artificially increasing the variety of the dataset. Gen-
erally, geometric transformations lead to larger improvements
in the model’s performance than photometric transformations
(Taylor and Nitschke, 2018). Furthermore, the former is easier
to implement and computationally more efficient compared to
the latter. In remote sensing, distortions of rigid-shape objects
are commonly avoided. Hence, geometric transformations such
as the dihedral DA technique which combines 90-degree rota-
tions along with vertical and horizontal flips are used, which do
not alter the image content (Iglovikov et al., 2017).

When photometric transformations are applied it is easy to lose
spectral information, resulting in unrealistic images. In spite of
this, in remote sensing, the models need to learn how to deal
with color spectrum variations such as seasonal rhythms, shad-
ows, etc., which are typical in every use case related to earth
observation.

There are more complex DA techniques that use domain-
specific synthesis to expand the dataset. These techniques gen-
erate richer data compared to the generic geometric and pho-
tometric augmentations (Peng et al., 2014). For example, Yan
et al., proposed a novel data augmentation method that sim-
ulates remote sensing images combining background images
and 3D ship models for tackling the insufficient number of
training samples in the ship detection task (Yan et al., 2019a).
Thereafter, they extrapolate the methodology to aircraft detec-
tion tasks, employing 3D aircraft models to form simulated
images (Yan et al., 2019b). Illarionova et al. proposed an
object-based augmentation technique that exploits segmenta-
tion masks to generate new training samples copy-pasting ob-
jects in label-free backgrounds (Illarionova et al., 2021), outper-
forming standard geometric and photometric DA techniques.
Generative Adversarial Networks (GANs) have been also used
to generate plausible synthetic data along with their correspond-
ing segmentation masks (Howe et al., 2019). However, the de-
velopment of complex DA approaches requires domain-specific
knowledge, making them not applicable to different problems.

In this paper, we focus on exploiting multi-temporal data for
data augmentation. Multi-temporal data is useful for a wide
range of applications. Multiple observations of the same
area can be used to learn transferable representations lever-
aging temporal information (Mañas et al., 2021). Further-
more, multi-scale spatio-temporal features can be extracted by
making use of complex deep learning architectures that com-
bine CNNs with Recurrent Neural Networks (RNNs) (Garnot
and Landrieu, 2021). However, to the best of our knowledge,
no previous work takes advantage of the high revisit times

provided by sensors such as S1 and S2 to realistically augment
the dataset, making models robust against color spectrum vari-
ations.

3. PROPOSAL

Photometric DA techniques such as random transformations
of the brightness, contrast, saturation, and hue, may produce
undesired synthetic artifacts, having a negative effect on the
model performance. Moreover, the application of these tech-
niques may result in unrealistic images, since the spectral in-
formation is arbitrarily altered. Furthermore, setting the proper
hyper-parameters for these DAs is not straightforward, since
they need to be adapted to each problem. For this reason, this
paper proposes a novel easy-to-implement color DA technique,
taking advantage of the high revisit times provided by S1 and
S2 sensors.

Rather than applying standard photometric DA techniques that
alter the original image, multiple observations can be con-
sidered for the same area, preserving their original color in-
formation and hence, avoiding creating undesired synthetic arti-
facts. Our hypothesis is that this approach can be more effective
than the traditional photometric DA since there are events such
as seasonal rhythms, sun position, or shadows casted by build-
ings that can not be easily simulated. Figures 1 and 2 can help
understanding the differences between photometric DA and the
usage of multiple observations. Figure 1 shows the differences
between three observations (O1, O2, and O3) and their cor-
responding augmented versions applying brightness, saturation
and contrast photometric DA transformations to the RGB chan-
nels. This figure shows the fact that events such as harvesting
cannot be easily simulated with standard photometric DA trans-
formations (e.g., O1 cannot be obtained from O2 or O3). More-
over, Figure 2 shows the differences between three (O1, O2,
and O3) S1 observations. As it can be seen in the figure, the
nature of radar data makes the application of photometric DA
transformations complex and meaningless.

O1 O2 O3

O1 + Brightness O2 + Saturation O3 + Contrast

Figure 1. Visual comparison of the proposed multi-temporal
color DA technique based on multiple observations and the
corresponding altered versions using standard photometric

transformations.

In (Ayala et al., 2021) multiple observations were used to aug-
ment the dataset, however, the experimental setup did not assess
the contribution of using multiple observations. Therefore, this
paper aims to deeply study the effect that the proposed multi-
temporal DA technique has on the robustness of semantic seg-
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O1 O2 O3

Figure 2. Visual comparison of multiple observations for S1’s
VV and VH backscatter Red-Green composition.

mentation remote sensing deep learning models. For this pur-
pose four trimesters have been considered following the dataset
described in (Ayala et al., 2021), leaving the last one for assess-
ing the performance of the models.

4. EXPERIMENTAL STUDY

In this section, the experimental study carried out to assess the
usefulness of the proposed multi-temporal DA technique is pre-
sented. First, the dataset generation pipeline is described in
Section 4.1. Then, details regarding the experimental frame-
work are given in Section 4.2. Thereafter, experiments carried
out are outlined in Section 4.3. Finally, Section 4.4 summarizes
the results and the conclusions extracted from the experiments.

4.1 Dataset

In this work, we have made use of the dataset described in (Ay-
ala et al., 2021). The dataset has been generated by combining
high-resolution S1 and S2 satellite imagery along with Open-
StreetMap (OSM) building and road annotations. Moreover,
given the high revisit times provided by S1 and S2 sensors, mul-
tiple observations have been considered. Specifically, we have
considered data from the four seasons of a year: 2018-06/2018-
09, 2018-09/2018-12, 2018-12/2019-03, and 2019-03/2019/06.
It must be noted that the number of observations could be arbit-
rarily increased up to 70 on the equator per year.

Figure 3 depicts the overall pipeline for a generic region of in-
terest. First, S2 products are downloaded from the Sentinels
Scientific Data Hub (SciHub). The 10 m GSD bands from S2
are selected (Red, Green, Blue, and Near Infrared). Further-
more, the Normalized Difference Vegetation Index (NDVI) is
also calculated and combined with the other bands.

In the case of S1, we used the Level-1 GRD product in the In-
terferometric Wide (IW) swath mode. This product has a swath
width of 250 kilometers, a resolution of 20 × 22 m (depend-
ing on the beam id), and could be provided in four polariza-
tion modes (VV, VH, HH, HV). However, because dual hori-
zontal polarization (HH, HV) is limited to polar regions, only
dual vertical polarization (VV, VH) has been considered. The
SciHub has been used to download S1 raw products, queried by
a time interval of 7 days ± the mean of the ingestion times of
the S2 products considered in the preceding stage. After that,
raw S1 products were pre-processed using the Sentinel applic-
ation platform (SNAP). Firstly, in the radiometric calibration
stage, backscatter intensities were estimated using the GRD
metadata. Then, in the terrain correction step, the Digital Eleva-
tion Model (DEM) from the Shuttle Radar Topography Mission
(SRTM) has been used to address the side-looking effects. Fi-
nally, backscatter intensities were log-scaled and converted to
decibels.

Figure 3. dataset generation pipeline for a generic area of
interest.

On the other hand, OSM has been proved useful for a great deal
of remote sensing tasks (Kaiser et al., 2017). However, OSM
should be reclassified beforehand due to the large number of
layers it contains. In this regard, different types of roads have
been aggregated to construct the road label, whereas the build-
ing polygon outlines constitute the building label. The selected
OSM codes are presented in Table 1. It must be noted that,
since OSM only contains roads’ centerlines, line-strings were
buffered to match S2’s spatial resolution (10 m GSD). More-
over, due to the limited spatial resolution of S1 and S2 sensors,
buildings with an area inferior to 50 m2 have been filtered out.
Finally, building and road vector features have been rasterized
to 2.5 m GSD.

Code Fclass Description

5111 motorway Motorway/freeway
5112 trunk Important roads, typically divided
5113 primary Primary roads, typically national
5114 secondary Secondary roads, typically regional
5115 tertiary Tertiary roads, typically local
5121 unclassified Smaller local roads
5122 residential Roads in residential areas
5123 living street Streets where pedestrians have priority
5124 pedestrian Pedestrian only streets
5131 motorway link Roads connections (same of lower category)
5132 trunk link Roads connections (same of lower category)
5133 primary link Roads connections (same of lower category)
5134 secondary link Roads connections (same of lower category)

1500 Building outlines

Table 1. Reclassification of OSM vector features into the road
and building labels.

It must be noted that, as suggested in (Ayala et al., 2021), sensor
and label-specific validation masks have been taken into ac-
count to handle sensing noise and labeling errors, respectively.
Accordingly, validation masks have been used at both training
and testing times to filter out low-quality samples.

The final dataset comprises 38 Spanish cities, which have been
separated into two sub-sets following the machine learning
standards. That is, in order to prevent data leakage, each city
is assigned to either the training set or the test set, as shown in
Table 2. It must be noted that this dataset is the same used in
(Ayala et al., 2021), discarding cities with missing observations.
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City Dimensions Set

La Coruña 704 × 576 Train
Albacete 1280 × 1152 Train
Alicante 1216 × 1472 Train
Barcelona N. 1152 × 1728 Test
Barcelona S. 896 × 1088 Test
Bilbao 576 × 832 Train
Burgos 512 × 704 Train
Cáceres 1024 × 896 Test
Cartagena 768 × 1216 Train
Castellón 1024 × 1024 Train
Córdoba 1088 × 1792 Train
Denia 640 × 768 Train
Ferrol 384 × 704 Test
Gijón 704 × 832 Test
Granada 1664 × 1600 Test
León 1216 × 768 Train
Logroño 768 × 960 Train
Lugo 768 × 576 Test
Madrid S. 1280 × 2624 Train
Majadahonda 1472 × 1344 Test
Mérida 512 × 640 Train
Murcia 1792 × 1600 Train
Ourense 960 × 704 Train
Oviedo 960 × 896 Train
Palma 1024 × 1344 Test
Pamplona 1600 × 1536 Test
Pontevedra 384 × 512 Train
Rivas-vacı́a 1088 × 1088 Train
Salamanca 832 × 960 Train
Santander 1152 × 1216 Train
Sevilla 2176 × 2368 Train
Teruel 640 × 768 Test
Valencia 2304 × 1728 Test
Valladolid 1408 × 1024 Test
Vigo 704 × 1024 Train
Vitoria 576 × 896 Train
Zamora 512 × 576 Train
Zaragoza 2304 × 2752 Train

Table 2. Summary of the dataset. Overall, the training set is
composed of 25 zones (≈ 66%) whereas the test set consists of

13 zones (≈ 34%).

4.2 Experimental framework

The experimental framework also follows the specifications de-
scribed in (Ayala et al., 2021). Regarding the deep learning
network itself, a U-Net architecture (Ronneberger et al., 2015)
has been considered. As it can be seen in Figure 4, the vanilla
U-Net architecture has been modified including a bicubic up-
scaling layer prior to the feature extractor and replacing the
base encoder with a ResNet-34 (He et al., 2016). As a result,
semantic segmentation masks that quadruple the input spatial
resolution are generated, making it possible to detect elements
with sub-pixel width.

Figure 4. Network architecture.

Considering the large number of experiments we plan to run in
order to contrast the usage of photometric DA with the proposed
multi-temporal DA technique, we have opted for reducing the
number of epochs from 1,000 to 200 in comparison with (Ayala
et al., 2021). That is, all the models have been trained for 200
epochs consisting of 1,000 gradient updates. It must be noted

that this modification does not alter the conclusions derived,
since there is little margin for improvement after this epoch as
contrasted in our preliminary experiments. The batch size has
been set to 32 samples of 128× 128 pixels. Furthermore, sam-
ples have been randomly taken, considering only those with at
least 10% of pixels corresponding to the positive class (either
road or building). Finally, since no validation set has been used,
the last epoch model is taken.

Regarding the loss function, a combination of the Binary Cross-
entropy and the Dice Loss has been chosen, to better control the
trade-off between false positives and false negatives:

L(y, ŷ) = α× LBCE(y, ŷ) + (1− α)× LDICE(y, ŷ),

LBCE(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)),

LDICE(y, ŷ) =
2yŷ + 1

y + ŷ + 1

(1)

where ŷ denotes the predicted segmentation mask, y the corres-
ponding ground-truth mask, and the α parameter weights the
contribution of the LDICE loss (0.5 in these experiments). The
loss function has been minimized, using the Adam optimizer
with a fixed learning rate of 1e−3.

The Intersection over Union (IoU) and F-score metrics have
been chosen to evaluate the performance of the models:

IoU(y, ŷ) =
y ∩ ŷ

y ∪ ŷ
, F-score(y, ŷ) =

2yŷ

y + ŷ
(2)

Additionally, both metrics are also calculated following a pre-
cision relaxation strategy (Mnih and Hinton, 2010, Zhang et al.,
2018) aiming at reducing the impact of the low spatial resolu-
tion on the metrics. That is, doubtful pixels located on the edges
of the roads and buildings are disregarded.

The experiments have been run on a computing node with a
2 × Intel Xeon E5-2609 v4 @ 1.70 GHz processor with 128
GB of RAM and 4 × NVIDIA RTX2080Ti GPUs (11 GB of
RAM).

4.3 Experiments

Several experiments have been run to compare the proposed
multi-temporal DA technique with the traditional photometric
DA transformations. To make the evaluation fair, out of the 4
observations available in this dataset, the last one has been left
out for testing purposes, whereas the remaining ones have been
used to train the models.

First, the effect of including more observations has on the per-
formance has been studied. In this regard, models have been
trained considering 1, 2, and 3 observations, and tested us-
ing the 4th one. It must be noted that for 1 and 2 observa-
tions all their possible combinations have been run and aver-
aged whereas, in the case of using 3 observations, the results of
three executions have been averaged.

Thereafter, the proposed multi-temporal DA technique has been
compared with the traditional photometric DA transformations,
not only to determine which technique performs better but also
to assess if they further improve the generalization capability
when used together.
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Despite the aforementioned color DA techniques, geometric
DA techniques that have been widely used as a de facto aug-
mentation in remote sensing are also applied. In this regard, the
dihedral transformation, which consists of combinations of ho-
rizontal and vertical flips along with 90-degree rotations have
been considered as a base for all experiments.

It must be noted that the same experiments have been run for
building footprint detection and road network extraction tasks.
Considering these two tasks, the usefulness of the proposed
multi-temporal DA can be better assessed.

4.4 Results and discussion

Tables 3 and 4 summarize the quantitative results in terms of
IoU and F-score obtained for the building footprint detection
and road network extraction tasks, respectively. Additionally, a
relaxed version of both metrics (Rlx. IoU and Rlx. F-score, re-
spectively) is also calculated. Finally, the best results achieved
in each task are presented in boldface.

Overall, increasing the number of observations with multi-tem-
poral DA improves the generalization capability of the models.
In fact, it is more beneficial to increase the number of obser-
vations than to apply photometric DA. Nevertheless, applying
both DAs together provides the best performance. In the fol-
lowing, we analyze these findings in detail.

When working with mono-temporal imagery (a single obser-
vation) one can benefit from standard photometric DA tech-
niques making models more robust to color spectrum variations
(0.5051 ± 0.0107 vs. 0.4845 ± 0.0351 for buildings, and
0.5049 ± 0.0035 vs. 0.5008 ± 0.0072 for roads, in terms of
IoU).

Nevertheless, if two observations are available, one can apply
the proposed multi-temporal DA technique outperforming the
standard photometric DA transformations applied over a single
observation (0.5091 ± 0.0397 vs. 0.5051 ± 0.0107 for build-
ings, and 0.5125 ± 0.0044 vs. 0.5049 ± 0.0035 for roads, in
terms of IoU).

Furthermore, there is a great increase in performance when con-
sidering 3 observations instead of only 2 (0.5635 ± 0.0101 vs.
0.5091 ± 0.0397 for buildings, and 0.5286 ± 0.0067 vs. 0.5125
± 0.0044 for roads, in terms of IoU). In fact, the more the num-
ber of observations is, the better the generalization capability of
the models becomes.

Finally, for all number of observations tested (1, 2, and 3),
the standard photometric transformations help making models
more robust. Furthermore, when photometric transformations
are combined with the proposed multi-temporal DA technique
with 3 observations the best results are achieved (0.5741 ±
0.0166 and, 0.5295 ± 0.0025, in terms of IoU for the build-
ing and road extraction tasks, respectively). It must be noted
that both color DA techniques, in general, have a greater impact
on building metrics than road ones, which is due to the higher
variance of buildings shapes and colors compared to roads.

To complement the quantitative analysis, Figures 5 and 6 visu-
ally compare the performance of the proposed approaches in
terms of visual IoU. That is, True Positives (TP) are presented
in green, False Positives (FP) in blue, False Positives (FP) in red
and True Negatives (TN) in white. According to these figures,
one draws the same conclusions as those looking at Tables 3 and

4, respectively, with some extra information. Augmenting the
dataset including multiple observations makes the model more
robust against color spectrum variations. In this regard, the pro-
posed multi-temporal DA technique is able to reduce the num-
ber of FP and FN. However, there are still some FP caused by
labeling errors inherent to OSM.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a novel color DA technique has been proposed,
taking advantage of the high revisit times provided by sensors
such as S1 and S2. Accordingly, multiple observations for
the same area of interest are considered to have a variety of
color spectrums coming from real images rather than augment-
ing the dataset synthetically using photometric DA transforma-
tions. The usefulness of the proposed method has been shown in
two semantic segmentation tasks with different degrees of vari-
ation in their target’s shapes and colors, outperforming standard
photometric DA techniques. The multi-temporal DA technique
requires no hyper-parameter tuning, which makes it easier to
apply than traditional photometric DA transformations. Addi-
tionally, it can be directly applied to any sensor, including radar
imagery such as S1, which is a limitation of photometric DA
techniques. Finally, when the multi-temporal DA technique is
combined with standard photometric DA techniques the best
results are achieved.

Nonetheless, there are still several research lines on this sub-
ject that should be pursued in the future. Regarding the data-
set, more observations should be considered to further assess
the effect that increasing the number of observations has on the
generalization capability of the model. Moreover, it would be
interesting to extrapolate the analysis to other sensors different
from S1 and S2 (e.g. hyperspectral, thermal, microwave, ...).
Finally, other tasks such as land use and land cover semantic
segmentation or classification of remote sensing images may
be considered to gain valuable insights regarding not only the
usefulness but also the limitations of the proposed approach.
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S2 RGB O1 S2 RGB O2 S2 RGB O3 S2 RGB O4

Pred. w/ 1 obsv. (0.5407 / 0.7019) Pred. w/ 2 obsv. (0.5424 / 0.7033) Pred. w/ 3 obsv. (0.6283 / 0.7717) Ground Truth

S2 RGB O1 S2 RGB O2 S2 RGB O3 S2 RGB O4

Pred. w/ 1 obsv. (0.7293 / 0.8434) Pred. w/ 2 obsv. (0.7362 / 0.8481) Pred. w/ 3 obsv. (0.7968 / 0.8869) Ground Truth

Figure 5. Visual comparison of the results obtained for the building footprint extraction task. Predictions are performed for the 4th
observation (O4) when trained using 1, 2, and 3 observations for two zones randomly taken from the test set. True Positives (TP) are
presented in green, False Positives (FP) in blue, False Positives (FP) in red, and True Negatives (TN) in white. Moreover, the IoU and

F-score metrics have been included.
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S2 RGB O1 S2 RGB O2 S2 RGB O3 S2 RGB O4

Pred. w/ 1 obsv. (0.6825 / 0.8113) Pred. w/ 2 obsv. (0.6921 / 0.8180) Pred. w/ 3 obsv. (0.7172 / 0.8353) Ground Truth

S2 RGB O1 S2 RGB O2 S2 RGB O3 S2 RGB O4

Pred. w/ 1 obsv. (0.5356 / 0.6976) Pred. w/ 2 obsv. (0.5506 / 0.7101) Pred. w/ 3 obsv. (0.5562 / 0.7148) Ground Truth

Figure 6. Visual comparison of the results obtained for the road network extraction task. Predictions are performed for the 4th
observation (O4) when trained using 1, 2, and 3 observations for two zones randomly taken from the test set. True Positives (TP) are
presented in green, False Positives (FP) in blue, False Positives (FP) in red, and True Negatives (TN) in white. Moreover, the IoU and

F-score metrics have been included.
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#Observations photometric DA IoU F-score Rlx. IoU Rlx. F-score

1 ✗ 0.4845 ± 0.0351 0.6321 ± 0.0422 0.5562 ± 0.0463 0.6872 ± 0.0529
✓ 0.5051 ± 0.0107 0.6518 ± 0.0109 0.5843 ± 0.0136 0.7116 ± 0.0137

2 ✗ 0.5091 ± 0.0397 0.6590 ± 0.0416 0.5831 ± 0.0478 0.7159 ± 0.0473
✓ 0.5457 ± 0.0125 0.6972 ± 0.0128 0.6314 ± 0.0110 0.7621 ± 0.0114

3 ✗ 0.5635 ± 0.0101 0.7133 ± 0.0077 0.6493 ± 0.0165 0.7771 ± 0.0118
✓ 0.5741 ± 0.0166 0.7231 ± 0.0146 0.6658 ± 0.0228 0.7911 ± 0.0182

Table 3. Results obtained in test set for the building extraction task.

#Observations photometric DA IoU F-score Rlx. IoU Rlx. F-score

1 ✗ 0.5008 ± 0.0072 0.6645 ± 0.0065 0.5734 ± 0.0098 0.7255 ± 0.0080
✓ 0.5049 ± 0.0035 0.6680 ± 0.0030 0.5534 ± 0.0427 0.7084 ± 0.0357

2 ✗ 0.5125 ± 0.0044 0.6750 ± 0.0040 0.5882 ± 0.0052 0.7376 ± 0.0042
✓ 0.5173 ± 0.0058 0.6795 ± 0.0051 0.5902 ± 0.0087 0.7395 ± 0.0068

3 ✗ 0.5286 ± 0.0067 0.6895 ± 0.0058 0.6027 ± 0.0074 0.7494 ± 0.0057
✓ 0.5295 ± 0.0025 0.6903 ± 0.0020 0.6058 ± 0.0019 0.7518 ± 0.0014

Table 4. Results obtained in test set for the road extraction task.
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