
TRANSACTIONS ON FUZZY SYSTEMS 1

Minimal Determinization Algorithm
for Fuzzy Automata

Aitor G. de Mendı́vil Grau Stefan Stanimirović Federico Fariña

Abstract—The determinization of fuzzy automata is a well-
studied problem in theoretical computer science celebrated for its
practical applications. Indeed, in the fields of fuzzy discrete event
systems, fault diagnosis, clinical monitoring, decision-making
systems, and model checking, when a suitable model of a fuzzy
automaton is employed, it is desirable to find its language-
equivalent deterministic version because of its computational
efficiency. Although many methods have been developed to
convert a fuzzy automaton to its language equivalent fuzzy
deterministic finite automaton (FDfA), they can be applied only
for fuzzy automata defined over specific underlying sets of truth
values. For example, recently developed determinization methods
employ the concept of maximal factorization, which can be
defined only on non-locally finite lattices or the Boolean lattice. In
addition, not all such determinization methods result in a minimal
FDfA. On the other hand, even though such determinization
methods have been developed for fuzzy automata over specific
underlying structures, these methods cannot be generalized for
fuzzy automata over locally finite lattices. This article focuses
on filling this gap and develops a novel method for computing a
minimal FDfA for a fuzzy automaton defined over a locally finite
and divisible residuated lattice. Our method uses the new concept
of a reduction graph that emerges from the strict order relation
on the resulting fuzzy states, according to which we can construct
all minimal FDfAs equivalent to a given fuzzy automaton.

Index Terms—Fuzzy finite automata, minimal determinization
method, complete deterministic fuzzy automaton, Brzozowski’s
procedure, factorization of fuzzy states, locally finite lattices.

I. INTRODUCTION

Nondeterministic finite automata (NfAs) are suitable math-
ematical models for designing language recognizers; however,
deterministic finite automata (DfAs) are more computationally
efficient. This is the main reason for designing procedures to
convert a NfA into an equivalent DfA [1][2]. It is well-known
that the worst-case time complexity of this conversion is
exponential in the size of the input NfA. One way to offset this
cost is that the determinization procedure outputs a minimal
DfA instead of any DfA equivalent to the input automaton.
Brzozowski’s double reversal determinization algorithm is one
of the best-known minimal determinization procedures [3].

Fuzzy finite automata (FfAs) effectively generalize NfAs
and have practical applications in environments where un-
certainty is naturally present, including fuzzy discrete event

Aitor G. de Mendı́vil Grau is with the Departamento de Estadı́stica,
Informática y Matemáticas, Universidad Pública de Navarra, Pamplona, Spain,
31006.
E-mail: aitor.gonzalezdemendivil@unavarra.es

Stefan Stanimirović is with the University of Niš, Faculty of Sciences and
Mathematics, Višegradska 33, 18000 Niš, Serbia
E-mail: stefan.stanimirovic@pmf.edu.rs

Federico Fariña is with the Departamento de Estadı́stica, Informática y
Matemáticas, Universidad Pública de Navarra, Pamplona, Spain, 31006.
E-mail: fitxi@unavarra.es

Manuscript received March, 2023

systems, decision making, fault diagnosis, clinical monitoring,
artificial intelligence, and model checking (see [4], [5], [6], [7],
[8], [9], [10], [11] for concrete examples). In all such practical
situations, it is suitable to transform a FfA to an equivalent
deterministic version of it. As an output of the determinization
method, this paper uses the notion of the fuzzy deterministic
finite automaton (FDfA) [12]. In a FDfA, initial state, final
states, and transitions are labelled with any truth value. Thus,
FDfAs include, as a particular case, ordinary DfAs equipped
with fuzzy final states. Such fuzzy automata are also called
crisp deterministic fuzzy finite automata (cDFfAs) in the
literature [13]. An FDfA is minimal if it has the smallest
size among all FDfAs equivalent to it. From the definitions
of FDfAs and cDFfAs, we can conclude that: (i) the size of
a minimal FDfA is always less than or equal to the size of a
minimal cDFfA equivalent to it since a cDFfA is a particular
case of an FDfA; and (ii) a minimal FDfA may not be unique,
as there may exist many equivalent FDfAs of the same size
that may have different values in their components, different
topology, or both.

In this paper, we deal with FfAs with membership values in
a complete residuated lattice (denoted L for short) [14][15].
Our main goal is to design a determinization procedure for
FfAs with membership values in a divisible and locally finite
L that returns a minimal FDfA equivalent to the input FfA.
As there may not exist the unique minimal FDfA, the design
of such a procedure is challenging.

A. Related works

We provide an overwiev of literature that has as an objective
the design of a minimal determinization procedure for FfAs
over L. FfAs over a locally finite L only recognize fuzzy
languages of finite image [13][16]; however, they are always
determinizable by the fuzzy accessible subset construction
provided in [17]. The output cDFfA is called the Nerode
automaton of A [18], denoted N(A). Further improvements
of this construction have been achieved in [19], [20]. In [21],
Jančić and Ćirić apply the construction N(r(N(r(A))))1 to
obtain an equivalent minimal cDFfA to A. In [22], Micić
et al. propose the method of a degree of language inclusion
and obtain a minimal cDFfA. Determinization methods whose
objective is to convert a FfA to an equivalent (minimal) cDFfA
do not achieve the primary goal of this paper by the argument
given in (i) above.

FfAs over a non-locally finite L may recognize fuzzy lan-
guages of infinite image. Therefore, determinization methods
for such kind of automata must necessarily return equivalent

1r(A) denotes the reverse automaton of A.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3268406

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 27,2023 at 10:36:36 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON FUZZY SYSTEMS 2

FDfAs. Determinization based on factorization of fuzzy states
is introduced in [23] to convert a FfA A over a divisible
L into an equivalent FDfA, denoted D(A). The construction
D(r(D(r(A)))) is applied in [24] to obtain a minimal FDfA
equivalent to A when the factorization of fuzzy states is
maximal. A drawback of this construction is that many FfAs
are not determinizable. A variant of this construction has been
provided in [25] using the notion of right invariant quasi-
orders and an extended determinization via factorization [26].
Conditions for the determinization of FfAs using maximal fac-
torizations have been studied in [23], [24], [26]. Unfortunately,
these methods are not applicable to FfAs over a locally finite
L because there is no maximal factorization for such lattices
except for the Boolean lattice [27].

To our knowledge, the only determinization methods that
return a minimal FDfA over a locally finite L have been
proposed in [28] and [29]. The method developed by Li and
Qiu [28] is applicable for FfAs over totally ordered lattices
using ∨ and ∧ as underlying operations. Their method is
based on solving a finite set of fuzzy polynomial equations
and has not been generalized for other lattices. In [29], the
authors proposed a method based on two phases: (phase i)
the procedure first constructs D(r(N(r(A))); and, (phase ii)
this output automaton reduces its size when some pairs of
states fulfil certain particular conditions. This method is more
efficient than the previous one (see Table 4 in [29]).

The particular properties of the factorization of fuzzy states
over the Gödel structure that allow to define the conditions
for state reduction in (phase ii) [29], cannot be generalized
to other divisible L. We know, by the results in [23][26],
that the construction D(r(N(r(A))) is applicable to FfAs
over a divisible and locally finite L. This fact motivates the
study of the properties of this construction for such lattices.
However, the idea that the size of D(A) is less than the
size of N(A) for any FfA A over the Gödel structure is
wrong. A counterexample to Property 2 in [29] is provided
in Figure 7 from [26]. In the method we carry out, we must
ensure automata finiteness since no result in the literature
guarantees that FfAs over divisible and locally finite L are
always determinizable via factorization.

B. Paper contributions and organization

In this paper, we denote by Ac a crisp co-accessible co-
deterministic FfA (cCFfA) equivalent to a FfA A. Proper-
ties of Ac are indicated in subsection II-C after presenting
common preliminaries for lattices, factorization and FfAs
(Section II). Section III presents FDfAs and their conditions
for minimality. The determinization method via factorization
of fuzzy states and a method for state reduction are briefly
introduced in Section IV. In Section V, we state our first
contribution (Theorem 1): the automaton D(Ac), obtained
by the determinization via factorization of a cCFfA, is a
fuzzy deterministic finite automaton that satisfies the necessary
conditions for minimality. Moreover, its size is always less
than or equal to the size of a minimal cDFfA equivalent to it.
This result is possible thanks to the fact that the factorization of
the fuzzy states in D(Ac) behaves like a maximal factorization

for the values obtained through the paths of such an automaton
(Lemma 3). D(Ac) may not be a minimal FDfA; however,
we demonstrate (Theorem 3) that, in that case, its fuzzy states
fulfill a strict order relation � that defines a graph, denoted
G(D(Ac)), called the reduction graph of D(Ac). Using this
graph, we can build all possible minimal FDfAs equivalent to
A. This new contribution is provided in Section VI together
the algorithms to obtain a minimal FDfA equivalent to A. The
Supplementary Material contains the proofs of the results not
provided in the paper.

II. PRELIMINARIES

In this paper, we use complete residuated lattices as struc-
tures of membership values. A complete residuated lattice is
an algebra L = (L,∨,∧,⊗,→, 0, 1) such that

(L1) (L,∨,∧, 0, 1) is a complete lattice;
(L2) (L,⊗, 1) is a commutative monoid;
(L3) for all x, y, z ∈ L: x⊗ y ≤ z ⇔ x ≤ y → z.

Operations ⊗ and → form an adjoint pair (L3). They are
intended for modeling the conjunction and implication of the
corresponding logical calculus. Supremum (

∨
) and infimum

(
∧

) are interpreted as the existential and general quantifier,
respectively. With respect to the order ≤, ⊗ is isotonic in
both arguments, and → is isotonic in the second and antitonic
in the first argument. In addition, for any x, y, z, w ∈ L,

(L4) x⊗ y ≤ x and x ≤ y → x;
(L5) x→ x = 1 and 1→ x = x;
(L6) (x→ y)⊗ (z → w) ≤ (x⊗ z)→ (y ⊗ w);
(L7) x⊗ (x→ y) = y if and only if (∃z)x⊗ z = y;
(L8) (x⊗ y)→ z = x→ (y → z) = y → (x→ z);
(L9) x⊗

∨
i∈I yi =

∨
i∈I x⊗ yi, for any {yi}i∈I ⊆ L.

Further properties of complete residuated lattices are in
[30], [31], [32]. In this paper, we assume that L satisfies the
following conditions:

(C1) L is a totally ordered set w.r.t ≤.
(C2) L is divisible, i.e., for every x, y ∈ L with x ≥ y
there exists z ∈ L such that x⊗ z = y.
(C3) (L,⊗, 1) is zero-divisor free: for every x, y ∈ L,
x⊗ y = 0 if and only if x = 0 or y = 0.
(C4) The algebra L∗ = (L,∨,⊗, 0, 1), obtained from L,
is locally finite (cf. [16]).

In the following, we present the notion of fuzzy states and
fuzzy state-transition relations. Let Q be a finite non-empty
set of states. Any mapping S : Q → L, briefly S ∈ LQ,
is called a fuzzy state of Q. The degree of membership of
each state q in a fuzzy state S is the value S(q). Equality
(=) and inclusion (ordering, ≤) of fuzzy states are defined
coordinate-wise as it is common in fuzzy sets [30][31]. The
support of a fuzzy state S ∈ LQ is the subset of states defined
by Supp(S) = {q ∈ Q|S(q) 6= 0}. In this paper, 0 denotes the
fuzzy state in which all states have value 0, i.e., Supp(0) = ∅.

Any mapping T : Q × Q → L, briefly T ∈ LQ×Q, is
called a fuzzy (state-transition) relation on Q. The degree
of a transition from a state p to q under a fuzzy relation T
is represented by the membership value T (p, q). The (crisp)
equality relation on Q is denoted by EQ, where EQ(p, p) = 1
for any p ∈ Q and 0 otherwise.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3268406

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 27,2023 at 10:36:36 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON FUZZY SYSTEMS 3

In this paper, we use the standard fuzzy definition of compo-
sition operation (

∨
−⊗) for fuzzy relations and fuzzy subsets

which is commonly denoted by ◦. In addition, we use x⊗S to
denote the fuzzy subset on Q such that (x⊗S)(q) = x⊗S(q)
for any x ∈ L, S ∈ LQ, and q ∈ Q.

A. Factorization of fuzzy states

Given L and a set of states Q (non-empty), the function
g : LQ → L is defined as follows for any S ∈ LQ,

g(S) =
∨
q∈Q

S(q) with S 6= 0; and g(0) = 1 (1)

By using the previous function g(.), we define a new
function f : LQ → LQ as follows

f(S)(q) = g(S)→ S(q) (2)

for any S ∈ LQ and q ∈ Q. Let us observe that g(.) and f(.)
are well defined functions. The pair of functions (f, g) satisfy
the following properties for any S ∈ LQ, q ∈ Q and x ∈ L:

(F1) g(S) ≥ S(q);
(F2) g(S) > 0;
(F3) f(S) ≥ S;
(F4) f(S)(q) = 0⇔ S(q) = 0;
(F5) g(S)⊗ f(S) = S;
(F6) g(x⊗ S) = x⊗ g(S) with x 6= 0;
(F7) f(S) ≤ f(x⊗ S) with x 6= 0;
(F8) f(S) = f(f(S));
(F9) S 6= 0⇒ ∃q : f(S)(q) = 1

The pair (f, g) is a factorization of LQ in the sense given
in [23]. Properties (F1)-(F9) were proved in [23][26]. The
factorization (f, g) depends on both L and Q. Each particular
factorization will be clear in its context of application without
introducing further notation.

B. Fuzzy languages and automata

As usual, an alphabet is a finite non-empty set of symbols
denoted by Σ, and the set of words is the free monoid over Σ
denoted by Σ∗. We denote the empty word Σ∗ by ε. In other
words, a word σ ∈ Σ∗ of length |σ| = n, n ≥ 0, is a finite
sequence σ = σ1...σn such that σi ∈ Σ, for every i such that
1 ≤ i ≤ n. If |σ| = 0 then σ = ε. The concatenation of two
words α and β of Σ∗ is denoted simply as αβ.

Given L, a fuzzy language is any mapping from Σ∗ into
L. Fuzzy languages can also be treated as formal power series
over Σ∗ and L [33][34]. The set of all possible fuzzy languages
on Σ∗ and L is denoted by LΣ∗ .

Let ` be a fuzzy language. The derivative of ` by a word
α is the fuzzy language α−1` defined by (α−1`)(γ) = `(αγ)
for any word γ. In addition, β−1(α−1`) = (αβ)−1` for any
words α and β.

A fuzzy finite automaton (FfA) over L, or simply just a FfA,
is a tuple A = (Q,Σ, I, T, F) where Q is a finite nonempty
set of states, Σ is an alphabet, I ∈ LQ is the initial fuzzy state,
F ∈ LQ is the final fuzzy state, and T : Σ → LQ×Q defines
a fuzzy transition on Q for each symbol of the alphabet. The

extension of T : Σ→ LQ×Q to T ∗ : Σ∗ → LQ×Q is defined
as follows:

(i) T ∗(ε) = EQ, and
(ii) T ∗(ασ) = T ∗(α) ◦ T (σ) for any α ∈ Σ∗, σ ∈ Σ

(3)

To simplify notation, T ∗ is also denoted by T . By associa-
tivity, T (αβ) = T (α)◦T (β) for any two words α and β. The
fuzzy language recognized by A, denoted by [A], is defined
by (4). For any word α,

[A](α) = I ◦T (α)◦F =
∨

p,q∈Q
I(p)⊗T (α)(p, q)⊗F (q) (4)

Let us observe that as L∗ is locally finite and Q is a finite
set, the set {I ◦T (α)|α ∈ Σ∗} is also finite. This fact implies
that [A] is a fuzzy language of finite image [17].

The size of a FfA A, denoted by |A|, is the cardinality of
Q. In addition, two FAs, A and A′, are (language) equivalent
if and only if [A] = [A′].

C. Crisp co-accessible co-deterministic FfA

A FfA A = (Q,Σ, I, T, F) is a crisp co-accessible co-
deterministic FfA (cCFfA) if it satisfies the following con-
ditions:

- (unique final state) F = {e/1}, i.e., it has a unique final
state with membership value 1.
- (crisp transitions) T (σ)(p, q) ∈ {0, 1} for any p, q ∈ Q
and σ ∈ Σ.
- (complete backward) For any q ∈ Q and σ ∈ Σ there
is a state p such that T (σ)(p, q) = 1.
- (co-deterministic) For any σ ∈ Σ and p, p′, q ∈ Q, if
T (σ)(p, q) = 1 and T (σ)(p′, q) = 1 then p = p′.
- (co-accessible) For every state p ∈ Q there is a word β
such that T (β)(p, e) = 1.

Let A = (Q,Σ, I, T, {e/1}) be a cCFfA. If two states p and
p′ satisfy that T (β)(p, e) = 1 and T (β)(p′, e) = 1 for the same
word β then p = p′. This is because A is co-deterministic.
Since A is complete and co-deterministic, the composition
T (β) ◦ F = T (β) ◦ {e/1} turns out a singleton crisp state
{p/1} where p is the unique state such that T (β)(p, e) = 1 .
This state is denoted by eβ (when A is clear in the context). In
fact, the set of states Q is the finite set {eβ |β ∈ Σ∗} because
A is co-accessible. This discussion allows us to calculate the
fuzzy language recognized by a cCFfA A. Let us observe that
for any fuzzy state S ∈ LQ and word β

S ◦ T (β) ◦ {e/1} = S(eβ) (5)

Thus, [A](β) = I ◦ T (β) ◦ {e/1} = I(eβ) for any word β. In
this paper, we denote by Ac a cCFfA equivalent to a FfA A.

III. FUZZY DETERMINISTIC FINITE AUTOMATA

Let A = (Q,Σ, I, T, F) be a FfA. Then A is said to be a
fuzzy deterministic finite automaton (FDfA) if it satisfies the
following properties:

- A has a unique initial state, that is, the initial fuzzy
state can be represented as I = {u/I(u)}.
- A is complete, that is, for any σ ∈ Σ and p ∈ Q, there
exists q ∈ Q such that T (σ)(p, q) > 0.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3268406

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 27,2023 at 10:36:36 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON FUZZY SYSTEMS 4

- A is deterministic, that is, for any σ ∈ Σ and p, q, q′

∈ Q, if T (σ)(p, q) > 0 and T (σ)(p, q′) > 0 then q = q′.
In other words, a FDfA is a fuzzyfication of an ordinary DfA.

For a FDfA A = (Q,Σ, {u/I(u)}, T, F), the fuzzy transition
relation T induces the function δT : Q × Σ → Q in the
following way: δT (p, σ) = q ⇔ T (σ)(p, q) > 0 for any σ ∈ Σ
and p, q ∈ Q.

Furthermore, we define the extension δ∗T : Q×Σ∗ → Q by
δ∗T (p, ε) = p and δ∗T (p, ασ) = δ(δ∗T (p, α), σ) for any σ ∈ Σ,
α ∈ Σ∗ and p ∈ Q. The state δ∗T (p, α) represents the unique
reachable state from p via the word α, denoted simply by pα.
Let us observe that every state p is reachable by the empty
word ε, that is, p = pε. By using previous notation, values of
transitions between states are calculated as follows

T (ε)(p, pε) = 1
T (ασ)(p, pασ) = T (α)(p, pα)⊗ T (σ)(pα, pασ)
T (α)(p, q) = 0 otherwise

(6)

with α ∈ Σ∗ and σ ∈ Σ. By associativity, T (αβ)(p, pαβ) =
T (α)(p, pα)⊗T (β)(pα, pαβ) for any p ∈ Q and words α and
β. Let us observe that for the zero-divisor free condition in L,
for any α ∈ Σ∗, T (α)(p, q) > 0⇔ q = pα holds.

Thus, a state q ∈ Q is said accessible if there is a word α
such that q = uα, i.e., q is reachable from the initial state u
by the word α. By (6) and (4), the fuzzy language recognized
by a FDfA A is

[A](α) = I(u)⊗ T (α)(u, uα)⊗ F (uα) (7)

for any α ∈ Σ∗. Given a word α and an accessible state uα,
[Auα] is the fuzzy language defined by

[Auα](β) = T (β)(uα, uαβ)⊗ F (uαβ) (8)

for any word β. Thus, it is simple to prove that

α−1[A] = (I(u)⊗ T (α)(u, uα))⊗ [Auα] (9)

for any word α. In order to simplify the presentation of some
equations, we denote the truth value of the path from the initial
state u to the state uα reached by a word α by:

wA(α) = I(u)⊗ T (α)(u, uα) (10)

We say that a FDfA A is accessible if the set of states Q
of A is the finite set {uα|α ∈ Σ∗}.

Let us note that, when a FDfA A satisfies I(u) = 1
and T (σ) is a crisp relation on Q, for every σ ∈ Σ, then,
equation (7) becomes [A](α) = F (uα). In this case, A is
called crisp-deterministic fuzzy finite automaton (cDFfA) in
the literature [13]. A cDFfA is just a particular case of a FDfA.

A. Conditions for a minimal FDfA

In this paper, we deal with the problem of finding a minimal
FDfA equivalent to a given FfA. Unlike the case of ordinary
DfAs, there may be several topological different minimal
FDfAs that are equivalent to the same FfA. This is the reason
to present the minimality conditions for FDfAs .

Definition 1: A FDfA A is a minimal FDfA if |A| ≤ |A′|
for any FDfA A′ equivalent to A.

Property 1: Let A = (Q,Σ, {u/I(u)}, T, F) be a FDfA
over L. If A is minimal then A satisfies the next necessary
conditions:

1) A is an accessible FDfA.
2) A is observable, i.e., for any p, q ∈ Q, [Ap] = [Aq]

implies p = q.
Previous necessary conditions are proved similarly to the

given for ordinary DfAs [1]. However, these properties are
not sufficient for characterizing a minimal FDfA. In other
words, there may be FDfAs that are accessible and observable,
but they are not minimal FDfAs. Next property is a sufficient
condition for a FDfA to be a minimal one.

Property 2: Let A = (Q,Σ, {u/I(u)}, T, F) be an
accessible FDfA over L, then

¬(∃α, β ∈ Σ∗, ` ∈ LΣ∗ , x, y ∈ L :
uα 6= uβ and α−1[A] = x⊗ ` and β−1[A] = y ⊗ `)
implies A is a minimal FDfA

(11)

IV. DETERMINIZATION OF FUZZY FINITE AUTOMATA

The common method for determinization of a FfA A =
(Q,Σ, I, T, F) over L (locally finite) is via the construction
of the Nerode automaton of A, N(A). This is a well-known
determinization method introduced by Ignjatović et al. [17].
N(A) is a cDFfA equivalent to A whose finite set of states is
QN(A) = {Iα|α ∈ Σ∗} where Iα = I ◦T (α) for any word α.
A generalization of this construction, based on the notion of
factorization of fuzzy states, was provided in [23]. We restate
this construction in the following definition.

Definition 2: For a FfA A = (Q,Σ, I, T, F), the deter-
minization of A via factorization (f, g) is the fuzzy automaton
D(A) = (QD(A),Σ, ID(A), TD(A), FD(A)) defined as follows:
1) Set of states. QD(A) = {Rα|α ∈ Σ∗} where

(i) Rε = f(I);
(ii) Rασ = f(Rα ◦ T (σ)), α ∈ Σ∗, σ ∈ Σ.

(12)

2) Initial fuzzy state. ID(A) = {f(I)/g(I)}.
3) The fuzzy transition function TD(A) : Σ→ LQD(A)×QD(A)

fulfills

TD(A)(σ)(P, S) = g(P ◦ T (σ)) if P = Rα, S = Rασ;
TD(A)(σ)(P, S) = 0 otherwise.

(13)
for any P , S ∈ QD(A) and σ ∈ Σ.
4) Final fuzzy state. FD(A)(P) = P ◦ F , P ∈ QD(A).

The automaton D(A) provided in Definition 2 is an ac-
cessible fuzzy deterministic automaton2 equivalent to A (see
further details in [23][26]). By Definition 2, each state in
QD(A) is a fuzzy state of Q. As D(A) is deterministic, then,
δ∗TD(A)

(Rε, α) is well-defined and Rα represents the accessible
state from the initial state Rε (f(I)) by the word α. In the rest
of this paper, D(A) denotes the fuzzy automaton obtained by
means of Definition 2. The next lemma establishes the main
properties of D(A).

2Formally, D(A) may be not a finite automaton. This fact does not
invalidate the results provided in this Section since it is handled as a well-
defined mathematical object.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3268406

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 27,2023 at 10:36:36 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON FUZZY SYSTEMS 5

Lemma 1: Let A = (Q,Σ, I, T, F) be a FfA. The automa-
ton D(A) satisfies the following properties for any α, β ∈ Σ∗

and σ ∈ Σ:
1) Rα ◦ T (σ) = TD(A)(σ)(Rα, Rασ)⊗Rασ
2) I ◦ T (α) = wD(A)(α)⊗Rα
3) [A] = [D(A)] (language equivalence)
4) [D(A)Rα](β) = Rα ◦ T (β) ◦ F
Let us assume that D(A) is a finite automaton for a given

FfA A (finiteness of D(A) will be solved in Section V). The
construction of D(A) is based on the following algorithm [23]
that we include here for the convenience of the reader.

Algorithm 1 Construction of D(A)

Input: A FfA A = (Q,Σ, I, T, F)
Output: D(A) = (QD(A),Σ, ID(A), TD(A), FD(A))

1: TD(A)(.)(., .)← 0
2: ID(A) ← {f(I)/g(I)}
3: QD(A) ← {f(I)}
4: Initialize an empty queue NewSt of fuzzy states
5: Enqueue(NewSt, f(I))
6: while NewSt 6= ∅ do
7: P ← Dequeue(NewSt)
8: FD(A)(P)← P ◦ F
9: for all σ ∈ Σ do

10: S ← f(P ◦ T (σ))
11: TD(A)(σ)(P, S)← g(P ◦ T (σ))
12: if S /∈ QD(A) then
13: QD(A) := QD(A) ∪ {S}
14: Enqueue(NewSt, S)
15: end if
16: end for
17: end while
18: return D(A)

Algorithm 1 is a straightforward implementation of Defini-
tion 2 for a FfA A. In each step of the algorithm, we take a
state that has not been processed yet (ln. 7). For each symbol
σ, we generate (via factorization (f, g)) its successor (ln. 10)
and add a transition marked σ from the state to its successor
(ln. 11). If a follower represents a newly generated state (i.e., it
is not equal to a previously generated state), then we add that
state to the set of states of QD(A) and the queue of unprocessed
states (NewSt) (lns. 13 and 14 resp.). After we have created
all successors for a given state P , this state will no longer
participate in the computation since it has been removed from
the queue (ln. 7). Initially, the queue of unprocessed states
and the set of states of QD(A) contains f(I) (the unique
initial state). The final fuzzy state is progressively calculated
in line 8 by computing FD(A)(P) for each state. Algorithm 1
ends when the set of states QD(A) is obtained, or equivalently,
when there are no more unprocessed states (ln. 6). Thus, the
algorithm is correct to output the accessible FDfA D(A). In
addition, as each state in QD(A) is a fuzzy state of Q, it
is simple to prove that the computation time of Algorithm
1 is proportional to r(|Q| + m(2|Q| + |Q|2 + r|Q|)) where
r = |QD(A)| and m = |Σ|. In the case that |QD(A)| = |Q|, its
asymptotic complexity is O(m|Q|3).

V. DETERMINIZATION OF A CCFFA: MAIN RESULTS

Let Ac = (Q,Σ, I, T, {e/1}) be a cCFfA equivalent to the
FfA A. In this section, we prove that D(Ac) is a FDfA equiv-

alent to A that satisfies the minimality necessary conditions,
i.e., D(Ac) is an accessible and observable FDfA. We start
with two fundamental properties to achieve such goal.

Lemma 2: Let Ac = (Q,Σ, I, T, {e/1}) be a cCFfA. For
any fuzzy state S ∈ LQ and a symbol σ ∈ Σ,

f(f(S) ◦ T (σ)) = f(S ◦ T (σ)) (14)

By a simple induction on the length of a word α and using
(14) and Definition 2, it is relatively simple to prove (15.a)
in the next lemma. In addition, (15.b) is derived directly by
Lemma 1.2 and (15.a).

Lemma 3: Let Ac = (Q,Σ, I, T, {e/1}) be a cCFfA. Then,
D(Ac) fulfills that, for each word α ∈ Σ∗:

(a) f(Iα) = Rα where Iα = I ◦ T (α);
(b) f(wD(Ac)(α)⊗Rα) = Rα

(15)

The importance of Lemma 3 lies in the fact that if the
factorization f(.) had been maximal3, then eq. (15.a) would
have been obtained directly by using Lemma 1.2. This is
not the case for the considered lattices, since they do not
admit maximal factorizations (cf. [27]). However, under the
conditions given in Lemma 3, the factorization behaves as a
maximal factorization for the values of the paths that reach
accessible states.

Theorem 1: Let Ac = (Q,Σ, I, T, {e/1}) be a cCFfA
equivalent to a FfA A. Then, D(Ac) is an accessible and
observable FDfA equivalent to A. Furthermore, |D(Ac)| ≤
|N(Ac)|.

Proof: The automaton D(Ac) is an accessible fuzzy deter-
ministic automaton equivalent to Ac (see Section IV). As Ac is
equivalent to A, then D(Ac) is also equivalent to A. We prove
that D(Ac) is a finite automaton. Let QN(Ac) = {Iα|α ∈ Σ∗}
where Iα = I ◦ T (α) ∈ LQ for any word α. We recall
that QN(Ac) is the set of states of the Nerode Automaton
of Ac. We know that this set is finite because L is locally
finite [17]. Therefore, the set {f(Iα)|α ∈ Σ∗} is a finite set
because f(.) is a well defined function. By (15) in Lemma 3,
f(Iα) = Rα. In conclusion, by Definition 2, the set of states
QD(Ac) = {Rα|α ∈ Σ∗} is finite. This fact also implies that
|D(Ac)| ≤ |N(Ac)| is true. Therefore, D(Ac) is an accessible
FDfA equivalent to A.
Now, we prove that D(Ac) is observable. D(Ac) is an acces-
sible FDfA. Let us consider two different words α and β and
the accessible states Rα and Rβ . Let us assume that Rα 6= Rβ
but [D(Ac)Rα] = [D(Ac)Rβ]. By Lemma 1.4, for each word
γ, [D(Ac)Rα](γ) = Rα ◦T (γ)◦{e/1} = Rβ ◦T (γ)◦{e/1} =
[D(Ac)Rβ](γ). Then, by (5), Rα(eγ) = Rβ(eγ). Since, Ac is
a cCFfA, Q = {eγ |γ ∈ Σ∗}; in addition, Rα, Rβ ∈ LQ.
Therefore, Rα = Rβ . This is a contradiction with the initial
assumption. In conclusion, D(Ac) is observable. The proof of
the Theorem concludes.

A. Construction of D(Ac) and discussion

Let A = (QA,Σ, IA, TA, FA) be a FfA over L (locally fi-
nite). The construction r(N(r(A)) by using automata reversal

3A maximal factorization satisfies that f(S) = f(x⊗ S) with x 6= 0 for
any fuzzy state S.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3268406

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 27,2023 at 10:36:36 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON FUZZY SYSTEMS 6

operation, r(.), and the Nerode automaton, N(.) [17], returns
a cCFfA Ac equivalent to A as it was proved in [22][21].
This automaton has at most kn states where n is the size of
A and k is a number indicating the different values in the
finite subsemiring induced by the finite set {IA(q), FA(q),
TA(σ)(p, q)|p, q ∈ QA, σ ∈ Σ}. The worst case computation
time of this construction is O(mnk2n) for an alphabet with
m symbols following the argumentation given in [20]. By the
result in [21], the automaton N(Ac) is the minimal cDFfA
equivalent to A. Thus, N(Ac) has at most kn states and its
worst case computation time is O(mk3n) [22][21].

Let Ac = (Q,Σ, I, T, F) be the cCFfA r(N(r(A)) equiv-
alent to A. In our case, the construction of D(Ac) is based
on the Algorithm 1. By Theorem 1 and the discussion above,
|D(Ac)| ≤ |N(Ac)| ≤ kn holds. As each state in QD(Ac) is a
fuzzy state of Q (|Q| ≤ kn), then the worst computation time
of Algorithm 1 is O(m|Q|3); i.e., its worst case complexity
is O(mk3n).

The relevance of Theorem 1 is due to the following facts:
(a) it proves that D(Ac) is an accessible and observable FDfA
equivalent to A whose size is less than or equal to the size of
the minimal cDFfA equivalent to A; and (b) the worst case
time complexity to build D(Ac) is less than or equal to the
worst case time complexities obtained by current algorithms
in the literature to build a minimal cDFfA.

Example 1: In this example we show how to build the
automaton D(Ac) using Algorithm 1 presented in Section IV.
The complete residuated lattice used in the example is L =
([0, 1],max,min,⊗,→, 0, 1). L is based on a continuous t-
norm in [0, 1] which is defined by

x⊗y =

{
max(0.3, x+ y − 1) if (x, y) ∈ [0.3, 1]

2

min(x, y) otherwise
(16)

and whose residuum is

x→ y =

 1 if x ≤ y
1− x+ y if 0.3 < y < x ≤ 0.7

y otherwise
(17)

We consider that the cCFfA Ac = (Q,Σ, I, T, F) has
been previously constructed. In the example, the alphabet is
Σ = {a, b, c, d}. The set of states Q has nine states numbered
as q0 to q8. The initial fuzzy state is defined by the row
I = (1, 0.9, 0.4, 0.7, 0, 0.4, 0.3, 0.5, 0). The final fuzzy state
is defined by the column F = (1, 0, 0, 0, 0, 0, 0, 0)T. Each
matrix defining the transitions for each symbol are long, so
we only show here the transitions having value 1 (the rest of
transitions have value 0):
For T (a), (q1, q0), (q1, q1), (q5, q4), (q5, q5), (q8, q2), (q8, q3),
(q8, q6), (q8, q7), (q8, q8). For T (b), (q2, q0), (q2, q1), (q6, q4),
(q6, q5), (q8, q2), (q8, q3), (q8, q6), (q8, q7), (q8, q8). For T (c),
(q3, q0), (q3, q1), (q7, q4), (q7, q5), (q8, q2), (q8, q3), (q8, q6),
(q8, q7), (q8, q8). For T (d), (q4, q0), (q8, q1), (q8, q2), (q8, q3),
(q8, q4), (q8, q5), (q8, q6), (q8, q7), (q8, q8).

The cCFfA Ac is depicted in Figure 1. In this figure, we
have not depicted the state q8 and their transitions to simplify
the graph.

Using Algorithm 1 we can build the automaton D(Ac)
as follows: Rε = f(I) = (1, 0.9, 0.4, 0.7, 0, 0.4, 0.3, 0.5, 0),

q3
0.7

q6
0.3

q5

0.4

q1
0.9

q4 q0

1

1

q7
0.5

q2
0.4

a/1

a/1

b/1

c/1

a/1

d/1

b/1

c/1

c/1

c/1

b/1

b/1

a/1

Fig. 1. The cCFfA Ac for the Example 1.

Rε

1

1

Ra
1

Rb

1

Rc
1

Rad
1

a/1

a/1

a/1

b/0.4

d/0.9

c/0.7

d/
0.8

d/0.5

a/
0.
9

Fig. 2. The accessible and observable FDfA D(Ac) equivalent to Ac.

where g(I) = 1. This is the unique initial state of D(Ac).
Starting with this initial state we have,
Ra = f(Rε ◦ T (a)) = f((0.9, 0.9, 0, 0, 0.4, 0.4, 0, 0, 0)) =

(1, 1, 0, 0, 0.5, 0.5, 0, 0, 0) with g(Rε ◦ T (a)) = 0.9;
Rb = f(Rε ◦ T (b)) = f((0.4, 0.4, 0, 0, 0.3, 0.3, 0, 0, 0)) =

(1, 1, 0, 0, 0.9, 0.9, 0, 0, 0) with g(Rε ◦ T (b)) = 0.4;
Rc = f(Rε ◦ T (c)) = f((0.7, 0.7, 0, 0, 0.5, 0.5, 0, 0, 0)) =

(1, 1, 0, 0, 0.8, 0, 8, 0, 0, 0) with g(Rε ◦ T (c)) = 0.7;
Rd = f(Rε ◦ T (d)) = f((0, 0, 0, 0, 0, 0, 0, 0, 0)) = 0 with

g(Rε ◦ T (d)) = g(0) = 1;
Rad = f(Ra ◦ T (d)) = f((0.5, 0, 0, 0, 0, 0, 0, 0, 0)) =

(1, 0, 0, 0, 0, 0, 0, 0, 0) with g(Ra ◦ T (d)) = 0.5.
By following this procedure, it is simple to obtain the states,

Raa = f(Ra ◦ T (a)) = Ra with g(Ra ◦ T (a)) = 1; Rba =
f(Rb ◦ T (a)) = Rb with g(Rb ◦ T (a)) = 1; Rbd = f(Rb ◦
T (d)) = Rad with g(Rb◦T (d)) = 0.9; Rca = f(Rc◦T (a)) =
Rc with g(Rc ◦ T (a)) = 1; and Rcd = f(Rc ◦ T (d)) = Rad
with g(Rc ◦ T (d)) = 0.8. The rest of transitions falls in the
state 0 with value 1.

It is also simple to observe that FD(Ac)(R.) = 1 for all the
states previously indicated exception the state 0 whose value
is 0. The automaton D(Ac) is depicted in Figure 2. In this
figure, we have not depicted the state 0 and their transitions
to simplify the graph.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3268406

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 27,2023 at 10:36:36 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON FUZZY SYSTEMS 7

Both automata D(Ac) and Ac recognize the fuzzy lan-
guage {ε/1, a+/0.9, ba∗/0.4, ca∗/0.7, a+d/0.4, ba∗d/0.3,
ca∗d/0.5}. This example has been selected because the mini-
mal cDFfA N(Ac) obtained by the methods provided in [21]
or [22] has the same size as D(Ac). However, the automaton
D(Ac) can be modified to obtain a minimal FDfA with less
size than N(Ac) by the method we provide in the next Section.

VI. TOWARDS A MINIMAL FDFA BY MEANS OF D(Ac)

In this section, we consider that Ac= (Q,Σ, I, T, {e/1})
is a cCFfA equivalent to a FfA A and D(Ac) =
(QD(Ac),Σ, ID(Ac), TD(Ac), FD(Ac)) is the accessible and ob-
servable FDfA (Theorem 1) obtained by the determinization of
Ac via factorization (f, g). We recall that QD(Ac) = {Rα|α ∈
Σ∗} and Rε = f(I) is the unique initial state of D(Ac) with
membership value g(I) (see Definition 2).

Firstly, we introduce the concept of reduction of two states
of D(Ac). This concept is new and distinct from the well-
established notion of bisimulation relation between two states
of the observed automaton. Namely, the reduction relation
in the set of states QD(Ac) is a strict order relation, while
the bisimulation relation is usually a (fuzzy) preorder or
a (fuzzy) equivalence (cf. [36][37] for more details). This
property allows us to construct a graph which we call the
Reduction Graph of D(Ac). We use this graph to characterize
the minimality of the D(Ac): if the Reduction Graph is empty
(contains no reduction relations), then D(Ac) is a minimal
FDfA. If the Reduction Graph is not empty, the information it
contains can be used to construct an equivalent minimal FDfA.
Furthermore, if there are multiple equivalent minimal FDfAs
with different topologies, the graph contains the necessary
information to generate all of them.

A. Reduction Graph of D(Ac)

For each (accessible) state S ∈ QD(Ac), we define the
supremum value of all words α that reach S from the initial
state Rε, i.e., S = Rα,

WD(Ac)(S) =
∨

{α∈Σ∗ :S=Rα}

wD(Ac)(α) (18)

The value WD(Ac)(S) is well-defined because (a) L is
totally ordered; (b) ⊗ is monotone; and (c) D(Ac) is a finite
automaton. These conditions also assure that there is a word
αS such that S = RαS with WD(Ac)(S) = wD(Ac)(αS).

Definition 3: Given the automaton D(Ac) and two states
P , S ∈ QD(Ac), we say that P reduces S (in short notation
P � S) if and only if

(a) P 6= S and (b) WD(Ac)(S)⊗ S = WD(Ac)(S)⊗ P (19)

The intuition behind P reduces S lies in the observation that
every word that reaches S in D(Ac) could alternative reach
P without modifying the language recognized by D(Ac).
This fact will be formally stated in the proof of minimality
in Theorem 3. The particular properties of D(Ac) obtained
in Section V allow us to establish the following necessary
conditions when P � S occurs in D(Ac).

Lemma 4: Given the automaton D(Ac), if P � S for two
states P , S ∈ QD(Ac) then

(a) Supp(S) = Supp(P); (b) S ≥ P > 0
(c) WD(Ac)(P) > WD(Ac)(S); and (d) S 6= Rε

(20)

Let us observe that in a relation P reduces S, P can not be
a crisp state by (20.b). By the condition (20.c) in Lemma 4,
it is clear that the order relation � on QD(Ac) is irreflexive
and asymmetric We also prove that � is a transitive relation.

Lemma 5: Given the automaton D(Ac), the pair
(QD(Ac),�) is a strict partial ordered set.

The strict partial order � on QD(Ac) allows us to depict
a directed graph whose nodes are the states of QD(Ac) and
each directed arc (P, S) in the graph represents the relation
P � S . This acyclic directed graph is called the Reduction
Graph of D(Ac), denoted G(D(Ac)). In this paper, we say
that G(D(Ac)) is empty if there is no arc in the graph.

B. Characterization of minimality via G(D(Ac))

The following theorem establishes the necessary condition
for the assumption that a D(Ac) is not a minimal FDfA.

Theorem 2: Let A be a FfA, and let Ac be a cCFfA
equivalent to A. Given the automaton D(Ac), if D(Ac) is
not a minimal FDfA then there are (at least) two states P ,
S ∈ QD(Ac) such that P � S, i.e., the Reduction Graph
G(D(Ac)) is not empty.

The following theorem establishes the necessary condition
for the assumption that a D(Ac) is a minimal FDfA. The proof
is made in a constructive way and describes the main idea of
states reduction which allows us to get a minimal FDfA from
the automaton D(Ac).

Theorem 3: Let A be a FfA. Let Ac be a cCFfA equivalent
to A. Given the automaton D(Ac), if D(Ac) is a minimal
FDfA then the Reduction Graph G(D(Ac)) is empty, i.e., there
is no reduction relation P � S for any P, S ∈ QD(Ac).

Both theorems can be summarized in the following result.
Corollary 1: Let A be a FfA. Let Ac be a cCFfA equivalent

to A. Then D(Ac) is a minimal FDfA if and only if the
Reduction Graph G(D(Ac)) is empty.

Let us observe that if the construction D(Ac) is not a
minimal FDfA, the structure of the graph G(D(Ac)) represents
all the ways that minimal FDfAs equivalent to A may be
constructed from the automaton D(Ac). We recall that a
reduction arc P � S is obtained via the Pigeonhole Principle
with respect to the states of a minimal FDfA equivalent to
A (Theorem 2). Thus, each isolated node (a state of QD(Ac))
in G(D(Ac)) is naturally associated to a unique state of this
minimal FDfA. In addition, each node in G(D(Ac)) which
is the left extreme of a path in the graph, is also associated
to a unique state in the minimal FDfA. A node that is a
left extreme of a path is a reducer state of all the rest of
nodes (states) for its path. Therefore, the number of isolated
nodes plus the number of left extremes is the size of any
minimal FDfA equivalent to A. We illustrate these facts in the
following example before presenting the required algorithms
for the minimization procedure.

Example 2: We show in this example how to built the Re-
duction Graph G(D(Ac)) for the automaton D(Ac) obtained

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3268406

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 27,2023 at 10:36:36 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON FUZZY SYSTEMS 8

TABLE I

S (q0, ..., q8) WD(Ac)(S)
Rε (1, 0.9, 0.4, 0.7, 0, 0.4, 0.3, 0.5, 0) 1
Ra (1, 1, 0, 0, 0.5, 0.5, 0, 0, 0) 0.9
Rb (1, 1, 0, 0, 0.9, 0.9, 0, 0, 0) 0.4
Rc (1, 1, 0, 0, 0.8, 0,8, 0, 0, 0) 0.7
Rad (1, 0, 0, 0, 0, 0, 0, 0, 0) 0.5
0 (0, 0, 0, 0, 0, 0, 0, 0, 0) 0.9

TABLE II

Rε Ra Rb Rc Rad 0
Rε - - - - - -
Ra - - � - - -
Rb - - - - - -
Rc - - � - - -
Rad - - - - - -
0 - - - - - -

in Example 1 (Figure 2). The graph G(D(Ac)) is represented
by its adjacency matrix. Let us recall that each arc represents a
reduction relation between two states of D(Ac). By following
Definition 3, we need the definition of the (fuzzy) states of
D(Ac) and for each state S, the value WD(Ac)(S) (see (18))
which is the supremum value of the paths that reach S from
the initial state. In Table I, we show the states obtained for the
automaton D(Ac) in Figure 2 (see Example 1) and for each
state its value WD(Ac)(.).

In this simple example, the graph G(D(Ac)) contains
two arcs: Ra � Rb and Rc � Rb. Indeed, by Def-
inition 3, we have that WD(Ac)(Rb) ⊗ Rb = 0.4 ⊗
(1, 1, 0, 0, 0.9, 0.9, 0, 0, 0) = (0.4, 0.4, 0, 0, 0.3, 0.3, 0, 0, 0),
and WD(Ac)(Rb) ⊗ Ra = 0.4 ⊗ (1, 1, 0, 0, 0.5, 0.5, 0, 0, 0) =
(0.4, 0.4, 0, 0, 0.3, 0.3, 0, 0, 0). Recall that the operation to
compute such values is the t-norm indicated in (16). Thus, Ra
reduces Rb. Similarly, Rc reduces Rb. The adjacency matrix
of G(D(Ac)) is indicated in Table II.

By the characterization of minimality in this section, as the
adjacency matrix contains arcs, then D(Ac) in Figure 2 is not a
minimal FDfA. In addition, by the comments indicated above
this Example, the size of any minimal FDfA is 5. The state
Rb may be reduced to Ra or to Rc. In this example, there are
two possible minimal FDfAs equivalent to D(Ac). In order to
reduce the state Rb to Ra to get the first minimal FDfA, we
simply move the transition ending in Rb in D(Ac) to Ra in
the new automaton. In this case the transition (Rε, b/0.4, Rb)
in D(Ac) is converted in the transition (Rε, b/0.4, Ra) in the
minimal FDfA. This movement makes Rb an inaccessible state
and it is removed. The result is illustrated in Figure 3. In Figure
4, we show the other case when Rb is reduced by Rc.

C. Algorithms for minimization procedure and complexity

The steps that we have followed in Example 2 to obtain
a minimal FDfA have been: (1) to construct the automaton
D(Ac); (2) to calculate the values WD(Ac)(S) for each state
S of D(Ac); (3) to construct the adjacency matrix of the
Reduction Graph G(D(Ac)); and (4) to select the reduction
relations from the adjacency matrix and to construct the
minimal FDfA by transforming D(Ac) via the movement of

Rε

1

1

Ra

1

Rc

1

Rad
1

a/1

a/1

b/
0.
4

c/0.7 d/0.8

d/0.5a/
0.
9

Fig. 3. The first option to obtain a minimal FDfA when Ra reduces Rb in
D(Ac) from Figure 2.

Rε

1

1

Ra

1

Rc

1

Rad
1

a/1

a/1
b/0.4

c/0.7 d/0.8

d/0.5a/
0.
9

Fig. 4. The second option to obtain a minimal FDfA when Rc reduces Rb

in D(Ac) from Figure 2.

arcs defined in the selected reduction relations. In general,
the Reduction Graph G(D(Ac)) may have an arbitrary shape
(but it is an acyclic graph), so it is necessary to provide a
general way to obtain a minimal FDfA. The algorithms that
we present below have such a purpose. In these algorithms,
we use associative array Arr whose generic operations are:
• Insert(Arr, (key, value)) that adds a new (key, value)

pair to Arr, mapping the key to its new value. Any
existing mapping is overwritten;

• Lookup(Arr, key) that finds the value that is bound to
a given key. The arguments to this operation are the
associative array Arr and the key, while the value is
returned from the operation.

Both operations have a worst-case time complexity linear
with respect to the size of the associative array when it is
implemented via a hash table.

Algorithm 1 can be easily modified so that it calculates
both D(A) and the values WD(A)(S) for each S in D(A).
In Algorithm 2, every time a transition is obtained (ln. 15),
the new possible maximum value (ln. 16) is calculated in an
auxiliary variable w. The new maximum value is updated on
line 20 for a new state, and it is modified in line 23 for an
existing state. Algorithm 2 is used with a cCFfA Ac as an
input to obtain the automaton D(Ac) and the associative array
WD(Ac) which stores the values WD(Ac)(S) (see (18) for each
(fuzzy) state S ∈ QD(Ac).

After the construction of D(Ac), we apply Algorithm 3.
This algorithm does not explicitly construct the adjacency ma-
trix of G(D(Ac)) as we did in Example 2. By the explanations
given before Example 2, what we need is to obtain the left

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3268406

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 27,2023 at 10:36:36 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON FUZZY SYSTEMS 9

Algorithm 2 Construction of D(A) and WD(A)

Input: A FfA A = (Q,Σ, I, T, F)
Output: The FDfA D(A) = (QD(A),Σ, ID(A), TD(A), FD(A)) of

A and the mapping WD(A) : QD(A) → L
1: TD(A)(.)(., .)← 0
2: ID(A) ← {f(I)/g(I)}
3: QD(A) ← {f(I)}
4: WD(A)(f(I))← g(I)
5: Initialize an empty queue NewSt of fuzzy states
6: Enqueue(NewSt, f(I))
7: Initialize an empty associative array WD(A) whose keys are fuzzy

states from the set QD(A) and values are from the set L
8: Insert(WD(A), (f(I), g(I)))
9: while NewSt 6= ∅ do

10: P ← Dequeue(NewSt)
11: wP ← Lookup(WD(A), P)
12: FD(A)(P)← P ◦ F
13: for all σ ∈ Σ do
14: S ← f(P ◦ T (σ))
15: TD(A)(σ)(P, S)← g(P ◦ T (σ))
16: w ← wP ⊗ g(P ◦ T (σ))
17: if S /∈ QD(A) then
18: QD(A) := QD(A) ∪ {S}
19: Enqueue(NewSt, S)
20: Insert(WD(A), (S,w))
21: else
22: wS ← Lookup(WD(A), S)
23: Insert(WD(A), (S,wS ∨ w))
24: end if
25: end for
26: end while
27: return (D(A),WD(A))

extremes of each path of reduction. Each left extreme is an
irreducible state under� where the rest of states in its path can
be reduced to it. Thus, Algorithm 3 returns in the associative
array Ir, tuples of the form (P,R[P]) where P is a reducer
(fuzzy) state from QD(Ac) and R[P] ⊆ QD(Ac) is a set of
states such that each S ∈ R[P] satisfies P � S (S is reducible
to P). In addition, in Ir, two distinct tuples (P,R[P]) and
(P ′, R[P ′]) satisfy that their reduction sets are disjoint, i.e.,
R[P] ∩ R[P ′] = ∅. Finally, with the information provided
by Algorithm 3 and the automaton D(Ac), we can construct
the minimal FDfA equivalent to Ac (and to A) following the
procedure indicated in the proof of Theorem 3.

Let us recall that Ac is the cCFfA equivalent to A. The
size |Ac| is bounded by kn (see Subsection V-A). Algorithm
2 computes D(Ac) and WD(Ac) (when its input is Ac) with a
worst case time complexity O(mk3n) since associative array
operations are linear, the size |D(Ac)| is also bounded by
kn, and states of D(Ac) are fuzzy states of the states of
Ac. Algorithm 3 has a computational time proportional to
|Ac| × |D(Ac)|2 (lines 3, 5 and 6), i.e, its worst case time
complexity is O(k3n). The computational time of Algorithm
4 depends on the number of reducible pairs of states. For
each reducible state S, in line 4 is calculated the set of
states with transitions to it. This requires going through the
m symbols of the alphabet with respect to the set of states in
D(Ac). In line 8, the transitions of the modified automaton
is traversed to eliminate inaccessible states. This yields to a
computational time proportional to m×(|D(Ac)|+|D(Ac)|2),

Algorithm 3 Construction of the reduction sets of D(Ac)

Input: A cCFfA Ac = (Q,Σ, I, T, {e/1})
Output: The reduction graph of Ac

1: Apply Algorithm 2 with Ac as an input, and store the result in
(D(Ac),WD(Ac)), where WD(Ac) is an associative array storing
values (18) for each fuzzy state from QD(Ac) as a key.

2: Initialize an empty associative array Ir whose keys are fuzzy
states from the set QD(Ac) and values are initially empty sets

3: for all (kS , valS) ∈WD(Ac) do
4: (kreducer, wreducer)← (kS , 0)
5: for all (kP , valP) ∈WD(Ac) do
6: if kP 6= kS and valS ⊗ kS = valS ⊗ kP then
7: if wreducer < valP then
8: (kreducer, wreducer)← (kP , valP)
9: end if

10: end if
11: end for
12: if kreducer 6= kS then
13: Insert(Ir, (kreducer, valkreducer ∪ {kS}))
14: end if
15: end for
16: return Ir

Algorithm 4 Reduction of D(Ac)

Input: A cCFfA Ac = (Q,Σ, I, T, {e/1})
Output: A minimal FDfA B equivalent to Ac

1: Apply Algorithm 2 and Algorithm 3 with Ac as an input. Let
D(Ac) be the resulting FDfA and Ir the associative array with
each fuzzy state from QD(Ac) as a key, and the set of fuzzy
states it reduces as a value, denoted (P,R[P])

2: B ← D(Ac), define B to be exactly equal to D(Ac)
3: For each non empty tuple (P,R[P]) in Ir and S ∈ R[P]:
4: for all TD(σ)(S′, S) > 0 in D(Ac) do
5: TB(σ)(S′, P)← TD(σ)(S′, S);
6: TB(σ)(S′, S)← 0;
7: end for
8: Remove all inaccessible state from B
9: return B

TABLE III
WORST CASE TIME COMPLEXITY OF SOME MINIMIZATION ALGORITHMS

Reference Complexity Output

[28] O(kmr2mk(n+r)
r2) minimal FA over (L,∨,∧)

[29] O(mk3n + 22nk2n) minimal FDfA over (L,∨,∧)
[21] O(mk3n) minimal cDFfA over L
[22] O(mk3n) minimal cDFfA over L
this paper O((m + 1)k3n) minimal FDfA over L

i.e., its worst case time complexity is O(mk2n). In conclusion,
the worst case time complexity of the minimization algorithm
is O((m + 1)k3n). In Table III, we show a comparison with
those methods that result in a minimal FDfA or a minimal
cDFfA.

VII. CONCLUSIONS

In the literature, the problem of the conversion of a FfA
to a minimal FDfA has been solved for FfAs over totally
ordered lattices (L,∨,∧) [28][29]. The main problem of this
minimal conversion is that several equivalent minimal FDfAs
with different topologies may exist. In this paper, we provide
a general algorithmic solution for a FfA over a complete
residuated lattice that must be: (1) locally finite, (2) totally

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3268406

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 27,2023 at 10:36:36 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON FUZZY SYSTEMS 10

ordered, (3) divisible, and (4) zero-divisor-free. Our algorithm
does not exceed the computation complexity of the algorithms
provided in [28][29]. This complexity is achieved by the
determinization via factorization of the cCFfA equivalent to
the input FfA. The determinization outputs an equivalent FDfA
satisfying the necessary conditions for minimality, but the
output may not be a minimal FDfA. To obtain a minimal
FDfA, we study the sufficient condition for minimality that
defines a strict partial order in the set of states. This allows
us to introduce a new form of the state reduction different
from the usual equivalence relation between states. In this way,
we provide all the required algorithms to obtain the minimal
FDfA. In future work, we will search for a solution without
the condition of zero divisor free on the lattice, and to study
the minimization for DFfAs to generalize the solution given
in [35] for a DFfA over (L,∨,∧).

VIII. ACKNOWLEDGEMENTS

Dr. Stefan Stanimirović acknowledges the support of the
Science Fund of the Republic of Serbia, GRANT No 7750185,
Quantitative Automata Models: Fundamental Problems and
Applications - QUAM, and the Ministry of Education, Science
and Technological Development, Republic of Serbia, Contract
No. 451-03-47/2023-01/200124.

We thank the editors and reviewers for their thoughtful
comments and suggestions that helped to improve this paper.
We also thank Prof. J. R. González de Mendı́vil for his ideas
that gave rise to this paper.

REFERENCES

[1] J. E. Hopcroft, R. Motwani, J. D. Ullman. Introduction to Automata
Theory. 3rd Edition. Addison-Wesley, 2007.

[2] R. van Glabbeek, B. Ploeger. ”Five Determinization algorithms”. O.H
Ibarra and B. Ravikumar (eds.), CIAA 2008, Lecture Notes in Computer
Sicence 5148, pp. 161–170, 2008.

[3] J. A. Brzozowski. ”Canonical regular expressions and minimal state
graphs for definite events”. In Proc. Sympos. Math. Theory of Automata
(New York, 1962), Polytechnic Press of Polytechnic Inst. of Brooklyn,
Brooklyn, N.Y., pp. 529–561, 1963.

[4] D. Qiu. ”Supervisory control of fuzzy discrete event systems: A formal
approach”. IEEE Transactions on Systems, Man, and Cybernetics - Part
B: Cybernetics, vol. 35, no. 1, pp. 72-88, 2005.

[5] D. Qiu and F. Liu. ”Fuzzy discrete-event systems under fuzzy observabil-
ity and a test algorithm”. IEEE Transactions on Fuzzy Systems, vol.17,
no. 3, pp. 578-589, 2009.

[6] W. Deng and D. Qiu. ”Supervisory Control of Fuzzy Discrete Event Sys-
tems for Simulation Equivalence”. IEEE Transactions on Fuzzy Systems,
vol. 23, no. 1, pp.178-192, 2015.

[7] G. Bailador, G. Triviño. ”Pattern recognition using temporal fuzzy au-
tomata”. Fuzzy Sets and Systems, vol. 161, pp. 37–55, 2010.

[8] Y. Li, J. Wei. ”Possibilistic fuzzy linear temporal logic and its model
checking”. IEEE Transactions on Fuzzy Systems, vol. 29, pp. 1899–1913,
2021.

[9] J. Mordeson, D. Malik. Fuzzy Automata and Languages: Theory and
Applications. Chapman & Hall, CRC Press, London, Boca Raton, FL.,
2002.

[10] G.G. Rigatos. ”Fault detection and isolation based on fuzzy automata”.
Information Sciences, vol. 179 (12), pp. 1893–1902, 2009.

[11] Q. Wu, Z. Han, Q.E. Wu. ”Application of fuzzy automata decision-
making system in target control”. Journal of Computer and Communica-
tions, vol. 05(10), pp. 16–25, 2017.

[12] J. R. Gonzalez de Mendivil. ”A generalization of Myhill-Nerode Theo-
rem”. Fuzzy Sets and Systems, vol. 301, pp. 103–115, 2016.

[13] R. Bělohlávek. ”Determinism and fuzzy automata”. Information Sci-
ences, vol. 143, pp. 205–209, 2002.

[14] D.W. Qiu. ”Automata theory based on complete residuated lattice-valued
logic”. Science in China (Series F: Information Sciences), vol. 44(6), pp.
419-429, 2001.

[15] D.W. Qiu. ”Automata theory based on complete residuated lattice-valued
logic (II)”. Science in China (Series F: Information Sciences), vol. 45(6),
pp. 442–452, 2002.

[16] Y. M. Li, W. Pedrycz. ”Fuzzy finite automata and fuzzy regular expres-
sions with membership values in lattice ordered monoids”. Fuzzy Sets
and Systems, vol. 156, pp. 68–92, 2005.

[17] J. Ignjatović, M. Ćirić, S. Bogdanović. ”Determinization of fuzzy
automata with membership values in complete residuated lattices”. In-
formation Sciences, vol. 178, pp. 164–180, 2008.

[18] J. Ignjatović, M. Ćirić, S. Bogdanović, T. Petković. ”Myhill-Nerode type
theory for fuzzy languages and automata”. Fuzzy Sets and Systems, vol.
161, pp. 1288–1324, 2010.

[19] Z. Jančić, J. Ignjatović, M. Ćirić. ”An improved algorithm for deter-
minization of weighted and fuzzy automata”. Information Sciences, vol.
181, pp. 1358–1368, 2011.

[20] Z. Jančić, I. Micić, J. Ignjatović, M. Ćirić. ”Further improvement of
determinization methods for fuzzy finite automata”. Fuzzy Sets and
Systems, vol. 301, pp. 79–102, 2015.

[21] Z. Jančić, M. Ćirić. ”Brzozowski type determinization for fuzzy au-
tomata”. Fuzzy sets and Systems, vol 249, pp. 73–82, 2014.

[22] I. Micić, Z. Jančić, J. Ignjatović, M. Ćirić. ”Determinization of fuzzy
automata by means of degrees of language inclusion”. IEEE Transactions
on Fuzzy Systems, vol 23, no. 6, pp. 2144–2153, 2015.

[23] J. R. Gonzalez de Mendivil, J. R. Garitagoitia. ”Determinization of fuzzy
automata via factorization of fuzzy states”. Information Sciences, vol 283,
pp. 165–179, 2014.

[24] J. R. Gonzalez de Mendivil. ”Conditions for Minimal Fuzzy Determin-
istic Finite Automata via Brzozowski’s Procedure”. IEEE Transactions
on Fuzzy Systems, vol. 26, no. 4, 2018.

[25] S. Stanimirović. ”Improved algorithms for determinization of fuzzy
and weighted automata”. Doctoral dissertation [In Serbian]. Faculty of
Sciences and Mathematics, University of Niš. 2019.

[26] S. Stanimirović, M. Ćirić, J. Ignjatović. ”Determinization of fuzzy
automata by factorizations of fuzzy states and right invariant fuzzy quasi-
orders”. Information Sciences, vol. 469(12), pp. 79–100, 2018.

[27] S. Gerdjikov, J. R. Gonzalez de Mendivil. ”Conditions for the existence
of maximal factorizations”. Fuzzy Sets and Systems, vol. 397, pp. 186–
196, 2020.

[28] L. Li, D.W. Qiu. ”On the state minimization of fuzzy automata”. IEEE
Transactions on Fuzzy Systems, vol. 23, no.2, pp. 434–443, 2015.

[29] J. R. Gonzalez de Mendivil, F. Fariña. ”Canonization of max-min fuzzy
automata”. Fuzzy Sets and Systems, vol. 376, pp. 152–168, 2019.

[30] R. Bělohlávek. ”Fuzzy Relational Systems: Foundations and Principles”.
Kluwer, New York, 2002.

[31] R. Bělohlávek, V. Vychodil. ”Fuzzy Equational Logic”. Studies in
Fuzziness and Soft Computing, Springer, Berlin-Heidelberg, 2005.

[32] D. Qiu. ”A note on Trillas’ CHC models”. Artificial Intelligence, vol.
171, no. 4, pp. 239–254, 2007.

[33] G. Rahonis. ”Fuzzy languages”. Handbook of Weighted Automata. M.
Droste, W. Kuich, H. Vogler (Eds.), Springer-Verlag, Berlin, 2009.

[34] J. Ignjatović, M. Ćirić. ”Formal power series and regular operations on
fuzzy languages”. Information Sciences, vol. 180, pp. 1104–1120, 2010.

[35] S. Halamish and O. Kupferman. ”Minimizing deterministic lattice au-
tomata”. ACM Transactions on Computational Logic (TOCL), vol. 16.1,
pp. 1–21, 2015.

[36] I. Micić, Z. Jančić, and S. Stanimirović. ”Computation of the greatest
right and left invariant fuzzy quasi-orders and fuzzy equivalences”. Fuzzy
Sets and Systems, vol. 339, pp. 99–118, 2018.

[37] H. Wu, Y. Deng. ”Logical characterizations of simulation and bisimula-
tion for fuzzy transition systems”. Fuzzy Sets and Systems, vol. 301, pp.
19–36, 2016.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3268406

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 27,2023 at 10:36:36 UTC from IEEE Xplore. Restrictions apply.

