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Abstract
Additive manufacturing technology has attracted the attention of industrial and technological sectors due to the versatility 
of the design and the easy manufacture of structural and functional elements based on composite materials. The embedding 
of magnetic nanoparticles in the polymeric matrix enables the development of an easy manufacturing process of low-cost 
magnetically active novel polymeric composites. In this work, we report a series of magnetic composites prepared by solution 
casting method combining 5 to 60 wt.% of 140 ± 50 nm commercial  Fe3O4 nanoparticles, with a semi-crystalline, biocompat-
ible, and biodegradable polymeric blend made of polylactic acid (PLA) and polycaprolactone (PCL). The composites were 
extruded, obtaining 1.5 ± 0.2 mm diameter continuous and flexible filaments for fused deposition modelling 3D printing. 
The chemical, magnetic, and calorimetric properties of the obtained filaments were investigated by differential scanning 
calorimetry, thermogravimetric analysis, magnetometry, and scanning electron microscopy. Furthermore, taking advantage 
of the magnetic character of the filaments, their capability to generate heat under the application of low-frequency alternat-
ing magnetic fields (magnetic induction heating) was analyzed. The obtained results expose the versatility of these easy 
manufacturing and low-cost filaments, where selecting a desired composition, the heating capacity can be properly adjusted 
for those applications where magnetic induction plays a key role (i.e., magnetic hyperthermia, drug release, heterogeneous 
catalysis, water electrolysis, gas capture, or materials synthesis).

Keywords Magnetic nanoparticles · Composite materials · Magnetic filaments · Fused deposition modelling · 3D printing

1 Introduction

In recent years, additive manufacturing has attracted the 
attention of industrial and technological sectors due to 
the possibility of fabricating objects without shape and 
size restrictions in an accessible, low-cost, swift, and very 

precise way [1, 2]. Additive manufacturing processes involve 
models, patterns, prototypes, tools, and three-dimensional 
end products through the automated deposition of materials 
layer-by-layer. Nowadays, it is possible to manufacture ele-
ments composed of polymers [3], metals [4], and/or ceram-
ics [5] with the required geometry according to a simple 
digital design. Thus, no special tools or pre-formed molds 
are required for the construction of the final component, 
which significantly reduces the cost and speeds up the pro-
duction process. In this regard, fused deposition modelling 
(FDM) is a well-known 3D printing technique based on 
low-temperature range (373–523 K) melt extrusion, where 
thermoplastic materials in the form of filament are used [6]. 
Due to its low cost, the wide selection of materials, and 
high precision, it has become one of the most widely used 
printing techniques worldwide [7]. In addition, FDM 3D 
printers do not require large or complex equipment and can 
be configured to operate under low power consumption such 
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as renewable solar energy, so they are easily transportable 
and adaptable to any place in the world [8].

The current exponential growth of 3D printing new tech-
nologies has entailed the necessity to develop novel cutting-
edge materials with advanced or combined physicochemical 
properties. In this sense, the need for novel materials with 
new and improved properties has led to the use of com-
posite materials (CMs) [9, 10]. CMs are formed by mix-
ing two or more materials and are characterized by having 
superior properties to those of their single components [11]. 
CMs consist of a matrix, which ensures the cohesion of the 
material, and a filler, which modifies the properties of the 
matrix [12]. In this framework, the common base 3D print-
able raw materials such as polycaprolactone (PCL), polylac-
tic acid (PLA), and acrylonitrile butadiene styrene (ABS) 
among other biodegradable thermoplastics have been used 
as matrix due to their low-cost and easy manufacturing prop-
erties. Consequently, the nature of the matrix and the filler, 
their proportions, adhesion, and the production process will 
mainly determine the final composite characteristics. Specif-
ically, by changing the constituent elements (polymer type, 
particles, and/or additives), it is possible to modify their 
physicochemical properties and create new multifunctional 
materials [13–17].

Specifically, magnetic CMs have acquired an important 
role due to their diversity of applications in fields such as 
electronics, aeronautics, environmental remediation, and 
biomedicine [2, 18–20]. So far, the most common structures 
based on magnetic CMs fabricated by FDM have been pre-
pared using ferromagnets and/or ferrimagnets [21–23], clas-
sified into two main groups: hard and soft magnetic materi-
als. While the former has the ability to remain permanently 
magnetized and generate magnetic fields in the absence of 
external stimulus [24], the composites prepared with soft 
magnetic materials can be easily magnetized in the direc-
tion of an external magnetic field and are widely employed 
as magnetic flux concentrators. In addition, novel magnetic 
CMs have been recently proposed using superparamagnetic 
nanoparticles (NPs). These systems display negligible inter-
particle magnetic interactions since magnetization can ran-
domly flip direction due to thermal contribution. In general, 
the most commonly used superparamagnetic NPs for the 
preparation of magnetic CMs are those based on iron oxides 
[2]. Interestingly, these superparamagnetic nanostructures 
have been extensively applied in several technological areas 
with special emphasis on biomedical applications [25–27]. 
In this aim, superparamagnetic NPs are proposed as con-
trast agents, image tracers, or local drug carriers due to their 
high biocompatibility, high magnetic response, and low-cost 
[28–30]. However, many of these potential uses rely on their 
ability to absorb energy from an externally applied alternat-
ing (AC) magnetic field [31]. This energy eventually heats 
the nearby tissues (magnetic hyperthermia) or/and triggers 

the liberation of drugs carried by the NPs (drug delivery) 
[32]. On the other hand, this capability has been also pro-
posed in diverse applications such as heterogeneous catalysis 
[33], water electrolysis [34], gas capture [35], or materials 
synthesis [36].

Therefore, in this work, we present the fabrication of a 
low-cost and easy-manufacturing novel magnetic CMs raw 
material for FDM 3D printing based on PLA and PCL poly-
meric blend and commercial  Fe3O4 NPs. Although a few 
works have studied the possibility to manufacture compos-
ites for heat generation, they are based on much more expen-
sive polymers or ceramic materials [16, 37, 37–39]. On the 
other hand, studies of PLA +  Fe3O4 [27], PCL +  Fe3O4 [28], 
and PLA + PCL [29] can be found in the literature, but the 
PLA + PCL +  Fe3O4 ternary composite for heat generation 
is the first time reported in literature.

A series of different composites (5 to 60 wt.%) have been 
prepared by solution casting method combining commercial 
140 ± 50 nm  Fe3O4 NPs embedded in a semi-crystalline, 
biocompatible, and biodegradable polymeric PLA/PCL 
blend. Furthermore, the composites were extruded, obtain-
ing continuous and flexible filaments (1.5 ± 0.2 mm diam-
eter) and printed with different shapes demonstrating their 
capabilities to be used in FDM 3D printing technology. A 
deep characterization has revealed that the NPs concentra-
tion affects the properties of the filaments. Taking advantage 
of the magnetic character of the filaments, their capability 
to generate heat under the application of low-frequency AC 
magnetic fields (magnetic induction) was analyzed. Inter-
estingly, it revealed the versatility of the herein proposed 
material, where selecting a desired filling factor (i.e., the 
mass fraction of magnetic NPs per mass of composite) in the 
filaments and correct applied magnetic field frequency and 
intensity, the heating capacity can be properly controlled.

2  Materials and methods

2.1  Materials

Polylactic acid (PLA, average molecular weight (Mw)≈ 
144.000) and polycaprolactone (PCL, average molecular 
weight (Mw ) ≈ 50.000) were purchased from Resinex and 
Polymorph, respectively. 140 ± 50 nm magnetic iron (II, 
III) oxide NPs (637,106-100G) and dichloromethane (DCM) 
solvent were purchased from Sigma Aldrich.

2.2  Preparation of PLA/PCL/Fe3O4 filaments

In order to obtain the 3D printable magnetic filaments, six 
composites with different amounts of PLA, PCL, and  Fe3O4 
NPs were prepared (Table 1).
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To carry out the preparation of the composites, the fol-
lowing procedure was developed (see Fig. 1): first, 10 g of 
PLA was dissolved in 300 mL of DCM with mechanical 
stirring at 303 K. As the PLA was dissolved, the color-
less solution become more viscous, and 90 g of PCL was 
added. To promote a homogeneous mixture between both 
polymers, the solution was left under constant stirring and 
temperature for 2 h. After this time, the corresponding 
quantity of  Fe3O4 NPs (Table 1) was added and left in con-
stant mechanical stirring for 1 h. Finally, the temperature 
was increased to 318 K to facilitate the evaporation of the 
solvent. The NPs percentage in mass (i.e., filling factor) 
of the prepared composites was adjusted by changing the 
mass proportions of the polymers and the  Fe3O4 NPs.

The dried magnetic composite was mechanically extruded 
to obtain continuous and flexible filaments of 1.5 ± 0.2 mm 
in diameter for their subsequent use in 3D printing (see 
Fig.  1b, c). The fabrication of magnetic filaments was 

carried out using an extruder (FelFil Evo) with a 1.75-mm 
circular cross-section nozzle. The extrusion temperature was 
adjusted between 363 and 423 K depending on the mass 
percent of NPs and the polymer mixture in the final product 
composition. However, similar speed extrusion (10 cm/min) 
was adopted to assemble the magnetic filaments.

2.3  Characterization

Employed commercial iron oxide  (Fe3O4) particle average 
size estimation was made by transmission electron micros-
copy (TEM) measurements in an “FEI TECNAI T20” micro-
scope. The morphologies of the prepared filaments, including 
the NPs distribution, were investigated by scanning electron 
microscopy (SEM, Zeiss EVO), high-resolution SEM (HR-
SEM, Zeiss GEMINI), and energy dispersive X-ray spec-
troscopy (EDX).

Table 1  Summary of the masses 
of employed components 
(PLA, PCL, and NPs) and 
the estimated filling factors 
obtained from the fabrication 
procedure, thermogravimetric 
analysis (TGA), and 
magnetometry

Composite Experimental Filling factor (%)

PLA (g) PCL (g) Fe3O4 NPs (g) Fabrication TGA Magnetometry

P0% 10 90 - - - -
P5% 9.5 85.5 5 5 5 5
P10% 9 81 10 10 12 8
P20% 8 72 20 20 21 18
P40% 6 54 40 40 40 38
P60% 4 36 60 60 57 56

Fig. 1  a Schematic representa-
tion of the composite prepara-
tion procedure and b, c extruded 
magnetic filaments
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The thermal stability, thermogravimetric analysis (TGA), 
of the extruded filaments, was studied using a TGA/DSC 
3 + from Mettler Toledo in the range of 193–473 K at a 
10 K/min rate in nitrogen flow. Thermal properties were 
determined by differential scanning calorimetry (DSC) 
(Q-100 DSC, TA Instruments). The samples were pre-sealed 
into an aluminum pan, and the analysis was performed in 
four steps: (i) 1st cooling from 303 to 193 K at 10 K/min, 
(ii) 1st heating from 193 to 473 K at 10 K/min, (iii) 2nd 
cooling again to 193 K, and (iv) finally the 2nd heating to 
473 K at 10 K/min. The crystallization ( TcPCL ) temperature 
and crystallization enthalpy per mass ( ΔHcPCL

 ) of PCL was 
determined from the 2nd cooling curve while the melting 
temperature ( TmPCL

 ) and melting enthalpy per mass ( ΔHmPCL
 ) 

were determined from the 2nd heating curve. The equiva-
lent characteristic parameters of PLA were determined from 
the 2nd heating curve: cold crystallization ( TccPLA ) tem-
perature, cold crystallization enthalpy per mass ( ΔHccPLA

 ), 
melting temperature ( TmPLA

 ), and melting enthalpy per mass 
( ΔHmPLA

 ). Crystallization and melting temperatures were 
taken at the maximum of the crystallization and the melting 
peaks, respectively. To average out sample statistical fluc-
tuations, 3 different samples were extracted from the same 
filament, and the mean value of the characteristic thermal 
parameters was estimated. Since PCL crystallizes on cooling 
and PLA on heating, two different equations have been used 
to calculate the crystallinity degree (χc) of both polymers at 
room temperature. First, the crystallinity degree of PLA was 
obtained by the following [40, 41]:

The crystallinity degree of PCL was calculated by the 
following [42, 43]:

where ΔHm0 = 93,6 J/g (or 135 J/g) is the melting enthalpy 
of the 100% PLA (or PCL) [42, 44].

The magnetic characterization of the commercial NPs 
and the extruded magnetic filaments were analyzed by the 
magnetic field (H)-dependent magnetization measurements, 
M(H), on a Quantum Design SQUID magnetometer (QD 
MPMS XL-7), with a superconducting magnet up to 70 kOe 
and equipped with a cryostat that can measure from 2 to 
400 K. The values of coercive field (Hc), remanence (Mr), 
magnetization measured at 10 and 300 K at a maximum 
applied magnetic field of 60 kOe (normalized to the meas-
ured composite sample mass), Ms, and reduced remanence 
(R = Mr/Ms) were obtained from the hysteresis loops. The 

(1)Xc(%)PLA =

(

ΔHmPLA
− ΔHccPLA

ΔHm
0

)

× 100

(2)Xc(%)PCL =

(

ΔHmPCL

ΔHm
0

)

× 100

magnetic hyperthermia experiments were performed using 
a commercial G3 D5 series Multi-mode 3000W Drive from 
nanoscale Biomagnetics setup. During these experiments, 
water and air, surrounding composites were heated by mag-
netic induction. The increase in temperature was measured 
by a portable IR Thermal Imager (PCE-TC 33 N) [45] 
(18–40 mg) for filaments on air whereas a fiber optic ther-
mometer (Neoptix Inc., Canada) in contact with aqueous 
media (1 mL of deionized water) was used in the case of 
water surrounded samples. The measurements of dynamic 
magnetization were carried out in aqueous media (1 mL of 
deionized water) using a previously tested lab-made AC 
magnetometer [46]. The heat-generating capability of the 
filaments, the specific absorption rate (SAR), and generated 
power density (ρ) were obtained from dynamic magnetiza-
tion measurements at 311 kHz [47]:

where f  is the AC magnetic field frequency, Mt is the 
dynamic volumetric magnetization (SI units A.m−1), and 
Happ is the applied AC magnetic field intensity. A is the area 
enclosed by the hysteresis loop measured at frequency f  (see 
Fig. S1). Because SAR is normalized by the mass of NPs, 
ρ is related with the SAR according to the following [48]:

where c is the total mass of magnetic NPs in the filaments 
divided by the NPs volume. The absorbed power density 
defines the maximum temperature ( T

max
 ) that a composite 

and the surrounding material (e.g., biological tissues or 
specific medium) can reach [49]. In the case of a material 
absorbing energy from an AC magnetic field, T

max
 corre-

sponds to the equilibrium temperature, reached when total 
power absorbed by the material equals the dissipated power 
flowing out of the material by thermal conduction, convec-
tion, or irradiation.

2.4  3D printability of magnetic filaments

The printing of different shapes and sizes of objects was car-
ried out using an Artillery Sidewinder X1 3D printer based 
on the FDM technology. In all cases, Open Source-Software 
CURA 4.12.1 (Ultimaker B.V. Utrecht, Netherlands) was 
used to format the printing algorithm (layer thickness of 
0.3 mm and 100% infill density). A printing temperature of 
573 K was employed to print the filaments using a 0.4-mm 
extruding head. The layer height was 0.3 mm, the speed 
in the printing movements was 12.5 mm/min, and the bed 
temperature was 313 K.

(3)� = f A = −f ∫
Cycle

MtdHapp =
Absorbed Power

volume

(4)SAR =
�

c
=

Absorbed Power

mass NPs
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3  Results and discussion

A series of five magnetic composites were prepared by solu-
tion casting method combining nanometric 140 ± 50 nm 
commercial magnetic  Fe3O4 NPs (Fig. S2), with a polymeric 
blend made of a 10% PLA and 90% PCL (see Fig. 1a).

As previously reported [50, 51], this polymer mixture 
enhances the structural strength with respect to neat PCL, 
while keeping the melting temperature around 328 K, ena-
bling the manufacture of filaments flexible enough to be 
used as raw material for FDM 3D printing. The samples 
were labeled as P#%, where # represents the percentage of 
NPs in the composites (from 5 to 60 wt.%).

Figure 2a–c depicts the cross-section SEM images for 
selected P5%, P20%, and P60% samples. The cross-section 
SEM images for P5% and P20% samples are represented in 
Fig. S3a, b. It can be seen that while at low NPs concentra-
tions the filaments show a regular morphology and dense 
structure, the increase in the magnetic component fosters 
the deterioration of the morphology. As NPs concentration 
increases, the filament becomes rougher with a consequent 
enhancement of the porosity, i.e., porous in the micrometric 

range [39, 52–54]. Interestingly, it must be noted that the 
increased porosity does not affect the macroscopic aspect 
of the extruded filament, displaying, all the series of com-
posites, a smooth surface (see Fig. 1c). To study the NPs’ 
dispersion into the polymeric matrix, EDX mapping was 
carried out (see Fig. 2d–f and Fig. S3c, d).

It can be observed that the NPs are well distributed along 
the whole filament, and, at the same time, for certain series 
of compositions, the nanostructures tend to form micromet-
ric agglomerates. The homogeneous NPs dispersity was also 
confirmed by HR-SEM images, which show that most of 
the particles were individually distributed in the polymeric 
matrix (see Fig. 2g, h and Fig. S4). In addition, in Fig. 2i, a 
part of the micrometric porosity, smaller cavities with diam-
eters ranging from 200 to 600 nm were observed in the fila-
ment with the highest NPs loading.

To investigate the effect of the NPs concentration on the 
thermal properties of the magnetic filaments, TGA curves 
were obtained for the whole series of composites; two dis-
tinct weight losses corresponding to each polymer decom-
position can be observed (see Figs. 3 and S5).

Fig. 2  SEM images and corresponding composite EDX maps of the 
magnetic filament cross section for a, d P5%; b, e P20%; and c, f P60% 
samples (orange color in d, e  and f corresponds to the Fe absorption 

edge). HR-SEM images of selected regions of the composite for g P5%, 
h P20%, and i P60% samples
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Since the PLA decomposes at lower temperatures than 
PCL (i.e., 641 and 688 K, respectively), the first weight loss 
was employed to determine the amount of PLA in the sam-
ple, while the second one enabled the determination of the 
mass of PCL.  Fe3O4 NPs content can be determined as the 
remnant mass percentage at the end of the thermal scan. 
Table 1 and Fig. S5 depict the estimated polymer content 
and the magnetic NPs percentage for each sample. The 
obtained results are in good agreement with the expected 
values considering the employed percentages of each com-
ponent in the composites’ preparation. Moreover, it should 
be noticed that the introduction of magnetic NPs causes an 
overall reduction of the decomposition temperature of the 
polymeric blend, enhanced by the increase in the NP fill-
ing factor. Specifically, it is observed that the decomposi-
tion of both polymers is shifted towards lower temperatures 
with increasing  Fe3O4 wt.%. This is in good agreement with 
previously reported works [55], where the increase in the 
pyrolysis of PCL chains is linked to the incorporation of 
magnetic NPs due to the limitation of the movement of poly-
meric chains [56, 57]. At the same time, water that might be 
adsorbed on the surface of the NPs could act as depolym-
erization catalysts and accelerate the degradation of both 
polymers [58]. Despite this decrease in the decomposition 
temperatures, it is worth noting that the degradation onset 

for all the filaments is above the usually used printing tem-
perature (473 K), which ensures the viability of the compos-
ites for FDM 3D printing.

Furthermore, as previously described in the experimen-
tal procedure, the filaments were subjected to four thermal 
scans. The 1st cooling and heating scans (303 K to 353 K 
and 353 K to 473 K, respectively) were mainly employed 
to erase the previous thermal history of the prepared fila-
ments. Figure 4a, b show the following 2nd cooling and 
heating scans.

The exothermic peak in the cooling curve of the PCL 
displayed in Fig. 4a can be associated with the PCL crys-
tallization ( TcPCL) . The following heating scan depicted in 
Fig. 4b allows the determination of the melting temperature 
of PCL, TmPCL

 , and the subsequent crystallization, TccPLA , and 
melting temperature, TmPLA

 , of PLA [59]. Due to PLC/PLA 
immiscibility, the thermal transitions in each polymer are 
clearly visible independently [60, 61]. Table 2 summarizes 
the estimated characteristic temperatures from the DSC 
scans as a function of the NPs percentage.

As can be seen in Table 2, TmPCL
 and TcPCL do not seem to 

be affected by the presence of PLA polymer or NPs, while 
TmPLA

 and TccPLA decrease as the filling factor increases. As 
previously reported [62], this variation in TccPLA could be due 
to the presence of PCL in the sample which acts as nucleat-
ing agent. However, since the mass ratio between PCL and 
PLA polymers in all the prepared filaments is constant (mass 
PLA/mass PCL = 0.13(3), see Table S1), this decrease in 
TccPLA should be linked to the presence of the magnetic par-
ticles. In fact, the presence of NPs in the polymers is also 
shown as nucleation centers for the polymer crystallization 
[63]. Consequently, the interaction between NPs and PLA 
would minimize the polymer chain mobility, causing the 
crystallization process at lower temperatures. Although the 
used PLA has a higher molecular mass, it does not have the 
characteristic aliphatic chain of PCL that provides higher 
thermal stability to this last polymer. Thus, PCL is more 
stable to the change of environment of the polymer chains 
in the presence of other polymers or inorganic compounds 
and particles, while PLA is more unstable.

Fig. 3  TGA curves for the series of magnetic filaments

Fig. 4  a Crystallization of PCL 
in the 2nd cooling DSC curve, 
b melting of PCL, crystalliza-
tion, and melting of PLA in the 
2nd heating DSC curves for the 
series of magnetic filaments
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The DSC scans also allow the determination of the cor-
responding crystallization and melting enthalpies of both 
polymers. Table 2 includes ΔHc and ΔHm together with 
the crystalline degree �c obtained for the PLA and PLC 
from Eqs. 1 and 2, respectively. No clear variations can be 
detected in the enthalpy values and �c for both polymers 
with the NP concentrations, despite the decreasing trend in 
the crystallization and melting temperatures found for the 
PLA. It should be noted that the low amount of PLA in the 
samples could affect the calculation of both enthalpy values, 
and consequently the possible variations with the NPs fill-
ing factor masked by experimental error. Anyway, it can be 
concluded that the introduction of the magnetic NPs in the 
polymeric matrix influences its thermal properties, particu-
larly the decomposition process of both polymers and the 
crystallization temperature of PLA.

The magnetic properties of the extruded filaments and 
the commercial particles were analyzed via the magnetic 
field (H)-dependent magnetization, M(H), curves (hysteresis 
loops) at room (RT) and low (10 K) temperatures (see Fig. 5).

It can be observed that while the commercial particles 
present the expected saturation magnetization (magnetiza-
tion at 60 kOe, M60kOe) at RT (M60kOe = 80 emu/gNPs) for bulk 
magnetite  Fe3O4 [64], M60kOe decreases as the NPs loading is 
increased in the magnetic composites (from 41 emu/gcomposite 
for sample P60% to 3 emu/gcomposite for P5%). This reduction 
is a direct consequence of the negligible magnetic response 
of both polymers (M ≈ 0) and the fact that the displayed 
magnetization values are normalized to the total mass of the 
composite. Therefore, taking into account the experimental 
M60kOe, the filling factor of each filament can be estimated 
through the ratio M60kOe(composite)/M60kOe(Fe3O4) [61]. 
These values are in good agreement with the previously esti-
mated NPs filling factor through TGA (see Table 1). On the 
other hand, nearly zero values of the reduced remanence, R, 
and coercive field, HC, are obtained at RT for all the series of 
composites. Interestingly, this behavior depicts slight differ-
ences in comparison with the commercial  Fe3O4 NPs, rising 
R at 10 K as the NPs filling factor increases (see Table 3). 
This increment in R can be ascribed to the formation of 

preferential magnetic orientations of the particles along the 
filament axis into the polymer composite with respect to the 
random distribution in the powder sample [65, 66]. Indeed, 
considering that commercial particles were measured on 
tightly randomly packed powder samples, the chain forma-
tion into the polymer composite could lead to an increase in 
R as a consequence of the occurrence of interparticle mag-
netostatics interactions [67–69].

Table 2  Characteristic thermal parameters obtained from the DSC scans: cold crystallization temperature (Tcc), crystallization enthalpy (ΔHcc), 
melting temperature (Tm), melting enthalpy (ΔHm), and crystallinity degree (χc)

Composite PLA PCL

Tcc (K) ΔHcc (J·g−1) Tm (K) ΔHm (J·g−1) Xc (%) Tc (K) ΔHc (J·g−1) Tm (K) ΔHm (J·g−1) Xc (%)

P0% 370.5 35.2 438.9 23.0 13.1 303.4 68.8 329.7 66.0 56.5
P5% 365.5 25.5 437.9 47.4 23.4 307.1 63.9 329.0 68.0 58.3
P10% 364.9 25.7 437.3 43.8 19.4 306.3 69.1 329.0 72.2 62.6
P20% 362.2 16.9 435.5 37.1 24.5 307.0 69.9 328.9 59.1 51.3
P40% 359.9 22.8 435.2 46.1 24.9 308.2 67.9 328.7 69.5 60.0
P60% 358.1 32.1 434.4 42.6 11.3 306.2 79.5 331.7 94.6 81.7

Fig. 5  M(H) curves at a RT and b low temperature (10 K) for all the 
series of composites. The magnetization at 10 K is normalized to the 
value at 60 kOe (M60kOe)
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Due to their magnetic response, the as-prepared 3D print-
able filaments have the potential capability to act as localized 
heat sources activated by an externally applied AC magnetic 
field [70–72]. In order to test their heating capacity, the tem-
perature of the different filaments was measured (magnetic 
hyperthermia experiments) under an AC magnetic field of 
400 Oe (amplitude) and 311 kHz (frequency). Figure 6 shows 
the temperature evolution over time under the AC magnetic 
field when the filaments were in air (a) and (b) in water.

First, as can be observed in Fig. 6a, the temperature 
increases in all the filaments for very short periods of AC 
magnetic field exposure, i.e., 60 s. Afterwards, the filaments 
reach the thermal equilibrium, i.e., a maximum nearly con-
stant temperature (Tmax), when the generated heat by the 
NPs equals the outgoing heat flow to the environment. It 
is clearly shown that the heating capability under AC mag-
netic field arises from the presence of magnetic NPs in the 
composite as both the initial slope and Tmax increase with 
the NPs filling factor. Interestingly, it should be noted that 
for high NPs loadings, i.e., 60%, the temperature reached at 
a very short exposition time increases above the decompo-
sition temperature of the polymeric matrix and, thus, com-
pletely deteriorates the composite material. In addition, to 
prove the capability as heat generators in different envi-
ronments, similar experiments were performed in aqueous 
media (see Fig. 6b). Although a comparable trend between 

both experiments is observed, that is, larger heating with the 
increasing load of magnetic NPs, Tmax is noticeably lower for 
water media due to the much higher specific heat capacity 
of water. In fact, only the sample P60% is able to reach the 
boiling point of water (373 K at 1 atm).

Finally, in order to fully characterize the heat-generating 
capability of the filaments, the specific absorption rate (SAR) 
and generated power density (ρ) values were obtained from 
the dynamic magnetization (from 13 to 553 Oe) measured 
at 311 kHz (Eqs. 3 and 4, respectively) in aqueous media. 
Figure 7 displays the estimated SAR as a function of the 
amplitude, Happ , of the appliedmagnetic field for the series 
of different filaments.

As it can be seen, the SAR values, normalized with the 
mass of NPs in the filament, are practically identical and 
independent of the NPs filling factor. Indeed, this is the 
expected behavior considering that the heat generated by 
the composites arises only from the magnetic NPs. However, 
sample P60% displays a slightly higher SAR value which 
can be linked to the higher remanence R detected in the 
previous magnetometry characterization. Although there 
are not many studies in the literature similar to our current 
study, the obtained SAR values are comparable to those pre-
viously published by other authors measured under similar 
conditions (see Table 4): for composites with similar [73] or 
smaller [74] NPs sizes.

Table 3  Magnetic properties 
at RT and low temperature 
(10 K): M60kOe, magnetization 
at 60 kOe; R, reduced magnetic 
remanence; HC, coercive field. 
Maximum temperature, Tmax, 
reached during the magnetic 
heating experiments in air 
and water, for all the series of 
composites

Composite Magnetic properties Heat-induced efficiency

300 K 10 K Air Water

M60kOe (emu/g) M60kOe 
(emu/g)

R HC (Oe) Tmax (K) Tmax (K)

Fe3O4 NP 74 83 0.18 202 - -
P5% 3 4 0.24 235 395 309
P10% 6 7 0.24 232 452 -
P20% 13 14 0.24 226 513 338
P40% 27 31 0.26 230 632 -
P60% 41 46 0.29 235 611 371

Fig. 6  Temperature vs. time 
dependence for the filaments 
under an AC field of amplitude 
400 Oe and f = 311 kHz a in air 
and b in aqueous media
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Indeed, to corroborate the flexibility of the as-prepared 
magnetic filament, the maximum temperature increment 
( ΔT

max
 ) achieved during the magnetic hyperthermia experi-

ments (Fig. 7) is shown in Fig. 8a as a function of the gener-
ated power density (ρ). Moreover, in order to compare the 
individual heating capabilities for each polymeric compo-
sition, the generated ρ as a function of Happ is depicted in 
Fig. 8b. As expected, ρ increases with Happ [75].

Figure 8 can be employed in the design of efficient heat-
ing filament elements. For instance, according to Fig. 8a, to 
produce a temperature increase of, i.e., 100 K, it is neces-
sary to generate a ρ of 8.5 kW  m−3. This can be achieved 
as shown in Fig. 8b, employing 3 samples, P5%, P20%, and 
P60%, depending on the Happ applied in the experiment (100, 
200, or 380 Oe, respectively). Similarly, for a fixed Happ , the 
power generated for each sample depends on the NPs filling 
factor, being higher as NPs present in the sample increase.

This clearly reveals the versatility of these materials, where 
selecting a desired filling factor in the filaments and suitable 
applied magnetic field frequency and amplitude, the heating 

capacity can be adjusted to the needs of the user's application. 
For example, in medical applications, the Happ and f must not 
exceed a maximum limit ( Happ < 200Oe for f = 311 kHz) [76]. 
As it can be deduced from Fig. 8, in the safe region, a remark-
able heating capacity can be achieved by selecting a filling 
factor above 5%, where the effective temperature could be also 
controlled through the exposure time (see Fig. 6). However, 
for other types of applications, such as controlled drug release 
[27], heterogeneous catalysis [33], water electrolysis [34], gas 
capture [35], or materials synthesis [77], the inductive heating 
generated falls on the necessity to overcome these limitations. 
Therefore, in these cases, filaments with high ρ as those as 
the magnetic composites herein presented can be envisaged as 
novel heat generators based on easy and low-cost manufactur-
ing for FDM 3D printing technology.

Finally, the study is not complete if the printability of 
the prepared filaments is not clearly demonstrated. For 
this purpose, two different objects were printed: cubes of 
10 × 10 × 10 mm with a circular section hole of 5 mm employ-
ing all the set of composites (P5%—P60%) and a single 
15 × 40 mm rectangular mesh with a 0.7 × 0.8 mm pattern 
using 10% nanoparticle loading (P10%) filament (see Fig. 9). 
In both cases, the printed objects show homogeneous and well-
defined morphology corroborating the capability of the devel-
oped composites as novel easy manufacturing and economic 
magnetic raw material for FDM 3D printing technology.

Fig. 7  SAR values of P5%, P10%, P20%, P40%, and P60% samples

Table 4  Comparison between the measured SAR values for P5%, P20%, 
and P60% samples with other composites reported in the literature

Material SAR (W g−1) Frequency 
(KHz)

Magnetic 
field (Oe)

Ref

P5% 30 311 200 -
P20% 32 311 200 -
P60% 39 311 200 -
Fe3O4/MBG/PCL Up to 50 409 180 [73]
Polysaccharide-derived 

hydrogels with  Fe3O4

100–300 260 160 [74]

Fig. 8  Generated power density 
ρ as a function of a maximum 
temperature increment ΔTmax 
and b the applied magnetic field 
(Happ)
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4  Conclusions

In this study, we present the preparation of easy-manufacturing  
and low-cost magnetically active composites for raw materi-
als for 3D printing technologies. The magnetic composite has 
been prepared by solution casting methodology mixing com-
mercial  Fe3O4 magnetic NPs embedded in a polymer mixture 
of PLA and PCL. The results reveal the possibility to extrude 
continuous and flexible magnetic filaments to be used in com-
mercial 3D printers with variable NP-to-polymers composi-
tions in the range of 5 to 60% in wt. While at low NPs con-
centrations, the filaments show a regular and dense structure, 
as the filling factor increases the filament becomes rougher 
with a consequent enhancement of the porosity. However, 
the NPs are well distributed along the whole structure inde-
pendently of the NPs filling factor, and the increased poros-
ity does not affect the macroscopic aspect of the extruded 
filament. Similarly, the thermal stability of the composite 
depends on the NPs loading, showing an overall reduction 
of the decomposition temperature of the polymeric blend as 
NPs filling increases. While the decomposition temperature 
decreases with the filling factor in both PLA and PCL poly-
mers, only detectable changes in the melting and crystalliza-
tion temperatures are found for the PLA. On the other hand, 
the inclusion of the magnetic NPs into the polymeric blend 
confers to the composite a magnetic response with saturation 
magnetization proportional to the NPs concentration. Taking 
advantage of the filament’s magnetic character, their capabil-
ity to generate heat under the application of low-frequency AC 
magnetic fields was analyzed. The composite can increase the 
temperature for very short periods (60 s) of AC magnetic field 
exposure (311 kHz and 400 Oe) in different environments. 
Lastly, the specific abortion rate (SAR) and absorbed power 
density (ρ) values were measured, obtaining 182 W  g−1 and 
45 kW  m−3 maximum values at 311 kHz. These results expose 
the versatility of these easy manufacturing and low-cost fila-
ments, where selecting a desired composition, the heating 
capacity can be adjusted to the needs of the user in applica-
tions where magnetic heat induction plays a key role such as 
magnetic hyperthermia, drug release, heterogeneous catalysis, 
water electrolysis, gas capture, or materials synthesis.
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