
E.T.S. de Ingenieŕıa Industrial,
Informática y de Telecomunicación

Integration of the meshing tool GMSH
with Matlab/Octave for the resolution
of 3D Boundary Value Problems with

simplicial finite elements

Bachelor’s Degree in
Industrial Engineering

Bachelor’s Thesis in Industrial Engineering

Alejandro Duque Salazar

Director: V́ıctor Doḿınguez Báguena

Pamplona, June 2023

Escuela Técnica Superior de Ingenieŕıa Industrial, Informática
y de Telecomunicación

Bachelor’s thesis in Industrial Engineering

Integration of the meshing tool GMSH
with Matlab/Octave for the resolution
of 3D Boundary Value Problems with

simplicial finite elements

Alejandro Duque Salazar

Director: Vı́ctor Domı́nguez Báguena

Pamplona, June 2023

Abstract

This work presents an efficient and documented 3D Finite Element Method (FEM) code with
tetrahedral elements up to fourth degree in Matlab/Octave. The code is designed to solve
boundary problems with Dirichlet, Neumann, and Robin conditions for linear elliptic partial
differential equations. We also provide tools for integrating with the meshing software GMSH.
We demonstrate the flexibility and extensibility of the code with several numerical experi-
ments. These examples are also presented for tutorial purposes. Furthermore, we provide a
basic background on the finite element method, mainly focusing on the ideas necessary for its
implementation to supplement this project’s coding nature.

Resumen

En este trabajo se presente un código eficiente y documentado del Método de Elementos Finitos
(MEF) en tres dimensiones, con elementos tetrahédrico de hasta grado cuatro cuyo uso se
extiende para Octave y Matlab. Este código se ha diseñado para resolver problemas de contorno
con condiciones Dirichlet, Neumann y Robin para ecuaciones en derivadas parciales lineares y
eĺıpticas. También desarrollamos una herramienta para integrar este código con el programa
informático GMSH. Demostramos la flexibilidad y extensibilidad del código a través de varios
ejemplos numéricos. Estos ejemplos también servirán a modo de tutorial para comprender el
funcionamiento del código. Además, se proporciona una introducción del MEF enfocándonos
en las ideas necesarias para su implementación.

Agradecimientos

Quiero expresar mi sincero agradecimiento a todos aquellos que me han apoyado de alguna
forma a lo largo de mi trayecto en este grado y han contribuido a la culminación de este
Trabajo de Fin de Grado.

En primer lugar, deseo agradecer a mi tutor, Vı́ctor, quien con su excentricidad hemos
pasado momentos realmente divertidos durante la realización de este proyecto. Su invaluable
ayuda ha sido fundamental en su ejecución y siempre ha estado disponible para cualquier cosa,
incluso por muchas horas viendo códigos sin sentido, en las que llegaba un punto en el que el
sentido común ya se iba de vacaciones.

También debo agradecer a mi familia, en particular a Ángela y Franqui, con quienes he
compartido mi estancia en España y han estado siempre para mı́. Valeria, Jean-Philippe y mi
mamá, quienes me han brindado un apoyo inmenso, y no nos olvidemos de Edith.

A Ana e Íñigo, con los que he podido compartir un rato en el laboratorio de Matemáticas
Aplicadas. Ambos tienen una gran capacidad de trabajo que les llevará lejos.

A mis amigos: Byron, Bryan (o mejor conocidos como Brion y Brian), Elvis, Guiland,
Michele y Sergio. Gracias por ser como son y comprenderme a pesar de mis defectos y fortalezas.

Por último, quiero expresar mi aprecio a los profesores que me han impartido clases durante
estos años y a quienes siempre recordaré con cariño: Vı́ctor, apareces una vez más en esta lista,
pero es que eres un personaje, tu sentido del humor es único, me encanta. Blanca, gracias por
ayudarme y confiar en mı́, tu alma de poeta y de esṕıritu libre ha creado frases mı́ticas como:
“hay que escuchar a las ecuaciones”. Una gran frase que recordaré con muchas risas y que
espero que no me pase, porque eso significaŕıa que he perdido la poca cordura que me queda.
Eugenio, por tu gran pasión y dedicación a la educación. A cada uno de ustedes, solo tengo
palabras de elogio.

Contents

1 Introduction 1

2 Finite Element Method 5
2.1 The Boundary Value Problem . 5
2.2 Finite elements . 6

2.2.1 The mesh . 6
2.2.2 Finite Element Space . 7
2.2.3 Barycentric Coordinates . 9
2.2.4 Reference Element . 10
2.2.5 Arbitrary elements: tetrahedra and faces 18
2.2.6 Finite element space revisited . 20

2.3 Finite Element Method . 21
2.3.1 Variational Formulation . 21
2.3.2 Discretization . 22
2.3.3 System Assembly . 24

2.4 Further Applications . 31
2.4.1 Evolution Problems . 31
2.4.2 Linear Elasticity . 33

3 FEM package 39
3.1 GMSH . 40
3.2 Mesh File . 41

3.2.1 Mesh format . 42
3.2.2 Physical tags . 42
3.2.3 Entities . 43
3.2.4 Nodes . 45
3.2.5 Elements . 47

3.3 Mesh File reading . 48
3.4 Data structure . 53
3.5 Lagrange Basis . 56
3.6 Integration formulas . 56
3.7 Local Matrices . 57
3.8 Assembly of the system of equations . 57

3.8.1 Mass matrix . 57
3.8.2 Stiffness Matrix . 60
3.8.3 Advection Matrix . 65
3.8.4 Source term . 67
3.8.5 Robin Boundary condition . 68

3.9 Finite element evaluation . 71

4 Numerical examples 75
4.1 Error analysis . 75

4.1.1 MSH file reading . 76

vii

viii

4.1.2 Assembly time . 77
4.1.3 Convergence analysis . 78

4.2 Loaded Connecting rod . 79
4.3 Heat equation . 81

5 Conclusions and future Work 85

Bibliography 87

A Lagrange Basis 89

B Example codes 97
B.1 Connecting rod . 97
B.2 Finned cylinder . 100

Index 103

Nomenclature

α Robin coefficient

λ Barycentric coordinates in a n−simplex

β Advection vector

AK
β,xi

Term of the stiffness matrix associated to coordinates xi

Aβ Advection matrix

AK
β Local advection matrix

bf Source term

bKf Local source term

iA Vector of global indices of the nodes inside A

iK Vector of global indices of the nodes inside K

JK Jacobian matrix of FK

M c Mass Matrix

MK
c Local mass Matrix

Rα Boundary mass matrix

RK
α Local boundary mass matrix

SK
κ,xixj

Term of the stiffness matrix associated to coordinates xi and xj

SK
κ Local stiffness matrix

Sκ Stiffness matrix

tg Local traction vector

vK
ℓ Node with local index ℓ inside the tetrahedron K

vj Node in the mesh with global index j

Γ Boundary of Ω

λ,G Lamé parameters

Pm Set of all polynomial with degree less than or equal to m

Th Set of tetrahedra

Ω Domain of study

κ Diffusion matrix

σ Stress tensor

ε Strain tensor

ix

x

φj Basis function of Pm
h associated to node vj

n̂ Unit vector normal to Γ

Â Reference triangle

K̂ Reference tetrahedron

N̂ℓ Lagrange basis inside the reference element associated to node v̂ℓ

A Triangular face of a tetrahedron

c Reaction function

f Source function

FA Surface parameterization of A with Â

FK Affine mapping between K̂ and K

gN Neumann data

K Tetrahedron

NK
ℓ Lagrange basis inside the tetrahedron K associated to node vK

ℓ

Pm
h Set of continuous piecewise polynomials in Ω

uD Dirichlet data

dofA Degrees of freedom inside the face A

dofK Degrees of freedom inside the element K

nttrh Number of tetrahedrons in the mesh

Chapter 1

Introduction

The study of differential equations holds immense importance in the fields of engineering and
sciences as a whole. However, except for specific cases with theoretical interest, the majority of
these equations cannot be solved analytically. As a result, numerical methods become necessary
to approximate their solutions.

In order to properly define a differential problem, it is crucial to establish appropriate
conditions. In engineering and sciences, it is common to encounter problems where bound-
ary conditions are needed for solving the differential equations. By incorporating appropriate
boundary conditions, numerical methods can provide valuable approximations to solve dif-
ferential equations, enabling engineers and scientists to gain insights into complex physical
phenomena that cannot be tackled analytically. Moreover, one of the significant advantages of
using numerical methods in engineering is that it allows predictions of system behavior without
additional investments. This makes numerical methods a cost-effective and reliable approach
to make accurate predictions with a certain degree of accuracy.

Usual methods used to approximate these problems include Finite Differences, Finite Ele-
ment Method, Spectral Methods, Finite Volume Method and adaptation of them. Each method
has its own advantages and disadvantages, and the appropriate choice depends highly on the
application at hand. Among these methods, the Finite Element Method has emerged as one
of the most versatile approaches due to its capability to model problems involving complex
geometries accurately and with ease.

In the field of engineering, there are numerous specialized software packages available that
facilitate the computation required to solve specific problems. Initially, these software packages
were only capable of solving a limited range of problems. However, with the significant increase
in computational power over the last few decades, it has become more common to have software
programs that are capable of solving a wide variety of different problems. The availability of
such software has significantly reduced the computational burden on engineers, allowing them
to focus more on the interpretation of results and the optimization of designs.

One drawback of these software packages is their initial cost. They often come with li-
censing fees that may be affordable for large institutions, but can pose a financial challenge for
smaller ones. However, once acquired, these software packages result in a useful tool for mod-
elling physical problems. Additionally, with sufficient experience, users can better determine
the most suitable approach to solving a specific problem.

For instance, problems exhibiting symmetry can be simplified by using one-dimensional
elements. While this may seem like an oversimplification, it can be adequate for simple geome-
tries, and the computational cost is significantly reduced as the problem can be easily resolved.
On the other hand, if more detailed information is required, two-dimensional elements can be
employed. Although this increases the computational cost, it allows for modeling geometry

2

details that were not accounted in the previous case. Thus, the increased computational cost
is accompanied by a more accurate solution.

However, for geometries with greater complexity, which are typically the most common
cases (such as automotive components, biomedical devices, aerospace components, and others),
three-dimensional elements are necessary to obtain an accurate solution. This inevitably leads
to a significant increase in computational cost, but it allows for the modeling of problems that
were not possible with one or two-dimensional elements. Among the commonly used elements
for such problems are tetrahedral elements, as they can approximate complex geometries really
well.

Even though numerical methods provide solutions, it is still crucial for users to have an un-
derstanding of the advantages and limitations of these methods, to assess whether the obtained
solution is satisfactory. By combining expertise in numerical methods and knowledge of the
physics involved, engineers and scientists can ensure that the numerical solution is meaningful
and aligns with the expected behavior of the system of study.

For this reason, the objective of this project is to develop suitable code for solving boundary
value problems using the Finite Element Method. The aim is to gain a deep understanding of
the underlying principles of this method and provide code that is freely accessible for anyone
to use without requiring a substantial investment and without the need of computers with high
specifications. To aid us in the meshing process, we have chosen to utilize the software GMSH.

GMSH is an open-source finite element meshing software designed for numerical simula-
tions. It offers both pre-processing and post-processing capabilities, making it suitable for a
wide range of problem-solving tasks. The software provides a user-friendly graphical user in-
terface (GUI) for creating and editing mesh geometries. Additionally, it has its own scripting
language that enables the automation of various processes. This software supports a diverse
range of mesh elements in multiple dimensions, including line elements for one-dimensional
geometries, quadrangular and triangular elements for two-dimensional geometries, and tetra-
hedral and hexahedral elements for three-dimensional geometries. Furthermore, GMSH allows
for the export of meshes to popular simulation software such as OpenFOAM and ANSYS.

One limitation of GMSH is that it is not extensively documented compared to other soft-
ware tools. Due to its specialized nature, the availability of online tutorials and resources for
learning GMSH is more limited. This can pose challenges for new users seeking assistance
in utilizing the software. However, there are some resources available, such as the tutorial
provided in [14] and the documentation section within GMSH itself [8], which offer step-by-
step instructions using the GUI and the scripting language for geometry generation and finite
element problems resolution.

Mastery of the scripting language is essential for those seeking to utilize the software to
its full capacity. However, the generation of simple geometries is doable from the above ref-
erences, which provides enough tools for their construction. Furthermore, for geometries with
varying degrees of complexity, there is always the use of available geometries online that can be
downloaded, or alternatively, one can employ FreeCAD to construct them. This software em-
ploys the OpenCASCADE geometry kernel, enabling the creation and modification of complex
geometries through modules or sketches. Both GMSH and FreeCAD utilize the same geom-
etry kernel, facilitating the export of files between the two software programs. For example,
geometries created in FreeCAD can be exported in the .step format.

Considering the challenges associated with the less user-friendly scripting language and
the lack of comprehensive tutorials in the use of solving problems using this software, we have
decided to work with a programming software that is more commonly used. Therefore, for

3

this project, we have chosen to work with Matlab, and to ensure accessibility, we have also
considered the use of Octave, an open-source alternative to Matlab. In our implementation,
we will focus on tetrahedral elements with equispaced nodes, as they offer a straightforward
approach to grasp the fundamental concepts of the Finite Element Method.

In the second chapter, we will provide an introduction to the fundamental concepts of
the Finite Element Method. This will include an overview of the basis functions utilized for
approximating the solution of the problem, as well as the formulation of the variational problem
and its discretization and finally the assembly of the linear system. Furthermore, we will show
some examples on how to extend these ideas to solve a larger variety of problems, showcasing
the versatility of the method.

On to the third chapter, we will move on to the finite element package FEM3D GMSH that has
been developed specifically for exporting mesh files from GMSH and how to use them to solve
FEM problems in Matlab or Octave. In this chapter, we will give a throughout explanation of
the code, providing interested users with a comprehensive understanding of its inner workings
and functionality.

Lastly, the final chapter will feature a collection of numerical examples that highlight
the practical application of the developed package in solving real problems. Through these
examples, we will showcase how the package can be effectively employed to obtain accurate and
insightful solutions.

https://github.com/aleduques/FEM3D_GMSH
https://github.com/aleduques/FEM3D_GMSH

Chapter 2

Finite Element Method

2.1 The Boundary Value Problem

Let Ω be a compact polygonal domain in R3, see for example Figure 2.1, denote by Γ its
boundary which is split into three disjoints parts (one or two of them could be void): Γ =
ΓD ∪ ΓN ∪ ΓR.

In Ω we consider the following boundary value problem: for given functions f : Ω → R,
uD : ΓD → R (Dirichlet data), gN : ΓN → R (Neumann data) and gR : ΓR → R (Robin data),
find u : Ω → R so that

−∇ ·
(
κ∇u

)
+ β · ∇u+ cu = f, in Ω,

u = uD, on ΓD,(
κ∇u

)
· n̂ = gN , on ΓN ,(

κ∇u
)
· n̂+ αu = gR, on ΓR.

(2.1)

Here c : Ω → R is a reaction function, α : Ω → R is the Robin coefficient, β : Ω → R3 is
a velocity field and κ : Ω → R3×3 is the diffusion term, a symmetric positive-definite matrix
function. The unit outward normal vector to Γ is denoted with n̂. On the other hand, “∇” is
the gradient operator and “∇·” the divergence of a vector function.

The partial differential equation in (2.1) is an elliptic linear differential equation [9] known
as the advection-diffusion-reaction equation in stationary state. It has applications in various
branches of science and engineering, such as electrostatics, fluid mechanics, and solid material
conservation of heat.

For example, in the special case κ is the identity matrix we obtain the Poisson Equation
−∆u = f where ∆ = ∇ · (∇) is the Laplacian operator. In electrostatics, this equation models
the electric potential resulting from the charge density and the electric conductivity of the
medium. In fluid mechanics, the homogeneous Poisson equation (f = 0), also known as the
Laplace Equation [24], describes an incompressible and irrotational fluid in terms of a potential
function u that satisfies the equation −∆u = 0.

The conservation of energy principle in an anisotropic solid material gives rise to the
equation ∂u

∂t
−∇ · (κ∇u) = f , where u represents temperature. Here, κ is a symmetric positive

definite tensor of thermal conductivities, a property which measures the material ability to
conduct heat along different directions. In many practical applications, it is common for systems
to reach a permanent state rapidly, making it more interesting to study the final behavior rather
than considering the entire transient term. In the case of a homogeneous and isotropic material,
the thermal conductivity remains constant, resulting in the Poisson equation [26]. Although
it is often assumed that heat generation is negligible, there are cases where non-zero heat
generation terms must be considered. Examples of such cases include nuclear fuels, solids with

6

ΓN

ΓDΓR

Ω

Figure 2.1: 2D equivalent domain representation of the problem (2.1) and its boundaries.

electrical currents passing through them, and materials subjected to radiation. In the latter
scenario, the absorbed portion can be modeled as internal heat generation. For instance, in [1],
the authors incorporated this effect when modeling the solid layers of photovoltaic panels.

The transport equation ∂u
∂t
−∇· (κ∇u)+β ·∇u = 0 is another example of an elliptic linear

differential equation that models the concentration of a substance along the domain Ω as it is
advected by a fluid with velocity β and diffused due to concentration gradients [22]. From a
mathematical perspective, this velocity vector can be any function that is sufficiently regular
in Ω. However, in practice, this expression is valid only for incompressible fluids, that is, fluids
whose velocity field satisfies ∇ · β = 0.

The expression −∇· (κ∇u)+ω2u = 0, is usually called the Helmholtz equation, here ω2 is
the frequency of harmonic solutions to the problem. This equation models various phenomena,
including acoustics wave scattering and electromagnetism fields [15, 16, 19]. Also in some cases,
a reaction term may appear in chemical and biological processes [11].

2.2 Finite elements

We introduce in this section the finite elements space we will consider in this work.

2.2.1 The mesh

The domain discretization is a crucial step in the finite element method. This procedure involves
splitting the original domain into smaller disjoints subdomains called elements:

Ω =
⋃

Kj∈Th

Kj, Ki ∩Kj = ∅ if i ̸= j.

For our purposes, we will use tetrahedra (3-simplices) for the discretization process. Some
authors refer to this as the “tetrahedralization of the domain”. The set of all tetrahedra in
the resulting mesh is denoted by Th = {Kj}nttrhj=1 , where nttrh is the number of tetrahedral
subdomains. In the mesh, the tetrahedra are assumed to be non-degenerate, that is, they have
non-zero volume. Additionally, any pair of tetrahedra must share at most a common vertex,
an entire face, or an entire edge; therefore, we are considering conformal meshes.

7

Figure 2.2: Conformal mesh of the domain.

If an element has one face lying on the boundary Γ, that face is entirely contained in ΓD,
ΓN or ΓR. Although not necessary, it is often followed that an element cannot have two or more
faces on the boundary. We depict in Figure 2.2 a (2D-equivalent) example of such a mesh.

The finite element method we implement in this project involves a natural approximation
by a polygonal domain, say Ωh, defined by the underlying mesh. Although the ideas presented
here work for this case (assuming the elements are small enough to approximate accurately the
domain), the case of non-polygonal and smooth domains Ω can also be considered using this
method, in this case, an additional error occurs due to the approximation of the curved domain
(see for example [13]).

2.2.2 Finite Element Space

Let Pm
h be the space of piecewise polynomials, continuous in Ω:

Pm
h = {v ∈ C(Ω) : v|K ∈ Pm, ∀K ∈ Th}, (2.2)

where v|K is the function restricted to the element K and Pm is the set of all polynomials of
degree less than or equal to m. In this context, K is referred to as a Pm element. Note that the
continuity of v inside each tetrahedron K is already satisfied by the polynomial nature of v|K .
However, to ensure the overall continuity of v in Ω, it is necessary to impose that for any two
elements K1 and K2 sharing a common edge, face, or vertex, the polynomials v|K1 and v|K2

coincide on that entity.

Any polynomial function in K can be written as a sum of monomials of degree at most m.
Such a polynomial can be expressed as

v|K(x) = v|K(x, y, z) =
∑

i,j,k≥0
i+j+k≤m

aKijkx
iyjzk,

where aKijk are coefficients that can be determined, among other and different ways, by giving the
polynomial values at certain points {vK

i } inside K (usually called an interpolation problem).
These points are called the nodes of the element, and to specify the polynomial uniquely we
need

dofK =

(
3 +m

3

)
= (m+3)(m+2)(m+1)

6

of them [6]. For example, the degree one polynomial is given by

8

v|K= aK000 + aK100x+ aK010y + aK001z,

which contains
(
3+1
3

)
= 4 coefficients.

The continuity requirement can be satisfied by enforcing the value of v for each face A,
in which case v|A is just a bivariate polynomial. This polynomial can be fully defined by
appropriately locating

dofA =

(
2 +m

2

)
=

(m+ 2)(m+ 1)

2

nodes on A out of the dofK nodes in the tetrahedron.

Instead of using the monomial polynomial basis, we can use a different basis based on
the Lagrange functions associated with the node distribution inside an element {vK

k }dofKk=1 . The
Lagrange basis functions are mth degree polynomials satisfying the Lagrange condition

NK
ℓ (vK

k) =

{
1, ℓ = k

0, ℓ ̸= k
∀k, ℓ ∈ {1, . . . , dofK} . (2.3)

This basis function allows us to express the polynomial pKm(x) as

pKm(x) =
dofK∑
ℓ=1

pKm(v
K
ℓ)N

K
ℓ (x), (2.4)

i.e., using this basis, the coefficients are just the values of the polynomial at the nodes. These
coefficients are referred to as the degrees of freedom of the element K.

Both the monomial polynomial basis and the Lagrange basis represent the same polyno-
mial, as a polynomial of degree m passing through the dofK nodes is unique (provided they are
appropriately placed). However, the Lagrange basis provides a significant advantage in that
the degrees of freedom are associated with the nodal values, resulting in a more straightforward
construction and operation (evaluation, differentiation, integration, etc) of the polynomial.

Once this distribution of the nodes has been fixed, we can define the set of all, say nNodes,
nodes in the mesh as the union of all nodes of each element K ∈ Th,

{vj}nNodesj=1 =
⋃

K∈Th

vK
j .

In other words, a finite element is determined by its values at nNodes points in Ω, points
which are strongly dependent of the mesh. Each node vj has an associated index j that enables
us to distinguish the nodes in the mesh, this index is known as the global index of vj.

We use these indexed nodes to construct a basis φ1, . . . , φnNodes = {φj}nNodesj=1 of Pm
h using

the Lagrange basis. Here, each member φj is a global shape function associated with a node
vj in the mesh. The basis functions φj can be constructed as a piecewise polynomial function
defined as

φj(x) =



NK1
j1

(x), x ∈ K1,

NK2
j2

(x), x ∈ K2,
...

NKn
jn

(x), x ∈ Kn,

0, otherwise,

(2.5)

9

Figure 2.3: Example of the 2D analog shape function.

where K1, . . . , Kn are the elements containing the node with global index j and NKi
ji

the asso-
ciated Lagrange basis of the node in Ki. An example of such a function for P1 elements in a
triangular mesh is shown in Figure 2.3.

Example. Consider m = 1, linear elements, so that

P 1
h = {v ∈ C(Ω) | v|K ∈ P1, ∀K ∈ Th}.

A natural choice would be taken on each K, its vertices as the nodes {vK
ℓ }4ℓ=1 . Indeed,

a polynomial of degree 1 is uniquely determined by its values at four non-coplanar points.
Conversely, if the values of the finite element are specified at this set of points, we can obviously
construct a piecewise linear polynomial.

Any function v ∈ P 1
h is also continuous, since for any pair of adjacent elements K1 and K2

sharing a (triangular) face A, and denoting v1 = v|K1 and v2 = v|K2 , then v1|A = v2|A (which
means that v is continuous across face A) since both functions are polynomials of two-variables
and degree 1 which coincide at three non-colinear points, namely, the vertices of the face A.

Hence, there is bijection between linear finite elements and its values at this set of nodes.
That is, for determining a function in P 1

h it suffices to provide its values at the vertices of the
tetrahedra in the mesh and vice versa. □.

We will show how this construction can be extended to finite elements of higher degree. To
accomplish this, we will introduce the concept of barycentric coordinates. These coordinates will
be used to define the distribution of nodes, initially on the reference element, and subsequently
on arbitrary elements.

2.2.3 Barycentric Coordinates

The barycentric coordinates in a n−simplex (line, triangle, tetrahedron, . . .) T ∈ Rn are defined
as the set of coordinates λ = (λ1, . . . , λn+1) such that for any point x ∈ Rn they satisfy{ ∑n+1

i=1 λi = 1,

x =
∑n+1

i=1 λixi,

where x1, . . . ,xn+1 ∈ Rn are the vertices of the simplex. With this definition we can define the
relative position of x with respect to the vertices of T . In matrix notation, these expressions
are equivalent to [

1
x

]
=

[
1 · · · 1
x1 · · · xn+1

] λ1
...

λn+1

 . (2.6)

10

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

ŷ

ẑ

x̂

Figure 2.4: Reference tetrahedral element.

In particular, a 2-simplex is any non-degenerate triangle A with vertices x1,x2,x3. The
previous expression becomes

[
1
x

]
=

[
1 1 1
x1 x2 x3

]λ1

λ2

λ3

 ,

and for a 3-simplex (a tetrahedron) K with vertices x1,x2,x3,x4 it becomes

[
1
x

]
=

[
1 1 1 1
x1 x2 x3 x4

]
λ1

λ2

λ3

λ4

 .

2.2.4 Reference Element

In this section we will define the polynomial interpolation problem on what we will refer to as
the reference element, depicted in Figure 2.4, and defined as

K̂ = {x̂ = (x̂, ŷ, ẑ) | 0 ≤ 1− x̂− ŷ − ẑ ≤ 1, 0 ≤ x̂ ≤ 1, 0 ≤ ŷ ≤ 1, 0 ≤ ẑ ≤ 1}.

The vertices of this element are given and indexed as follows:

x̂1 = (0, 0, 0),

x̂2 = (1, 0, 0),

x̂3 = (0, 1, 0),

x̂4 = (0, 0, 1).

Let us denote the barycentric coordinates for any point x̂ in the reference element by

λ̂ =
[
λ̂1 λ̂2 λ̂3 λ̂4

]⊤
. Certainly λ̂ = λ̂(x̂) (that is, the barycentric coordinates depend on

the point x̂), but if the context makes it clear which specific point or points we are referring
to, we will omit any explicit reference to the point in our notation.

11

1

4

0

3

0.5

x

0

0

0.2

0.4

2

0.6

0.2

z

0.8

1

0.4

y
0.6 0.8 11

1

8

4

7

9

0

35

10

6

0.5

x

0

0

0.2

0.4

2

0.6

0.2

z

0.8

1

0.4

y
0.6 0.8 11

1

12

11

10

4

19

13

95

1418

0

15

317

20

86

16

7

0.5

x

0

0

0.2

0.4

2

0.6

0.2

z

0.8

1

0.4

y
0.6 0.8 11

1

16

15

13

14

29

4

30

12

17

5

3126

1828

1123

20

19

0

35

32

3246

3427

21

1025

33

97

22

8

0.5

x

0

0

0.2

0.4

2

0.6

0.2

z

0.8

1

0.4

y
0.6 0.8 11

Figure 2.5: Nodes numbering on the P1 (top-left), P2 (top-right), P3 (bottom-left) and P4

(bottom-right) reference elements.

Since in this case λ̂ are determined by solving the linear system
1
x̂
ŷ
ẑ

 =


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1



λ̂1

λ̂2

λ̂3

λ̂4


we conclude that

λ̂1 = 1− x̂− ŷ − ẑ,

λ̂2 = x̂,

λ̂3 = ŷ,

λ̂4 = ẑ.

(2.7)

Clearly, barycentric coordinates are themselves polynomials of degree 1 in these variables
that equals one at one vertex and zero at the others.

By examining the expressions for the barycentric coordinates, we can establish a useful
connection with the boundary of K̂, which enables us to classify points as either inside or
outside the reference tetrahedron. Specifically, if at least one barycentric coordinates is negative,
then the point is outside K̂, while a point lying inside K̂ will have non-negative barycentric
coordinates.

12

Now, let us define the set of nodes for the interpolation problem on Pm for any integer m
as:

{v̂i} =

{(
i

m
,
j

m
,
k

m

)
| with i, j, k non-negative integers satisfying i+ j + k ≤ m

}
. (2.8)

Here, for the sake of simplicity we omit any reference to m in the notation for the nodes.
The number of nodes can be easily verified to be

(
3+m
3

)
which coincides with dofK, the dimension

of the space Pm, i.e., the number of coefficients of any three-variable polynomial of degree m.
Therefore, it can be reasonably expected that the values of a polynomial at these nodes uniquely
determine the polynomial.

We can index every node with a different label inside this element (local index). The
convention followed is the one adopted in GMSH [8]. The basic idea of the indexing is the
following (see figure 2.5 to check the indexing for m = 1, 2, 3 and 4):

• The nodes at the vertices are indexed according to the order assumed earlier.

• The nodes at the interior of the edges are indexed in the following order: first, the nodes
along the edge from vertex x̂1 to vertex x̂2; then, the nodes along the edge from vertex x̂2

to vertex x̂3; next, the nodes along the edge from vertex x̂3 to vertex x̂1. The remaining
nodes are indexed starting from the fourth vertex to all other vertices, starting from the
edge shared with vertex x̂1, followed by the edge shared with vertex x̂2, and ending with
the remaining edge.

• The nodes inside the faces of the tetrahedron are indexed such that the normal vector
points outwards, following the right-hand rule.

• The indexing of the internal nodes follows the convention of lower-order tetrahedral ele-
ments. For the finite element space P4, there is only one node in the interior of K̂ and its
index is trivial. For higher-order elements, the internal nodes are distributed and indexed
following the idea of the Pm−4 reference element.

To show the well posedness of the interpolation problem, that is, that a polynomial of
degree m is uniquely determined by its value at this set of points, it suffices to construct the
associated Lagrange basis {N̂i}dofKi=1 . That is, mth degree polynomials that vanish at all nodes
except for one. The use of barycentric coordinates greatly facilitates this purpose. For P1 it is
almost trivial: the associated Lagrange basis is

N̂ℓ(x̂) = λ̂ℓ(x), ℓ = 1, 2, 3, 4,

the barycentric coordinates themselves since in this case the nodes {v̂n}4n=1 are just the vertices

of K̂ and therefore

N̂ℓ(v̂n) =

{
1, n = ℓ

0, n ̸= ℓ
∀ℓ, n ∈ {1, 2, 3, 4} .

Consider now the case of higher degree polynomials, i.e. m ≥ 2. Let v̂i be the ith node
with barycentric coordinates given by (

i1
m
,
i2
m
,
i3
m
,
i4
m

)

13

(recall that i1, i2, i3, i4 are non-negative integers whose precise values are given by the nodes
defined above) satisfying i1 + i2 + i3 + i4 = m. The Lagrange function associated to this node
is given by

N̂i(x̂) =
4∏

j=1

ij−1∏
ℓ=0

λ̂j(x̂)− ℓ
m

λ̂j(v̂i)− ℓ
m︸ ︷︷ ︸

pj(x̂)

. (2.9)

This is an extension to the one-dimensional Lagrange interpolation [25]. We see easily
that:

1. N̂i(x̂) is the product of four polynomials pj(x̂), j = 1, . . . , 4 of degree i1, i2, i3 and i4
respectively, which proves that N̂i ∈ Pm.

2. Due to the way the nodes where constructed, for every other node v̂ℓ with ℓ ̸= i there
has to be at least one barycentric coordinate, say the kth one, such that

λ̂k(v̂ℓ) =
ℓk
m

<
ik
m

= λ̂k(v̂i),

which implies that pk(v̂ℓ) = 0 and so N̂i(x̂) vanishes at v̂ℓ.

3. If ℓ = i, clearly pj(v̂ℓ) = 1, since all the factors in the above product are one at this point.

Hence, N̂i(v̂i) = 1.

It is worth noting that the polynomial N̂i(x̂) can be conveniently represented using the

barycentric coordinates, thus allowing us to use N̂i(λ̂(x̂)) instead. Therefore, we can use these
functions to construct any arbitrary polynomial p(x̂) ∈ Pm in the reference element as

pK̂m(x̂) =
dofK∑
i=1

pK̂m(v̂i)N̂i(λ̂(x̂)). (2.10)

The barycentric coordinates of the nodes for the mth (m = 1, 2, 3, 4) reference element
and their associated Lagrange basis are given below. The tables have to read as follows: the
panel in the middle displays, in the ith row the barycentric coordinates of the ith node. The
right panel express the function N̂i using the barycentric coordinate system:

• P1 element:

i λ̂1 λ̂2 λ̂3 λ̂4 N̂i

1 1 0 0 0 λ̂1

2 0 1 0 0 λ̂2

3 0 0 1 0 λ̂3

4 0 0 0 1 λ̂4

• P2 element:

i λ̂1 λ̂2 λ̂3 λ̂4 N̂i

1 1 0 0 0 2λ̂1

(
λ̂1 − 1

2

)
2 0 1 0 0 2λ̂2

(
λ̂2 − 1

2

)

14

3 0 0 1 0 2λ̂3

(
λ̂3 − 1

2

)
4 0 0 0 1 2λ̂4

(
λ̂4 − 1

2

)
5 1

2
1
2

0 0 4λ̂1λ̂2

6 0 1
2

1
2

0 4λ̂2λ̂3

7 1
2

0 1
2

0 4λ̂1λ̂3

8 1
2

0 0 1
2

4λ̂1λ̂4

9 0 0 1
2

1
2

4λ̂3λ̂4

10 0 1
2

0 1
2

4λ̂2λ̂4

• P3 element:

i λ̂1 λ̂2 λ̂3 λ̂4 N̂i

1 1 0 0 0 9
2
λ̂1

(
λ̂1 − 1

3

)(
λ̂1 − 2

3

)
2 0 1 0 0 9

2
λ̂2

(
λ̂2 − 1

3

)(
λ̂2 − 2

3

)
3 0 0 1 0 9

2
λ̂3

(
λ̂3 − 1

3

)(
λ̂3 − 2

3

)
4 0 0 0 1 9

2
λ̂4

(
λ̂4 − 1

3

)(
λ̂4 − 2

3

)
5 2

3
1
3

0 0 27
2
λ̂1λ̂2

(
λ̂1 − 1

3

)
6 1

3
2
3

0 0 27
2
λ̂1λ̂2

(
λ̂2 − 1

3

)
7 0 2

3
1
3

0 27
2
λ̂2λ̂3

(
λ̂2 − 1

3

)
8 0 1

3
2
3

0 27
2
λ̂2λ̂3

(
λ̂3 − 1

3

)
9 1

3
0 2

3
0 27

2
λ̂1λ̂3

(
λ̂3 − 1

3

)
10 2

3
0 1

3
0 27

2
λ̂1λ̂3

(
λ̂1 − 1

3

)
11 1

3
0 0 2

3
27
2
λ̂1λ̂4

(
λ̂4 − 1

3

)
12 2

3
0 0 1

3
27
2
λ̂1λ̂4

(
λ̂1 − 1

3

)
13 0 0 1

3
2
3

27
2
λ̂3λ̂4

(
λ̂4 − 1

3

)
14 0 0 2

3
1
3

27
2
λ̂3λ̂4

(
λ̂3 − 1

3

)
15 0 1

3
0 2

3
27
2
λ̂2λ̂4

(
λ̂4 − 1

3

)
16 0 2

3
0 1

3
27
2
λ̂2λ̂4

(
λ̂2 − 1

3

)
17 1

3
1
3

1
3

0 27λ̂1λ̂2λ̂3

18 1
3

1
3

0 1
3

27λ̂1λ̂2λ̂4

19 1
3

0 1
3

1
3

27λ̂1λ̂3λ̂4

20 0 1
3

1
3

1
3

27λ̂2λ̂3λ̂4

• P4 element:

i λ̂1 λ̂2 λ̂3 λ̂4 N̂i

1 1 0 0 0 32
3
λ̂1

(
λ̂1 − 1

2

)(
λ̂1 − 1

4

)(
λ̂1 − 3

4

)
2 0 1 0 0 32

3
λ̂2

(
λ̂2 − 1

2

)(
λ̂2 − 1

4

)(
λ̂2 − 3

4

)
3 0 0 1 0 32

3
λ̂3

(
λ̂3 − 1

2

)(
λ̂3 − 1

4

)(
λ̂3 − 3

4

)

15

4 0 0 0 1 32
3
λ̂4

(
λ̂4 − 1

2

)(
λ̂4 − 1

4

)(
λ̂4 − 3

4

)
5 3

4
1
4

0 0 128
3
λ̂1λ̂2

(
λ̂1 − 1

2

)(
λ̂1 − 1

4

)
6 2

4
2
4

0 0 64λ̂1λ̂2

(
λ̂1 − 1

4

)(
λ̂2 − 1

4

)
7 1

4
3
4

0 0 128
3
λ̂1λ̂2

(
λ̂2 − 1

2

)(
λ̂2 − 1

4

)
8 0 3

4
1
4

0 128
3
λ̂2λ̂3

(
λ̂2 − 1

2

)(
λ̂2 − 1

4

)
9 0 2

4
2
4

0 64λ̂2λ̂3

(
λ̂2 − 1

4

)(
λ̂3 − 1

4

)
10 0 1

4
3
4

0 128
3
λ̂2λ̂3

(
λ̂3 − 1

2

)(
λ̂3 − 1

4

)
11 1

4
0 3

4
0 128

3
λ̂1λ̂3

(
λ̂3 − 1

2

)(
λ̂3 − 1

4

)
12 2

4
0 2

4
0 64λ̂1λ̂3

(
λ̂1 − 1

4

)(
λ̂3 − 1

4

)
13 3

4
0 1

4
0 128

3
λ̂1λ̂3

(
λ̂1 − 1

2

)(
λ̂1 − 1

4

)
14 1

4
0 0 3

4
128
3
λ̂1λ̂4

(
λ̂4 − 1

2

)(
λ̂4 − 1

4

)
15 2

4
0 0 2

4
64λ̂1λ̂4

(
λ̂1 − 1

4

)(
λ̂4 − 1

4

)
16 3

4
0 0 1

4
128
3
λ̂1λ̂4

(
λ̂1 − 1

2

)(
λ̂1 − 1

4

)
17 0 0 1

4
3
4

128
3
λ̂3λ̂4

(
λ̂4 − 1

2

)(
λ̂4 − 1

4

)
18 0 0 2

4
2
4

64λ̂4λ̂4

(
λ̂3 − 1

4

)(
λ̂4 − 1

4

)
19 0 0 3

4
1
4

128
3
λ̂3λ̂4

(
λ̂3 − 1

2

)(
λ̂3 − 1

4

)
20 0 1

4
0 3

4
128
3
λ̂2λ̂4

(
λ̂4 − 1

2

)(
λ̂4 − 1

4

)
21 0 2

4
0 2

4
64λ̂2λ̂4

(
λ̂2 − 1

4

)(
λ̂4 − 1

4

)
22 0 3

4
0 1

4
128
3
λ̂2λ̂4

(
λ̂2 − 1

2

)(
λ̂2 − 1

4

)
23 2

4
1
4

1
4

0 128λ̂1λ̂2λ̂3

(
λ̂1 − 1

4

)
24 1

4
1
4

2
4

0 128λ̂1λ̂2λ̂3

(
λ̂3 − 1

4

)
25 1

4
2
4

1
4

0 128λ̂1λ̂2λ̂3

(
λ̂2 − 1

4

)
26 2

4
1
4

0 1
4

128λ̂1λ̂2λ̂4

(
λ̂1 − 1

4

)
27 1

4
2
4

0 1
4

128λ̂1λ̂2λ̂4

(
λ̂2 − 1

4

)
28 1

4
1
4

0 2
4

128λ̂1λ̂2λ̂4

(
λ̂4 − 1

4

)
29 2

4
0 1

4
1
4

128λ̂1λ̂3λ̂4

(
λ̂1 − 1

4

)
30 1

4
0 1

4
2
4

128λ̂1λ̂3λ̂4

(
λ̂4 − 1

4

)
31 1

4
0 2

4
1
4

128λ̂1λ̂3λ̂4

(
λ̂3 − 1

4

)
32 0 1

4
1
4

2
4

128λ̂2λ̂3λ̂4

(
λ̂4 − 1

4

)
33 0 2

4
1
4

1
4

128λ̂2λ̂3λ̂4

(
λ̂2 − 1

4

)
34 0 1

4
2
4

1
4

128λ̂2λ̂3λ̂4

(
λ̂3 − 1

4

)
35 1

4
1
4

1
4

1
4

256λ̂1λ̂2λ̂3λ̂4

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y

1 2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

1 2

3

4

56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

1 2

3

4 5

6

78

9 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

1 2

3

4 5 6

7

8

910

11

12 13 14

15

Figure 2.6: Nodes numbering on the P1 (top-left), P2 (top-right), P3 (bottom-left) and P4

(bottom-right) reference boundary elements.

Faces

It is necessary to perform a similar analysis to the interpolation problem on the faces of each
tetrahedron. In this case will give only a simple sketch of this construction.

Let the reference triangle be given by

Â = {x̂ = (x̂, ŷ)| 0 ≤ 1− x̂− ŷ ≤ 1, 0 ≤ x̂ ≤ 1, 0 ≤ ŷ ≤ 1}

which is placed in the x̂− ŷ plane and has vertices

x̂1 = (0, 0),

x̂2 = (1, 0),

x̂3 = (0, 1).

The corresponding barycentric coordinates are then given by

λ̂1 = 1− x̂− ŷ,

λ̂2 = x̂,

λ̂3 = ŷ.

Any mth degree bivariate polynomial Pm is uniquely determined by its value at the set of
nodes given, in barycentric coordinates, by

{v̂i} =

(
i1
m
,
i2
m
,
i3
m

)
, 0 ≤ i1, i2, i3, i1 + i2 + i3 = m.

17

The ordering for the nodes of the reference triangle of order m are depicted in Figure 2.6, where
they are located at the vertices, edges, and interior of the triangle. The indexing follows the
GMSH convention:

• Firstly, the vertices are indexed using the same order as above.

• Next, the nodes inside each edge of the triangle are indexed, starting from the edge lying
on the x̂ axis and following a counterclockwise indexing.

• Finally, the interior nodes are defined recursively, considering them as lower-order el-
ements. For Pm elements, the interior nodes are indexed following the rules for Pm−3

elements.

The associated bivariate polynomial Lagrange basis is given by

N̂i(x̂) =
3∏

j=1

ij−1∏
ℓ=0

λ̂j(x̂)− ℓ
m

λ̂j(v̂i)− ℓ
m

. (2.11)

We list below the barycentric coordinates of the nodes for the mth (m = 1, 2, 3) reference
element and their associated Lagrange basis:

• P1 element:

i λ̂1 λ̂2 λ̂3 N̂i

1 1 0 0 λ̂1

2 0 1 0 λ̂2

3 0 0 1 λ̂3

• P2 element:

i λ̂1 λ̂2 λ̂3 N̂i

1 1 0 0 2λ̂1

(
λ̂1 − 1

2

)
2 0 1 0 2λ̂2

(
λ̂2 − 1

2

)
3 0 0 1 2λ̂3

(
λ̂3 − 1

2

)
4 1

2
1
2

0 4λ̂1λ̂2

5 0 1
2

1
2

4λ̂2λ̂3

6 1
2

0 1
2

4λ̂1λ̂3

• P3 element:

i λ̂1 λ̂2 λ̂3 N̂i

1 1 0 0 9
2
λ̂1

(
λ̂1 − 1

3

)(
λ̂1 − 2

3

)
2 0 1 0 9

2
λ̂2

(
λ̂2 − 1

3

)(
λ̂2 − 2

3

)
3 0 0 1 9

2
λ̂3

(
λ̂3 − 1

3

)(
λ̂3 − 2

3

)
4 2

3
1
3

0 27
2
λ̂1λ̂2

(
λ̂1 − 1

3

)
5 1

3
2
3

0 27
2
λ̂1λ̂2

(
λ̂2 − 1

3

)

18

6 0 2
3

1
3

27
2
λ̂2λ̂3

(
λ̂2 − 1

3

)
7 0 1

3
2
3

27
2
λ̂2λ̂3

(
λ̂3 − 1

3

)
8 1

3
0 2

3
27
2
λ̂1λ̂3

(
λ̂3 − 1

3

)
9 2

3
0 1

3
27
2
λ̂1λ̂3

(
λ̂1 − 1

3

)
10 1

3
1
3

1
3

27λ̂1λ̂2λ̂3

• P4 element:

i λ̂1 λ̂2 λ̂3 N̂i

1 1 0 0 32
3
λ̂1

(
λ̂1 − 1

2

)(
λ̂1 − 1

4

)(
λ̂1 − 3

4

)
2 0 1 0 32

3
λ̂2

(
λ̂2 − 1

2

)(
λ̂2 − 1

4

)(
λ̂2 − 3

4

)
3 0 0 1 32

3
λ̂3

(
λ̂3 − 1

2

)(
λ̂3 − 1

4

)(
λ̂3 − 3

4

)
4 3

4
1
4

0 128
3
λ̂1λ̂2

(
λ̂1 − 1

2

)(
λ̂1 − 1

4

)
5 2

4
2
4

0 64λ̂1λ̂2

(
λ̂1 − 1

4

)(
λ̂2 − 1

4

)
6 1

4
3
4

0 128
3
λ̂1λ̂2

(
λ̂2 − 1

2

)(
λ̂2 − 1

4

)
7 0 3

4
1
4

128
3
λ̂2λ̂3

(
λ̂2 − 1

2

)(
λ̂2 − 1

4

)
8 0 2

4
2
4

64λ̂2λ̂3

(
λ̂2 − 1

4

)(
λ̂3 − 1

4

)
9 0 1

4
3
4

128
3
λ̂2λ̂3

(
λ̂3 − 1

2

)(
λ̂3 − 1

4

)
10 1

4
0 3

4
128
3
λ̂1λ̂3

(
λ̂3 − 1

2

)(
λ̂3 − 1

4

)
11 2

4
0 2

4
64λ̂1λ̂3

(
λ̂1 − 1

4

)(
λ̂3 − 1

4

)
12 3

4
0 1

4
128
3
λ̂1λ̂3

(
λ̂1 − 1

2

)(
λ̂1 − 1

4

)
13 2

4
1
4

1
4

128λ̂1λ̂2λ̂3

(
λ̂1 − 1

4

)
14 1

4
1
4

2
4

128λ̂1λ̂2λ̂3

(
λ̂3 − 1

4

)
15 1

4
2
4

1
4

128λ̂1λ̂2λ̂3

(
λ̂2 − 1

4

)
2.2.5 Arbitrary elements: tetrahedra and faces

Let K be a tetrahedron of vertices {x1,x2,x3,x4}. The affine transformation FK : K̂ → K
defined as

FK(x̂) =

x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

x̂ŷ
ẑ

+

x1

y1
z1


=
[
x2 − x1 x3 − x1 x4 − x1

]
x̂+ x1

= BKx̂+ x1, (2.12)

with xi = (xi, yi, zi) maps the reference tetrahedron K̂ into K. It is imnmediate that

FK(x̂i) = xi,

i.e., FK maps the vertices of K̂ to the vertices of K. The inverse mapping

x̂ = F−1
K (x) = B−1

K (x− x1)

19

x̂1

x̂3

x̂4

x̂2

x1

x3

x4

x2

ŷ

ẑ

x̂

x̂

FK
x

Figure 2.7: Mapping from K̂ to K.

exists provided that BK is invertible. Notice that this is always the case as it only depends on
the geometry of K which is assumed to be non-degenerate for proper meshes. Therefore there
is a one-to-one correspondence between points in K̂ and K as shown in Figure 2.7.

Let us consider a point x inside K satisfying x = FK(x̂) with barycentric coordinates
given by

λ(x) = λ1x1 + λ2x2 + λ3x3 + λ4x4.

Expanding FK yields

x = (x2 − x1)x̂+ (x3 − x1)ŷ + (x4 − x1)ẑ + x1

= (1− x̂− ŷ − ẑ)x1 + x̂x2 + ŷx3 + ẑx4

= λ̂1x1 + λ̂2x2 + λ̂3x3 + λ̂4x4.

Comparing the above expressions term by term reveals that the barycentric coordinates remain
invariant under this transformation, that is, λi(x) = λ̂i(x̂) for i = 1, 2, 3, 4 for any point x in
K. This property is crucial, as it indicates the nodes between the two elements are linked by
their barycentric coordinates. This enables us to compute the coordinates of x of a point from
λ̂(x̂) using xy

z

 =

x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4



λ̂1

λ̂2

λ̂3

λ̂4


or equivalently

x =
[
x1 x2 x3 x4

]
λ̂. (2.13)

Notice also that if pKm(x) is the mth degree polynomial in x = (x, y, z) so is (pK̂m ◦FK)(x̂) in
x̂ = (x̂, ŷ, ẑ). That is, FK maps bijectively polynomials of degree m onto polynomials of degree
m. Hence, for solving a polynomial interpolation problem in K we can move to the reference

20

element, solve the problem there, and go back to K using the affine mapping. Indeed, we can
define vK

i to be the ith node in K satisfying

vK
i = FK(v̂i), i = 1, 2, . . . , dofK (2.14)

where {v̂i} is the set of nodes in K̂ for the interpolation problem in Pm. Only the vertices of

the reference element K̂ need to be specified for this mapping. The rest of the nodes follows
from them, however there are multiple ways to map the vertices. It is customary to select a
specific mapping that ensures a positive determinant for the matrix BK . With this we have
defined the nodes in an arbitrary element in the mesh, they are just the nodes obtained from
applying FK to every tetrahedron in the mesh. Then the Lagrange basis for the polynomials
pKm(x) defined in (2.4) satisfies

NK
i (x) = N̂i ◦ F−1

K (x),

with N̂i the Lagrange function in K̂. Equivalently N̂i = NK
i ◦ FK(x̂). Therefore the explicit

computation of NK
i is not needed, instead we can use the polynomial representation over the

reference tetrahedron given in (2.10).

We can do the same for a triangular face. Let A be the triangle with vertices {x1,x2,x3},
a face of a tetrahedron K ∈ Th. In this case the function FA : Â → A defined as

FA(x̂) =

x2 − x1 x3 − x1

y2 − y1 y3 − y1
z2 − z1 z3 − z1

[x̂
ŷ

]
+

x1

y1
z1

 (2.15)

parameterizes the face using the reference triangle Â. A similar argument shows that the
barycentric coordinates of a point in a triangle A remain invariant and NK

i |A(x) = N̂i◦F−1
A (x).

Here an additional imposition has to be done, recall that the boundary conditions of the
differential problem assumes the unit normal points outwards, therefore when performing the
parameterization, the vertices should be mapped to A in such a way that the normal vector of
this oriented surface also points outwards. With this mapping defined, any operation over a
face of a tetrahedron can be done using the reference triangle. This prevents the inconvenience
of computing the two variables polynomial from the Lagrange basis in K when restricted to a
face A.

2.2.6 Finite element space revisited

We are ready to introduce the set of nodes for mth degree finite element space Pm
h on a regular

tetrahedral mesh. For arbitrary m recall that we have defined the set of nNodes nodes given by

{vj}nNodesj=1 =
{
vK
i : K ∈ Th, i = 1, . . . , dofK

}
(2.16)

where {vK
i } are the nodes of the mth degree interpolation problem in K (see (2.14)). Then, for

m = 1 this is made up of the set of vertices of tetrahedra. For m = 2, we have the vertices and
midpoints of the edges. For m = 3, we have vertices, two equispaced points on each edge, and
the barycenters of each face. In the case of m = 4, we have vertices, three equispaced points
on each edge, three inner points on each face, and the barycenter of the tetrahedra.

21

Given a node vi, let K1, . . . , Kn be the elements to which this node belongs, then the basis
function associated to this node is

φi(x) =



NK1
i1

(x), x ∈ K1,

NK2
i2

(x), x ∈ K2,
...

NKn
in

(x), x ∈ Kn,

0, otherwise.

Here in is the local index of node vi in the element Kn, i.e., FKn(v̂n) = vi. Clearly φi

is piecewise polynomial. Furthermore, it is continuous: if A is a common face for Kir and
Kis the distribution of the interpolating nodes in A for these elements coincide which ensures
NKr

ir
|A = NKs

is
|A. Hence, we can conclude that

Pm
h ∋ v =

nNodes∑
j=1

vjφj (x) , vj = v(vj).

Notice that the evaluation of the finite element function can be done as follows: Given
a point x, find K, the element this point belongs to. Find its barycentric coordinates with
respect to this tetrahedron ad compute

v(x) =
dofK∑
j=1

vKj N̂j(λ̂(x)).

2.3 Finite Element Method

2.3.1 Variational Formulation

In the following, we present the variational formulation of the boundary problem for the differ-
ential problem (2.1): 

−∇ ·
(
κ∇u

)
+ β · ∇u+ cu = f, in Ω,

u = uD, on ΓD,(
κ∇u

)
· n̂ = gN , on ΓN ,(

κ∇u
)
· n̂+ αu = gR on ΓR.

To derive the variational formulation, we begin by multiplying the first equation in (2.1)
by a weight function w and integrating over the whole domain Ω which yields∫

Ω

−w∇ · (κ∇u) +

∫
Ω

w(β · ∇u) +

∫
Ω

cwu =

∫
Ω

fw.

The first term in this equation can be rewritten using the identity

−w∇ · (κ∇u) = ∇w · (κ∇u)−∇ · (wκ∇u),

which can be derived from the product rule. Substituting this expression in the integral equation
results in ∫

Ω

∇w · (κ∇u)−
∫
Ω

∇ · (wκ∇u) +

∫
Ω

w(β · ∇u) +

∫
Ω

cwu =

∫
Ω

fw.

22

Using the divergence theorem in the second term of the above expression yields∫
Ω

∇ · (wκ∇u) =

∫
Γ

w(κ∇u) · n̂.

Notice that with this operation we are getting rid of the second order derivatives appearing
in the differential formulation and keeping only first order derivatives. To further simplify the
expression, we can decompose the boundary of the domain Ω into the Dirichlet, Neumann, and
Robin boundaries ΓD, ΓN , and ΓR respectively.

Applying the boundary condition on ΓR and ΓN and setting w = 0 on ΓD yields the
variational (weak) formulation of the problem: If u solves the differential problem then

u = uD, on ΓD∫
Ω

∇w · (κ∇u) +

∫
ΓR

αwu+

∫
Ω

w(β · ∇u) +

∫
Ω

cwu︸ ︷︷ ︸
=:a(u,w)

=

∫
Ω

fw +

∫
ΓR

gRw +

∫
ΓN

gNw︸ ︷︷ ︸
=:ℓ(w)

,

∀w ∈ {v : v = 0 on ΓD}.
(2.17)

By imposing this constraint on the weight function w, it becomes necessary to enforce
the Dirichlet conditions on the boundaries. Consequently, in this context, these conditions
are commonly referred to as essential conditions. On the other hand, Robin and Neumann
conditions are known as natural conditions since they are a consequence of the variational
formulation.

It is worth noting that, while the variational formulation can have a solution, it may
not necessarily satisfy the regularity requirements of the original problem. For instance, the
solution may not have a continuous second derivative, which is required for the strong formu-
lation. Hence, the name “weak” formulation, as it imposes fewer requirements for the solution.
Nonetheless, some level of regularity is still needed for the weak formulation. In particular, the
solution must have continuous first derivatives due to the presence of the gradient.

2.3.2 Discretization

The finite element method consists, in a nutshell, in replacing the continuous functions appear-
ing in (2.17) by functions in Pm

h :

Pm
h ∋ uh ≈ uD, on ΓD∫
Ω

∇wh · (κ∇uh) +

∫
ΓR

αwhuh +

∫
Ω

wh(β · ∇uh) +

∫
Ω

cwhuh︸ ︷︷ ︸
=:a(uh,wh)

=

∫
Ω

fwh +

∫
ΓR

gRwh +

∫
ΓN

gNwh︸ ︷︷ ︸
=:ℓ(wh)

,

∀wh ∈ {vh ∈ Pm
h : vh = 0 on ΓD}.

(2.18)

This discretizes the problem in the following sense: to solve (2.18), i.e., compute uh, we
just have to find the values of uh at the non-Dirichlet nodes. Therefore the number of unknowns

23

is finite, which are determined by demanding the solution to satisfy a test when multiplied by
the elements of (a subspace of) Pm

h , a finite-dimensional space.

Let us define iD and inD to be the vectors containing the global indices of Dirichlet (where
the exact solution is known) and non-Dirichlet (where it is not) nodes respectively. That is, iD
and inD are a partition of the indices of nodes,

iD ∪ inD = {1, 2, . . . , nNodes}, iD ∩ inD = ∅,

and
j ∈ iD if and only if vj ∈ ΓD.

The Finite Element Method seeks uh ∈ Pm
h

u ≈ uh = uh,D + uh,nD =
∑
k∈iD

ukφk +
∑
j∈inD

ujφj (2.19)

where uh,D(vj) = uD(vj) for nodes vj in ΓD and zero at every other node. To obtain the
non-Dirichlet nodal value the Galerkin method is used, where the weight function w is chosen
from the basis {φi}i∈inD. Therefore, the discretized version of the variational formulation seeks
to find uh,nD satisfying

{
uh = uh,D, ∀vj ∈ ΓD

a(uh,nD, φi) = ℓ(φi)− a(uh,D, φi), ∀i ∈ inD.
(2.20)

This means that the approximation of the solution u via the Finite Element Method
transforms the problem to the resolution of the linear system∑
j∈inD

(Sκ,ij +Rα,ij +Aβ,ij +M c,ij)uj = (bf,i+ tn,i+ tr,i)−
∑
k∈iD

(Sκ,ik +Rα,ik +Aβ,ik +M c,ik)uk,

(2.21)
with i ∈ inD and where

Sκ,ij =

∫
Ω

∇φi · (κ∇φj), Rα,ij =

∫
ΓR

αφiφj,

M c,ij =

∫
Ω

cφiφj, Aβ,ij =

∫
Ω

φi(β · ∇φj),

bf,i =

∫
Ω

fφi, tn,i =

∫
ΓN

gNφi,

tr,i =

∫
ΓR

gRφi.

The choice of the basis defined in (2.2.2) plays a crucial role in the efficiency of the method.
In particular, the use of piecewise polynomial functions with compact support (nonzero in some
tetrahedrons) over others yields a matrix where most of the entries are zero, known in the
literature as sparse matrix. For example, Sκ,ij and M c,ij vanish unless the nodes vi and vj

belongs to the same tetrahedron K.

This sparsity property allows for significant savings in computational time and memory
storage, and can be exploited by specially designed solvers to further enhance the efficiency of
the method.

24

Note. It is possible to implement the Dirichlet conditions as a natural condition. Indeed,
define on ΓD the boundary condition

(κ∇u) · n̂+ αu = α̃uD,

with α, α̃ ≫ (κ∇u) · n̂. This results in approximating the value of u at the nodes with index
iD with u ≈ uD.

2.3.3 System Assembly

In this section, we will discuss the general ideas behind the assembly process of the linear
system, including the construction of local matrices and vectors, the use of quadrature rules
to approximate integrals, and the assembly of the global system. To this end, we will provide
a thorough explanation of the assembly of the mass matrix, while for the other terms, we will
only provide details on any new computation required.

Mass matrix

Let us consider the computation of the element (i, j) of the mass matrix

M c,ij =

∫
Ω

cφiφj.

This term integrates the basis functions associated to the nodes with global index i and j.
From the linearity of the integral we obtain

M c,ij =
∑
K∈Th

∫
K

cφiφj.

As already observed, the only terms that contribute to this sum are those tetrahedrons
containing both nodes i and j. Let us assume that one such term corresponds to the tetrahedron
K. Furthermore, let us assume that the global nodes i and j are associated with the rth and sth
local nodes, respectively, within the reference tetrahedron K̂. Applying the change of variables
x = FK(x̂) yields

∫
K

cNK
r NK

s =

∫
K̂

(cNK
r NK

s ◦ FK)|detJK |.

Here JK is the Jacobian matrix associated to the tetrahedron K defined as

JK =


∂x
∂x̂

∂x
∂ŷ

∂x
∂ẑ

∂y
∂x̂

∂y
∂ŷ

∂y
∂ẑ

∂z
∂x̂

∂z
∂ŷ

∂z
∂ẑ

 (2.22)

To obtain the Jacobian of FK , the expression (2.12) can be expanded:xy
z

 =

(x2 − x1)x̂+ (x3 − x1)ŷ + (x4 − x1)ẑ + x1

(y2 − y1)x̂+ (y3 − y1)ŷ + (y4 − y1)ẑ + y1
(z2 − z1)x̂+ (z3 − z1)ŷ + (z4 − z1)ẑ + z1



25

and computing the derivatives yields

JK =

x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

 ,

that is, the Jacobian is exactly the matrix BK defined for the affine mapping.

From section 2.2.5 recall that NK
r ◦ FK = N̂r. Therefore the integral we have to solve for

this element is

|detBK |
∫
K̂

(c ◦ FK)N̂rN̂s. (2.23)

An important consequence of this result is that we can evaluate all integrals in the reference
element K̂. This eliminates the need to compute different integration limits for each K ∈ Th

and provides a consistent approach across all elements.

However, the main challenge lies in evaluating the function (c ◦ FK), which may not be
a simple polynomial function. Analytically computing these integrals might not be feasible
in many cases. To overcome this challenge, we can use quadrature (or cubature) formulas to
approximate these integrals.

A quadrature formula for the integral of a function h = h(x) over a simplex T takes the
form [12] ∫

T

h ≈ |T |
nQD∑
n=1

ωnh(λT,n)

where |T | is the area or volume of T . Clearly, for the references elements, |K̂|= 1
6
(tetrahedra)

and |Â|= 1
2
(triangle) respectively. The weights {ωn}nQDn=1 satisfy the condition

∑nQD
n=1 ωn = 1.

Clearly, if h = 1 we obtain the area or volume of T . The integrand is evaluated at nQD nodes
λT,n which are given in barycentric coordinates. For general functions h, the linear mapping
(2.13) can be used to retrieve the coordinates of the nodes in Ω from the barycentric coordinates
avoiding the need to invert the affine mapping. Using this to compute (2.23) yields

|detBK |
∫
K̂

(c ◦ FK)N̂rN̂s ≈
1

6
|detBK |

nQ∑
n=1

c(
[
x1 x2 x3 x4

]
λT,n)(N̂rN̂s)(λT,n).

This process should be performed for all elements K containing both nodes i and j, how-
ever, locating these elements is time-consuming. To get around this let us define the local mass
matrix: for each tetrahedra K ∈ Th, let

MK
c =


∫
K
cφi1φi1 · · ·

∫
K
cφi1φidofK

...
. . .

...∫
K
cφidofKφi1 · · ·

∫
K
cφidofKφidofK

 =


∫
K
cNK

1 NK
1 · · ·

∫
K
cNK

1 NK
dofK

...
. . .

...∫
K
cNK

dofKN
K
1 · · ·

∫
K
cNK

dofKN
K
dofK


This local mass matrix has the advantage of including all the non-zero elements associ-

ated with tetrahedron K required for the mass matrix M c . The assembly of this matrix is
summarized in the algorithm 1.

26

for K ⊂ Ω do
Compute MK

c

for i = 1, . . . , dofK do
for j = 1, . . . , dofK do

M c(i
K(i), iK(j)) = M c(i

K(i), iK(j)) +MK
c (i, j)

end

end

end
Algorithm 1: Mass matrix assembly.

Instead of locating the positions of the nodes in the mesh, we iterate through each tetra-
hedron. For each element, we compute the integrals of the basis functions associated with the
nodes belonging to that element. To this end, we use the ordered row vector

iK =
[
i1 · · · idofK

]⊤
(2.24)

containing the global indices of the nodes in K following the local indexing. In other words,

FK(v̂ℓ) = viℓ , ℓ = 1, . . . , dofK.

This allows us to place each term of the local matrix in its correct position within the global
matrix. Note that by following this approach, once all elements containing a pair of nodes have
been traversed, we will have computed the integrals associated with the corresponding basis
functions.

Stiffness Matrix

The local stiffness matrix is defined as

SK
κ =


∫
K
∇φi1 · (κ∇φi1) · · ·

∫
K
∇φi1 · (κ∇φidofK)

...
. . .

...∫
K
∇φidofK · (κ∇φi1) · · ·

∫
K
∇φidofK · (κ∇φidofK)


Let us choose the element of this matrix associated to the rth and sth local nodes. The

integral we have to compute is ∫
K

∇NK
r · (κ∇NK

s).

Applying the affine mapping to transform the integration over the reference tetrahedron
gives:

∫
K

∇NK
r · (κ∇NK

s) = |detBK |
∫
K̂

∇N̂s ·
[
(κ ◦ FK)∇N̂s

]
.

The derivatives of N̂k in the reference system can be obtained using the chain rule

∂N̂k

∂x̂
=

∂N̂k

∂x

∂x

∂x̂
+

∂N̂k

∂y

∂y

∂x̂
+

∂N̂k

∂z

∂z

∂x̂
,

∂N̂k

∂ŷ
=

∂N̂k

∂x

∂x

∂ŷ
+

∂N̂k

∂y

∂y

∂ŷ
+

∂N̂k

∂z

∂z

∂ŷ
,

∂N̂k

∂ẑ
=

∂N̂k

∂x

∂x

∂ẑ
+

∂N̂k

∂y

∂y

∂ẑ
+

∂N̂k

∂z

∂z

∂ẑ
,

27

or in matrix notation

∇̂N̂k = ∇N̂kJK (2.25)

Here we are now using the usual matrix algebra notation that the gradient operator ∇ can
be understood as a row vector. Since JK = BK ,

∇N̂k = ∇̂N̂kB
−1
K .

The inverse of BK can be computed using cross products:

B−1
K =

1

detBK

[(x3 − x1)× (x4 − x1)]
⊤

[(x4 − x1)× (x2 − x1)]
⊤

[(x2 − x1)× (x3 − x1)]
⊤

 (2.26)

Note. This representation of the inverse will be relevant for vectorizing its computation.

Substituting the result obtained for the gradient in the integral above yields

|detBK |
∫
K̂

∇̂N̂rB
−1
K (κ ◦ FK)B

−⊤
K ∇̂N̂⊤

s =

∫
K̂

∇̂N̂r CK ∇̂N̂⊤
s .

where

CK = |detBK | ·B−1
K (κ ◦ FK)B

−⊤
K

is a 3×3 symmetric matrix, as C⊤
K = B−⊤

K (κ◦FK)
⊤B−1

K = B−⊤
K (κ◦FK)B

−1
K = CK . The matrix

product can be expanded to give

∫
K̂

∇̂N̂ℓCK∇̂N̂⊤
s =

∫
K̂

ĉK11
∂N̂r

∂x̂

∂N̂s

∂x̂
+

∫
K̂

ĉK12

(
∂N̂r

∂x̂

∂N̂s

∂ŷ
+

∂N̂r

∂ŷ

∂N̂s

∂x̂

)

+

∫
K̂

ĉK13

(
∂N̂r

∂x̂

∂N̂s

∂ẑ
+

∂N̂r

∂ẑ

∂N̂s

∂x̂

)
+

∫
K̂

ĉK22
∂N̂r

∂ŷ

∂N̂s

∂ŷ

+

∫
K̂

ĉK23

(
∂N̂r

∂ŷ

∂N̂s

∂ẑ
+

∂N̂ℓ

∂ẑ

∂N̂s

∂ŷ

)
+

∫
K̂

ĉK33
∂N̂r

∂ẑ

∂N̂s

∂ẑ
,

where ĉKij are the elements of the matrix CK . Therefore the local stiffness matrix can be written
as

SK
κ = SK

κ,xx + SK
κ,xy + SK

κ,yx + SK
κ,xz + SK

κ,zx + SK
κ,yy + SK

κ,yz + SK
κ,zy + SK

κ,zz

where

SK
κ,xixj

= |detBK |

(∫
K̂

ĉKij
∂N̂ℓ

∂x̂i

∂N̂s

∂x̂j

)
r,s=1,...,dofK

,

for xi, xj ∈ {x, y, z} are the matrices containing in the integrand the products of derivatives.
Notice that from the symmetry of this matrix it follows that Sxixj

= S⊤
xjxi

.

The assembly process is shown in Algorithm 2.

28

for K ⊂ Ω do
Compute CK = |detBK | ·B−1

K (κ ◦ FK)B
−⊤
K

Compute SK
κ

for i = 1, . . . , dofK do
for j = 1, . . . , dofK do

Sκ(i
K(i), iK(j)) = Sκ(i

K(i), iK(j)) + SK
κ (i, j)

end

end

end
Algorithm 2: Stiffness matrix assembly.

The steps are now essentially the same, the only key difference is that for the assembly of
the local matrix, more terms have to be computed. The integrals are again computed using
cubature rules.

Advection Matrix

The local advection matrix is defined as:

AK
β =


∫
K
φi1(β · ∇φi1) · · ·

∫
K
φi1(β · ∇φidofK)

...
. . .

...∫
K
φidofK(β · ∇φi1) · · ·

∫
K
φidofK(β · ∇φidofK)



Taking the rth and sth nodes of this matrix and moving to the reference element yields

∫
K

Nr(∇Nsβ) = |detBK |
∫
K̂

N̂r

[
∇̂N̂sB

−1
K (β ◦ FK)

]
where we can denote aK = |detBK | · B−1

K (β ◦ FK), a column vector with components âKi .
Expanding the matrix product gives

∫
K

N̂r∇̂N̂sa
K =

∫
K̂

âK1 N̂r
∂N̂s

∂x̂
+

∫
K̂

âK2 N̂r
∂N̂s

∂ŷ
+

∫
K̂

âK3 N̂r
∂N̂s

∂ẑ
.

Therefore, the local advection matrix can be written as

AK
β = AK

β,x +AK
β,y +AK

β,z

where

AK
β,xi

= |detBK |

(∫
K̂

âKi N̂r
∂N̂s

∂x̂i

)
r,s=1,...,dofK

.

29

for K ⊂ Ω do
Compute aK = |detBK | ·B−1

K (β ◦ FK)
Compute AK

β

for i = 1, . . . , dofK do
for j = 1, . . . , dofK do

Aβ(i
K(i), iK(j)) = Aβ(i

K(i), iK(j)) +AK
β (i, j))

end

end

end
Algorithm 3: Advection matrix.

Source term

The local source vector is given by

bKf =


∫
K
fφi1
...∫

K
fφidofK


The process is equivalent to the assembly of the mass matrix.

for K ⊂ Ω do
Compute bKf
for i = 1, . . . , dofK do

bf (i
K(i)) = bf (i

K(i)) + bKf (i)

end

end
Algorithm 4: Source vector assembly.

In practical applications it is rather common to have f = const, in this case the assembly
of bf can be done from the mass matrix MK

const noticing that for the ith row of this matrix, if
we add up all the terms we get∑

j

∫
K

const φiφj = const

∫
K

φi,

which is exactly the ith element of the source term. To verify this notice that adding up
p =

∑dofK

i=1 NK
i yields a polynomial of degree m passing through the value 1 dofK times. Due

to the uniqueness of polynomials, such polynomial must be the constant function p = 1.

Boundary Mass Matrix

For the boundary terms the only difference is that the integration are done over the triangles in
Γ. Let us consider the element (i, j) of the boundary mass matrix and split it into the triangles
conforming the Robin matrix

Rα,ij =
∑
A⊂ΓR

∫
A

αφiφj.

Considering one of the faces A containing both nodes i and j associated to the rth and
sth local nodes in the reference triangle Â. Similarly to the mass matrix case, after applying
the surface parameterization x = FA(x̂) yields the integral∫

A

αNA
r N

A
s =

∫
Â

(α ◦ FA)N̂rN̂s

∥∥∥∥∂FA

∂x̂
× ∂FA

∂ŷ

∥∥∥∥ .

30

Computing the partial derivatives yields

∂FA

∂x̂
= x2 − x1,

∂FA

∂ŷ
= x3 − x1,

which are precisely the edges of the boundary element. Therefore, the cross product yields the
normal vector to the face A with module twice its area.

We can define the local mass boundary matrix as

RA
α =


∫
A
αφi1φi1 · · ·

∫
A
αφi1φidofA

...
. . .

...∫
A
αφidofAφi1 · · ·

∫
A
αφidofAφidofA


As for the tetrahedral elements we can define a vector containing the global indices of the

nodes belonging to the boundary element A as

iA =
[
i1 · · · idofA

]⊤
. (2.27)

The algorithm for the assembly of this matrix is shown below (see algorithm 5).

for A ⊂ ΓR do
Compute RA

α

for i = 1, . . . , dofA do
for j = 1, . . . , dofA do

Rα(i
A(i), iA(j)) = Rα(i

A(i), iA(j)) +RA
α (i, j)

end

end

end
Algorithm 5: Boundary mass matrix assembly.

Traction vector

The Robin and Neumann traction vectors are obtained exactly the same, as they are both
related to the normal derivative in the boundary condition. The local traction vector can be
defined as

tAn =


∫
A
gφi1
...∫

A
gφidofA


The assembly of this term is equivalent to the one for the boundary mass matrix and is

summarized in the algorithm 6.

for A ⊂ ΓR or A ⊂ ΓN do
Compute tAg
for i = 1, . . . , dofA do

tg(i
A(i)) = tg(i

A(i)) + tAg (i)

end

end
Algorithm 6: Traction vector assembly.

31

Once again in practical applications it is usual to have constant Neumann or Robin data,
in which case the traction vector can be computed from Rconst by adding up all the columns

∑
j

∫
A

constφiφj = const

∫
A

φi.

2.4 Further Applications

In the previous sections, we discussed the fundamentals of the finite element method (FEM).
Now, we will introduce some necessary modifications to solve more complex problems numeri-
cally. Specifically, we will focus on an evolutionary problem and linear elasticity. It is important
to note that these examples serve as illustrations to demonstrate general guidelines that can
be applied to solve a wide range of problems.

2.4.1 Evolution Problems

An evolution problem is a partial differential equation that includes a temporal derivative,
indicating that the system being studied has a transient behavior. A typical example is the
heat conduction equation

ρCp
∂u

∂t
−∇ ·

(
κ∇u

)
= f,

where ρ is the density of the material and Cp is its thermal capacity. This equation models the
temperature u(x, y, z, t) of each point (x, y, z) in the domain at time t ranging from t = 0 to
t = tf . To solve this problem we need once more the boundary conditions. For instance, let us
consider the case where we have fixed temperature at the boundary

u(x, t) = uD(x, t), x ∈ Γ.

Additionally, an initial condition, in particular a temperature distribution at t = 0 is
needed:

u (x, t) = u0, ∀x ∈ Ω.

To solve this problem numerically, a suitable time integrator is required to solve the evolu-
tion part of the problem coupled with a spatial discretization to handle the spatial derivatives
and the boundary conditions. Building on the concepts of the FEM, the method can be ex-
tended by assuming that the mesh remains the same over the entire time interval. Therefore,
the solution of the problem can be approximated as

uh =
nNodes∑
j=1

uj (t)φj,

where the values at the nodes uj may change over time. This representation decomposes the
function uh into two different components: the basis functions, which depend only on the spatial
coordinates, and the coefficients, which vary over time. Applying the same ideas presented in
Section 2.3.1, the discretized variational formulation includes a new term due to the temporal
derivative of the form:

M ρCp,iju̇j(t) =

∫
Ω

ρCpφiφju̇j(t).

32

where u̇j(t) is the approximation of ∂u
∂t

at the jth node in the instant t. Applying the FEM
discretization, we arrive at the linear system of equations

M ρCp(t)u̇+Aκ (t)u = bf (t) ,

u (0) = u0,h,

u = uD(t), x ∈ Γ,

where u =
[
u1(t), u2(t), . . . , unNodes(t)

]
is the vector containing the time dependent functions at

the nodes, u0,h is the discretized initial condition. In this equation we have assumed that the
diffusion and mass matrices and the source term are in general functions of time.

Two commonly used methods to numerically solve this problem are the implicit Euler
method and the Crank-Nicolson method [23]. The implicit Euler method is a first-order scheme
obtained by applying a finite difference scheme to the time derivative and evaluating the re-
maining terms at the next time step. This yields the following equation:

M ρCp (tn+1)
un+1 − un

τn
+Aκ (tn+1)un+1 = bf (tn+1) ,

where un is the approximation of u at t = tn and tn+1 = tn + τn where τn is the time step at
the nth step. Rearranging the terms yields the following system of equations:

[
M ρCp (tn+1) + τnAκ (tn+1)

]
un+1 = M ρCpun + τnbf (tn+1) .

To include the Dirichlet boundary conditions, a similar procedure to the stationary case is
done. At the instant tn, the vector un is known data and as such, only the conditions at time
tn+1 need to be specified. This results in the system of equations:[

M ρCp (tn+1) + τnAκ (tn+1)
]
(inD, inD)un+1(inD) = M ρCp (tn) (inD, :)un + τnbf (tn+1) (inD)

−
[
M ρCp (tn+1) + τnAκ (tn+1)

]
(inD, iD)un+1(iD)

where the notation “ : ” has been used to denote all the columns. This system needs to be
solved at each step n until tn+1 = tf .

An issue with the previous method is its low order in time, which implies that small time
steps must be used to obtain errors comparable to the spatial discretization (if P1 elements
are used). Mathematically, the Euler method has a first-order accuracy, which implies that in
order to reduce the error by half, the time-step also needs to be halved. A better alternative is
the second-order Crank-Nicholson method given by (we omit the details of how the Dirichlet
conditions are treated):[
M ρCp (tn+1) +

1

2
τnAκ (tn+1)

]
un+1 =

[
M ρCp (tn)−

1

2
τnAκ (tn)

]
un+

1

2
τn [bf (tn+1) + bf (tn)] .

This method is second-order: meaning that halving the time step ideally reduces the
error by a factor of four. Consequently, larger time steps can be employed while maintaining
acceptable accuracy (if the solution is smooth enough).

33

2.4.2 Linear Elasticity

In the context of isotropic and homogeneous materials, the deformation of solids when subjected
to load can be described with the Cauchy momentum equations. These equations relate the
changes in the stress tensor to the internal forces acting on each point of the domain from the
Newton’s second law. Together with the boundary conditions, this results in the differential

problem of finding the displacement vector u(x) =
[
ux(x) uy(x) uz(x)

]⊤
satisfying


−∇ · σ (u) = f , x ∈ Ω,
σ (u) n̂ = gN(x), x ∈ ΓN ,
u(x) = uD(x), x ∈ ΓD,

(2.28)

where n̂ is the outward unit normal vector to Γ, f are the body or volumetric forces in the
material, typically set to zero or to ρg if the weight of the material is considered. Here g is the
gravity vector and ρ the density of the material.

The loads acting on the surface of the element are described with the Neumann data
gN , which in case is positive, specifies a traction on ΓN . For surfaces without any loads, this
boundary condition becomes σ (u) n̂ = 0.

In addition to Neumann conditions, Dirichlet conditions may also be specified. These
conditions impose a prescribed displacement over some portion of the boundary. They are
typically set to zero in structural mechanics to model fixed supports preventing the displacement
in all three directions. It is also possible to prevent the motion along one or two directions.

In order to solve the elasticity problem given by Equation 2.28, we need to relate the stress
tensor to the displacement vector u. This relationship is described by the constitutive equation,
also known as the generalized Hooke’s law:

σ (u) = 2µε (u) + λI3 tr ε (u) , (2.29)

where λ and µ are the Lamé parameters, and I3 is the 3× 3 identity matrix. This equation ex-
presses the dependence of the stress tensor on the strain tensor ε through the Lamé parameters.
In vectorized notation, the constitutive equation can be written as:

σ11

σ22

σ33

σ23

σ13

σ12

 =


2µ+ λ λ λ

λ 2µ+ λ λ
λ λ 2µ+ λ

µ
µ

µ




ε11
ε22
ε33
2ε23
2ε13
2ε12


where σij and εij are the components of the stress and strain tensor. Note that the tangential
strains only affect the respective tangential stresses, whereas the axial stresses are affected by
all the axial strains.

The Lamé parameters are material properties that depend on the elastic properties of the
material. They can be related to the Young’s modulus E and Poisson’s ratio ν as follows:

λ =
Eν

(1 + ν)(1− 2ν)

and

µ =
E

2(1 + ν)
.

34

The strain tensor is related to the displacement u assuming small deformations:

ε =
1

2

(
∇u+∇u⊤) , (2.30)

in matrix notation this becomes

ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

 =



∂ux

∂x

1

2

(
∂ux

∂y
+

∂uy

∂x

)
1

2

(
∂ux

∂z
+

∂uz

∂x

)
1

2

(
∂uy

∂x
+

∂ux

∂y

)
∂uy

∂y

1

2

(
∂uy

∂z
+

∂uz

∂y

)
1

2

(
∂uz

∂x
+

∂ux

∂z

)
1

2

(
∂uz

∂y
+

∂uy

∂z

)
∂uz

∂z


To obtain its variational formulation of (2.28) we first note that the solution, i.e. the

displacement, is a vector function. We can define the basis functions of the discrete space by
considering each component of a node separately [4]:

φ1
j =

[
φj 0 0

]
, φ2

j =
[
0 φj 0

]
, φ3

j =
[
0 0 φj

]
,

where φj is the scalar basis function associated to the jth node. In the rest of the section it
will be assumed that all nodes are non-Dirichlet nodes so we can denote the basis as the set
{φr

j}
r=1,2,3
j=1,...,nNodes. We can use this to approximate the displacement vector as

u ≈ uh =
nNodes∑
j=1

(
ux,jφ

1
j + uy,jφ

2
j + uz,jφ

3
j

)
. (2.31)

After some manipulations, the variational formulation of the differential problem can be
proved to be∫

Ω

σ (u) : ε (φr
i)−

∫
ΓN

(
σ (u)n

)
·φr

i︸ ︷︷ ︸
=gN ·φr

i

=

∫
Ω

f ·φr
i , ∀i = 1, . . . , nNodes, r = 1, 2, 3 (2.32)

where
A : B =

∑
i,j

aijbij

is the Frobenius product of two matrices of the same size. In the context of elasticity, this
equation is named the principle of virtual work [10].

Following the same ideas as the scalar case, the next step is to write (2.32) in terms of the
displacement, then

nNodes∑
j=1

∫
Ω

[
ux,jσ

(
φ1

j

)
: ε (φr

i) + uy,jσ
(
φ2

j

)
: ε (φr

i) + uz,jσ
(
φ3

j

)
: ε (φr

i)
]
=∫

Ω

f ·φr
i +

∫
ΓN

gN ·φr
i .

(2.33)

From the constitutive equation (2.29), the Frobenius product in the left-hand side can be
expanded as

σ
(
φr1

j

)
: ε (φr2

i) = 2µε
(
φr1

j

)
: ε (φr2

i) + λ tr ε
(
φr1

j

) (
I3 : ε (φ

r2
i)
)
, (2.34)

35

where r1, r2 ∈ {1, 2, 3}. The second term can be simplified by noticing that it equals the sum
of the diagonal terms of the strain tensor(

I3 : ε (φ
r2
i)
)
= tr ε (φr2

i) ,

then from the form of the basis function we have tr ε (φr2
i) = ∂φi

∂xr2
. The first term requires a

little bit more of work. First, we can write the strain tensor in its most general form when
evaluated by a displacement, say the virtual displacement φr

i :

εkℓ (φ
r
i) =

1

2

(
∇φr

i +∇φr⊤
i

)
|kℓ =

1

2

(
∂φi

∂xk

δrℓ +
∂φi

∂xℓ

δrk

)
,

where δij is the Kronecker delta. With this, the Frobenius product of the strain tensors can be
written using summation notation as:

ε
(
φr1

j

)
: ε (φr2

i) =
3∑

k,ℓ=1

1

2

(
∂φj

∂xk

δr1ℓ +
∂φj

∂xℓ

δr1k

)
1

2

(
∂φi

∂xk

δr2ℓ +
∂φi

∂xℓ

δr2k

)

=
1

4

3∑
k,ℓ=1

(
∂φj

∂xk

δr1ℓ
∂φi

∂xk

δr2ℓ +
∂φj

∂xk

δr1ℓ
∂φi

∂xℓ

δr2k

+
∂φj

∂xℓ

δr1k
∂φi

∂xk

δr2ℓ +
∂φj

∂xℓ

δr1k
∂φi

∂xℓ

δr2k

)
.

The first and the fourth terms involves the product of the derivatives of φr1
j and φr2

i over
different components. Since the sums over k and ℓ are carried out with the same indices, they
can be interchanged without changing the overall value of the sum. Upon this interchange, it
is apparent that the first and last terms are identical, and the same holds for the intermediate
terms. Grouping similar terms results in

ε
(
φr1

j

)
: ε (φr2

i) =
1

2

3∑
k,ℓ=1

(
∂φj

∂xk

δr1ℓ
∂φi

∂xk

δr2ℓ +
∂φj

∂xk

δr1ℓ
∂φi

∂xℓ

δr2k

)

=
1

2
δr1r2

3∑
k=1

(
∂φj

∂xk

∂φi

∂xk

)
+

1

2

∂φj

∂xr2

∂φi

∂xr1

,

where it has been noted that the first addend is nonzero only when ℓ = r1 = r2 and the second
addend is nonzero when ℓ = r1 and k = r2. Inserting the previous terms in (2.34) results in

σ
(
φr1

j

)
: ε (φr2

i) = µ

[
δr1r2

3∑
k=1

(
∂φj

∂xk

∂φi

∂xk

)
+

∂φj

∂xr2

∂φi

∂xr1

]
+ λ

∂φj

∂xr1

∂φi

∂xr2

. (2.35)

We can test all possible combinations of φr1
j and φr2

i . Expressing the results in matrix
notation yields:

• φ1
i =

[
φi 0 0

]⊤
and φ1

j =
[
φj 0 0

]⊤
σ
(
φ1

j

)
: ε
(
φ1

i

)
=
[
∂φi

∂x
∂φi

∂y
∂φi

∂z

]λ+ 2µ
µ

µ




∂φj

∂x
∂φj

∂y
∂φj

∂z


= ∇φiA11∇φ⊤

j

36

• φ2
i =

[
0 φi 0

]⊤
and φ2

j =
[
0 φj 0

]⊤

σ
(
φ2

j

)
: ε
(
φ2

i

)
=
[
∂φi

∂x
∂φi

∂y
∂φi

∂z

]µ λ+ 2µ
µ




∂φj

∂x
∂φj

∂y
∂φj

∂z


= ∇φiA22∇φ⊤

j

• φ3
i =

[
0 0 φi

]⊤
and φ3

j =
[
0 0 φj

]⊤

σ
(
φ3

j

)
: ε
(
φ3

i

)
=
[
∂φi

∂x
∂φi

∂y
∂φi

∂z

]µ µ
λ+ 2µ




∂φj

∂x
∂φj

∂y
∂φj

∂z


= ∇φiA33∇φ⊤

j

• φ1
i =

[
φi 0 0

]⊤
and φ2

j =
[
0 φj 0

]⊤

σ
(
φ2

j

)
: ε
(
φ1

i

)
=
[
∂φi

∂x
∂φi

∂y
∂φi

∂z

] λ
µ




∂φj

∂x
∂φj

∂y
∂φj

∂z


= ∇φiA12∇φ⊤

j

• φ1
i =

[
φi 0 0

]⊤
,φ3

j =
[
0 0 φj

]⊤

σ
(
φ3

j

)
: ε
(
φ1

i

)
=
[
∂φi

∂x
∂φi

∂y
∂φi

∂z

] λ

µ




∂φj

∂x
∂φj

∂y
∂φj

∂z


= ∇φiA13∇φ⊤

j

• φ2
i =

[
0 φi 0

]⊤
,φ3

j =
[
0 0 φj

]⊤

σ
(
φ3

j

)
: ε
(
φ2

i

)
=
[
∂φi

∂x
∂φi

∂y
∂φi

∂z

] λ
µ




∂φj

∂x
∂φj

∂y
∂φj

∂z


= ∇φiA23∇φ⊤

j

The remaining cases can be obtained noticing the roles of φi and φj will change and
Ar1r2 = A⊤

r2r1
. Then, equation (2.33) can be rewritten as

37



nNodes∑
j=1

∫
Ω

ux,j∇φi(A11∇φ⊤
j) + uy,j∇φi(A12∇φ⊤

j) + uz,j∇φi(A13∇φ⊤
j)

=

∫
Ω

f ·φ1
i +

∫
ΓN

gN ·φ1
i ,

nNodes∑
j=1

∫
Ω

ux,j∇φi(A21∇φ⊤
j) + uy,j∇φi(A22∇φ⊤

j) + uz,j∇φi(A23∇φ⊤
j)

=

∫
Ω

f ·φ2
i +

∫
ΓN

gN ·φ2
i ,

nNodes∑
j=1

∫
Ω

ux,j∇φi(A31∇φ⊤
j) + uy,j∇φi(A32∇φ⊤

j) + uz,j∇φi(A33∇φ⊤
j)

=

∫
Ω

f ·φ3
i +

∫
ΓN

gN ·φ3
i ,

for i = 1 . . . , nNodes where we have rewritten the Frobenius product using the above equalities.
The integrals involved in the construction of the system of equations are simply the stiffness
matrix Sκ with κ = Ar1r2 (in this case the diffusion matrix is not symmetric); the source term
bf with f = f r, where f r is the rth component of the volumetric force; and the traction vector
tN with gN = gN,r. This system can be written in matrix notation as

S11 S12 S13

S⊤
12 S22 S23

S⊤
13 S⊤

23 S33

ux

uy

uz

 =

bx + tx
by + ty
bz + tz

 .

Note. When we consider the dynamic case of (2.28), the acceleration ∂2u
∂t2

is no longer zero
and we are in an elastodynamics case. The differential problem becomes

ρ
∂2u

∂2t
−∇ · σ (u) = f

The most general case of this problem can be treated using the ideas shown in the previous
section, but with a suitable time integrator developed for solving the wave equation.

A special case of this problem can be considered when the displacement of the body
modeled by Ω follows a harmonic motion with frequency ω = 2πf . In this case the displacement
can be written as

u = U(x) coswt = U(x)ℜ(eiωt),
where ℜ(z) denotes the real part of a complex number z and U is the displacement field at
t = 0. Substituting this in the differential problem yields the time independent problem

−∇ · σ(U)− ρω2U = F

where F = fℜ(e−iwt). In this case, when we write the variational formulation, the term φr1
i ·φr2

j

will be zero unless the displacements are in the same direction. This result in an additional
term from the mass matrix:

M ρω2

M ρω2

M ρω2

 .

Chapter 3

FEM package

The FEM3dclass class is an essential part of the Finite element Method implementation in
Matlab and Octave. It stores the information obtained from the mesh file generated by GMSH
and provide functions to assemble the system of equations discussed in chapter 2. Addition-
ally, it provides methods for computing the solution at points outside the mesh nodes. The
FEM3dclass is based on a structure created with the importGMSH3D function, which extracts
relevant information from the mesh file.

The fields of an object of this class are the following:

• mesh: structure data type. It contains the information of the mesh with Pm elements
and relevant data for implementing the finite element method as well as data necessary
for post-processing and error estimations.

• Nj3D: cell array of handle functions. It contains the Lagrange basis N̂i of degree m in
the reference tetrahedral element as functions of the barycentric coordinates.

• Nj2D: cell array of handle functions. It contains the the Lagrange basis N̂i of degree m
in the reference triangular element as functions of the barycentric coordinates.

• gradNj3D: cell array of handle functions. It contains the gradient of the Lagrange basis
∇̂N̂ in the reference tetrahedral element as functions of the barycentric coordinates.

• ComplementaryInformation: map container. It has the physical tags and the numerical
label of the entities belonging to it.

An object of this class can be generated in two ways: passing a file with extension .msh

using T=FEM3Dclass(‘file’) or passing a mesh structure with T=FEM3Dclass(mesh). In the
case of generating an object from a file, the importGMSH3D function takes care of creating the
mesh structure and setting the appropriate fields. On the other hand, when generating an
object from a mesh structure, it is necessary to ensure that all the fields defined in section 3.4
have been properly defined to guarantee the correct functioning of the methods in the class. In
this case, no ComplementaryInformation data is given.

The elementary methods for this class are defined as follows:

• basisNj: Contains all the Lagrange basis up to degree 4 defined in the previous chapter
and the gradient of the function.

• quadRule2D: Contains the weights and nodes needed for the quadrature rule inside the
reference triangular element.

• quadRule3D: Contains the weights and nodes needed for the cubature rules inside the
reference tetrahedral element.

39

40

• local3DMatrices: Contains the exact local matrices assuming constant functions inside
the tetrahedral reference element.

• localRobinMass: Contains the exact local boundary mass matrix assuming constant
function inside the triangular reference element.

• femMassMatrix, femStressMatrix, femStiffnessMatrix, femAdvectionMatrix, femRobin,
femSourceTerm: They assemble each term of the system of equations in the FEM formu-
lation.

• evalFEM3DUh: It performs the computation of the FEM solution to non-nodal points
inside the mesh.

In the following sections, we will present a brief introduction to GMSH, followed by an
explanation of the code developed for constructing the structure and an explanation of the
specific fields and how to gather relevant information from them. Finally we will give some
details of the methods developed for this class.

3.1 GMSH

(a) Physical Groups. (b) Mesh module.

Figure 3.1: GMSH modules of interest.

To generate a finite element mesh in GMSH, it is necessary to first define the properties of
the domain and its boundaries by classifying the entities (points, lines, surfaces, and volumes)
of the geometry. For boundary value problems in three dimensions the entities of interest are
the surfaces and the volumes. Surfaces can then be grouped according to their properties or the
boundary type they belong to (Dirichlet, Neumann or Robin boundaries). They may also be
grouped if additional outputs are needed in some sub-boundaries. Similarly, we can decompose
the domain into several volumes.

The option Physical groups located in the geometry module is used to perform this
operation (see Figure 3.1a). Four options are available: points, curves, surfaces, volumes.
Choosing one of these options, a new window opens as shown in Figure 3.2. In this window,
the Physical group can be named and the entities belonging to it can be selected, in which case
they are highlighted in red. If Automatic is checked, a numerical label is created, otherwise, a
numerical label is chosen by the user. Once the selection is over, pressing e saves the physical
group if it wasn’t previously created. If it was, the surfaces are appended to the existing group.

41

Figure 3.2: Grouping of surfaces into a physical surface.

The meshing process can be done via its corresponding module (see Figure 3.1b). The
most important options in the interface are highlighted there. The option 3D mesh generates a
three-dimensional mesh with elements of order equal to the value selected. This can be modified
in HighOrdertools → PolynomialOrder or in Tools → Options → Mesh → General →
ElementOrder.

Remark Before meshing the mesh you should verify the orientation of the surfaces. You can
go to Tools → Options → Geometry → Visibility and check if the normals to the boundary
points outwards. If it is not the case, modify the orientation of the surfaces.

3.2 Mesh File

After the mesh has been constructed, the file can be saved by clicking on File →Export

→type:.msh. Upon selecting the Save button, a new window will open where additional
options may be chosen (see Figure 3.3). There are several file formats available: Version

1, Version 2 ASCII, Version 2 Binary, Version 4 ASCII and Version 4 Binary. The
first three formats are older versions, and their use is no longer recommended according to the
documentation.

The version ASCII 4.1 is the latest as of the writing of this project, and this must be chosen
for the code to work. Additional options such as Save all elements and Save parametric

coordinates may also be selected. If the former is checked, all elements including points,
one-dimensional, two-dimensional and three-dimensional elements will be saved. Otherwise,
the mesh file will include all the elements contained in the entities belonging to any of the
Physical Groups created. Its selection is optional, but if chosen, the files may be too large for
fine meshes. The latter option yields the parametric coordinates of the nodes in a mesh, but it
is not yet implemented.

After saving the mesh file, a plain text file is obtained with parts of interest summarized
in table 3.1. Each section contains information about the generated file and relevant data
about the obtained mesh. In the following sections, a summary of important features for each
section of the file is provided along with information from the official documentation (see [8,
Section 9.1]).

In Version 4 ASCII, the sections are delimited by $SectionName. · · · $EndSectionName.
For clarity on the structure of this version, a general explanation and an example using the test
case shown in Figure 3.4 will be provided. The test case consists of the reference tetrahedron.

42

Figure 3.3: File format selection.

Mesh format
Physical Tags

Entities
Nodes

Elements

Table 3.1: Parts of mesh file.

The volume has a physical tag Volume and the surfaces are grouped into two different Physical
Groups: Surface1 and Surface2. The surface entities belonging to the former are the entities
2, 3 and 4 and for the latter only the surface entity 1 belongs to it. After performing the
mesh, only one element was created, coinciding exactly with the reference element. As every
surface and volume has an associated Physical Group, the option Save all Elements was not
checked.

3.2.1 Mesh format

$MeshFormat

version(ASCII double; currently 4.1)

file-type(ASCII int; 0 for ASCII mode, 1 for binary mode)

data-size(ASCII int; sizeof(size_t))

< int with value one; only in binary mode,

to detect endianness >

$EndMeshFormat

In this section, some properties of the file are indicated, including the version and the way
in which it has been saved.

$MeshFormat

4.1 0 8

$EndMeshFormat

For the test case, it can be seen the file version is 4.1, It is followed by a zero, indicating
that the file is saved in ASCII and not binary. The last number represents the number of bits
needed to represent each character.

3.2.2 Physical tags

$PhysicalNames

numPhysicalNames(ASCII int)

43

Figure 3.4: Test case.

dimension(ASCII int) physicalTag(ASCII int) "name"

(127 characters max)

...

$EndPhysicalNames

This section displays the physical tags. These may correspond to grouping of points, lines,
surfaces and/or volumes of the geometry. Once again, we remark that only surface and volume
physical tags are of interest. In this section, the number of physical tags created is displayed
and a list with three columns containing the dimension of the physical tag, its numerical label
and the string label under which it was saved. The order of appearance is based on the
group dimension and its numerical label. Unless otherwise specified, default labels are ordered
sequentially. Also, any two tags of the same dimension must have different labels, but if they
have different dimensions they may be the same.

$PhysicalNames

3

2 7 "Surface2"

2 8 "Surface1"

3 9 "Volume"

$EndPhysicalNames

From the test case it can be seen that three physical tags were generated. Each row shows
the dimension of the physical tag followed by its numerical label and the string label given by
the user. It is noticeable that the three tags are divided into two surface tags and one volume
tag with numerical labels 7, 8 and 9 respectively.

3.2.3 Entities

$Entities

numPoints(size_t) numCurves(size_t)

numSurfaces(size_t) numVolumes(size_t)

pointTag(int) X(double) Y(double) Z(double)

numPhysicalTags(size_t) physicalTag(int) ...

44

...

curveTag(int) minX(double) minY(double) minZ(double)

maxX(double) maxY(double) maxZ(double)

numPhysicalTags(size_t) physicalTag(int) ...

numBoundingPoints(size_t) pointTag(int) ...

...

surfaceTag(int) minX(double) minY(double) minZ(double)

maxX(double) maxY(double) maxZ(double)

numPhysicalTags(size_t) physicalTag(int) ...

numBoundingCurves(size_t) curveTag(int) ...

...

volumeTag(int) minX(double) minY(double) minZ(double)

maxX(double) maxY(double) maxZ(double)

numPhysicalTags(size_t) physicalTag(int) ...

numBoundngSurfaces(size_t) surfaceTag(int) ...

...

$EndEntities

This section stores all entities created for the geometry generation including points, curves,
surfaces and volumes. In the first row, a list shows the number of generated entities following
the order: numPoints, numCurves, numSurfaces and numVolumes.

All entities are then listed according to their dimension (points are considered to have
dimension zero) and numerical label in increasing order. First all points are shown followed
by curves and so on. Each row shows the label of the entity, extreme coordinates, the number
of associated physical tags followed by a list containing their numerical labels and finally the
number of entities of a smaller dimension limiting it.

$Entities

4 6 4 1

1 0 0 0 0

2 1 0 0 0

3 0 1 0 0

4 0 0 1 0

1 0 0 0 1 0 0 0 2 1 -2

2 0 0 0 1 1 0 0 2 2 -3

3 0 0 0 0 1 0 0 2 3 -1

4 0 0 0 0 0 1 0 2 1 -4

5 0 0 0 1 0 1 0 2 2 -4

6 0 0 0 0 1 1 0 2 3 -4

1 0 0 0 1 1 1 1 7 3 6 -5 2

2 0 0 0 1 0 1 1 8 3 4 -5 -1

3 0 0 0 0 1 1 1 8 3 3 4 -6

4 0 0 0 1 1 0 1 8 3 3 1 2

1 0 0 0 1 1 1 1 9 4 1 3 4 2

$EndEntities

The geometry in the test case comprises four points, six curves, four surfaces, and one
volume. Each entity is assigned a numerical label, with the first value of each row indicating
its label. These labels correspond to the vertices, edges, faces, and the tetrahedron itself. From
this example it is apparent that any two entities may have the same label as long as they differ
in dimension. Also, only surfaces and volume contains physical tags; in this case only one per

45

entity by this is not compulsory. Additionally, we observe that all surfaces are bounded by
three curves, and the volume is bounded by four. The last number displays the numerical label
of those entities.

3.2.4 Nodes

$Nodes

numEntityBlocks(size_t) numNodes(size_t)

minNodeTag(size_t) maxNodeTag(size_t)

entityDim(int) entityTag(int) parametric(int; 0 or 1)

numNodesInBlock(size_t)

nodeTag(size_t)

...

x(double) y(double) z(double)

< u(double; if parametric and entityDim >= 1) >

< v(double; if parametric and entityDim >= 2) >

< w(double; if parametric and entityDim == 3) >

...

...

$EndNodes

This section of the file stores all the coordinates of the nodes that were generated in the
mesh. The format used for storage involves a classification of the nodes into blocks, where each
block contains the nodes inside a generated entity (excluding the nodes on the boundaries),
thus preventing the occurrence of repeated nodes.

Each node will be assigned a numerical index. Although the numbering is increasing by
default, this is not always the case. For example, if the generated mesh is the result of a mesh
refinement, the sorting does not have to be increasing and there may be jumps between indices
[8, Section 10.1].

Each block is organized in ascending order according to its dimension and the numerical
label of the associated entity. For every block, a line is presented, indicating the dimension and
label of the entity. It also includes a value of 1 or 0 to indicate whether the coordinates are
provided in parametric form or not, along with the number of nodes in the block. Subsequently,
the numerical indices of the nodes within the block are listed followed by their corresponding
coordinates in the same sequential order.

$Nodes

15 20 1 20

0 1 0 1

1

0 0 -0

0 2 0 1

2

1 0 -0

0 3 0 1

3

0 1 -0

0 4 0 1

4

0 0 1

46

1 1 0 2

5

6

0.3333333333324915 0 0

0.6666666666657831 0 0

1 2 0 2

7

8

0.6666666666671625 0.3333333333328375 0

0.3333333333341937 0.6666666666658063 0

1 3 0 2

9

10

0 0.6666666666668164 0

0 0.3333333333341704 0

1 4 0 2

11

12

0 0 0.3333333333324915

0 0 0.6666666666657831

1 5 0 2

13

14

0.6666666666671625 0 0.3333333333328375

0.3333333333341937 0 0.6666666666658063

1 6 0 2

15

16

0 0.6666666666671625 0.3333333333328375

0 0.3333333333341937 0.6666666666658063

2 1 0 1

17

0.3333333333342374 0.3333333333333333 0.3333333333324293

2 2 0 1

18

0.3333333333332102 0 0.3333333333323062

2 3 0 1

19

0 0.3333333333341142 0.3333333333323062

2 4 0 1

20

0.3333333333332102 0.3333333333332102 0

3 1 0 0

$EndNodes

By examining the test case, we can observe the presence of fifteen blocks, comprising a
total of twenty nodes numbered from one to twenty. It is important to note that nodes situated
at the vertices or faces of the tetrahedrons do not appear multiple times. This is because the
nodes are considered to be part of an entity only if they reside within its interior.

47

3.2.5 Elements

$Elements

numEntityBlocks(size_t) numElements(size_t)

minElementTag(size_t) maxElementTag(size_t)

entityDim(int) entityTag(int) elementType(int)

numElementsInBlock(size_t)

elementTag(size_t) nodeTag(size_t) ...

...

...

$EndElements

In GMSH, all objects generated during the meshing process with the same dimension as the
containing entity are called elements, this includes, points, lines, triangles and tetrahedrons.
Similar to the previous subsection, the elements are classified in blocks according to their
location. On each block, the dimension of the entity, its label, the element type and the
number of elements in that block are shown.

To obtain the element type, the developers have assigned each element a unique numerical
code. The codes of the elements of interest, namely tetrahedra and triangular elements up to
degree four, are collected in Table 3.2.

Degree Triangle Tetrahedron
1 2 4
2 9 11
3 21 29
4 23 30

Table 3.2: Element code.

$Elements

5 5 1 5

2 1 21 1

1 2 3 4 7 8 15 16 14 13 17

2 2 21 1

2 1 4 2 11 12 14 13 6 5 18

2 3 21 1

3 1 4 3 11 12 16 15 9 10 19

2 4 21 1

4 1 2 3 5 6 7 8 9 10 20

3 1 29 1

5 1 3 4 2 10 9 15 16 12 11 6 5 13 14 7 8 19 20 18 17

$EndElements

On the test case, the option Save all elements was not chosen and the physical tags
created were only for surfaces and volumes, hence the absence of point and line elements in the
file. We can see that all surface elements are P3 elements with numerical code 21 and the same
is true for the tetrahedron.

48

3.3 Mesh File reading

This section aims to explain the essential elements of the code responsible for creating the data
structure containing the mesh data, namely importGMSH3D. This function has two outputs: T
is a structure with the mesh parameters defined inside it; Complementary information is a
map containing the physical tags generated during the preprocessing and the numerical labels
of the entities associated to each tag.

The primary concept behind this function involves reading each section of the mesh sepa-
rately and gathering the relevant data. After verifying that the file has the correct format, the
next step is to read all the sections.

71 if ~isnan(sPhysicalNames*ePhysicalNames)

72 %% Insert Physical objects

73 surfacesNum = []; surfacesPTags = {};

74 volumesNum = []; volumesPTags = {};

75 nPhysicalNames=str2num(meshFile{sPhysicalNames +1});

76 for r = 1: nPhysicalNames

77 aux = regexp(meshFile{sPhysicalNames +1+r}, ’ ’, ’split’);

78 aux{1} = str2num(aux {1}); aux{2} = str2num(aux {2});

79 tag = ’’;

80 for i=3: length(aux)

81 tag = [tag ’ ’ aux{i}];

82 end

83 if tag(end -1)==’"’

84 tag = tag(3:end -2);

85 else

86 tag = tag(3:end -1);

87 end

88 ComplementaryInformation(tag)=[];

89 if aux {1} == 2

90 surfacesNum(end +1) = aux {2};

91 surfacesPTags{end+1} = tag;

92 elseif aux {1} == 3

93 volumesNum(end+1) = aux {2};

94 volumesPTags{end +1} = tag;

95 end

96 end

97 end

Lines 71-97 are responsible for reading the PhysicalNames section. In these lines, the
numerical label and physical tags for both surfaces and volumes are stored in separate arrays
and cells, respectively, while storing them in the same order to maintain their relationship. The
keys of the map are initialized with empty arrays.

99 if ~isnan(sEntities*eEntities)

100 aux = str2num(meshFile{sEntities +1});

101

102 % Surfaces

103 sSurfaces = sEntities+aux(1)+aux(2)+2;

104 eSurfaces = sSurfaces + aux(3) -1;

105 %Volumes

106 sVolumes = sEntities+aux(1)+aux(2)+aux(3)+2;

107 eVolumes = sVolumes+aux(4) -1;

108

109 % Surfaces

110 for i=sSurfaces:eSurfaces

111 v = str2num(meshFile{i});

112 nPhysicalTags = v(8);

49

113 if nPhysicalTags > 0

114 for j =1: nPhysicalTags

115 ComplementaryInformation(surfacesPTags{surfacesNum == v(8+j)

}) = ...

116 [ComplementaryInformation(surfacesPTags{surfacesNum == v

(8+j)}) v(1)];

117 end

118 end

119 end

120 % Volumes

121 for i=sVolumes:eVolumes

122 v = str2num(meshFile{i});

123 nPhysicalTags = v(8);

124 if nPhysicalTags >0

125 for j =1: nPhysicalTags

126 ComplementaryInformation(volumesPTags{volumesNum == v(8+j)})

= ...

127 [ComplementaryInformation(volumesPTags{volumesNum == v

(8+j)}) v(1)];

128 end

129 end

130 end

131 end

This section of the code handles the entities information. In lines 102-107, the first and
last lines associated to surfaces and volumes are stored based on the information obtained from
the aux variable in line 100, which contains the number of entities of each dimension in the
geometry.

Starting at line 112, the number of tags associated with each surface entity is stored, and
a loop is performed through all their numerical labels. At lines 115-116, the numerical label
of the surface entity is stored. A similar process is repeated for all volumes in the geometry
at lines 121-130. This approach allows for easy identification of the surfaces and volumes and
their associated physical tags.

133 if ~isnan(sNodes*eNodes)

134 v = meshFile{sNodes +1};

135 v = str2num(v);

136 T.coord = nan(v(4) ,3);

137 j = sNodes +2;

138 while j<eNodes

139 aux = str2num(meshFile{j});

140 if aux (3) ~=0

141 error(’Parametric nodes are not supported ’)

142 end

143 % read the positions

144 if aux (4) ~=0

145 indNodes = j+(1: aux(4));

146 indCoord = indNodes(end)+(1: aux(4));

147

148 indNodes = cellfun(@str2num , meshFile(indNodes));

149 auxCoord = meshFile(indCoord);

150 str = strjoin(auxCoord ,’\n’);

151 str = textscan(str ,’%f’);

152 Coord = reshape(str{1}, [], numel(auxCoord)) ’;

153 T.coord(indNodes ,:) = Coord;

154 else

155 warning ([’Domain without proper nodes: ’ num2str(aux)])

156 end

50

157 j = j+2*aux(4)+1;

158 end

159 end

Lines 133-159 contain the code for storing the mesh nodes. In line 136, the matrix
T.mesh.coord is initialized with rows equal to the maximum node index. A while loop is
used to iterate through all the nodes associated with each entity until no more entities remain.
In line 144, the code checks whether there is any node in an entity. If there are nodes, their
numeration is stored in line 145. Subsequently, their coordinates are stored in line 146 and
added to T.mesh.coord.

161 %%%%% Elements

162 disp(’Checking Elements ’)

163 nBlocks = str2num(meshFile{sElements +1});

164 nBlocks = nBlocks (1);

165

166 pointerLine = sElements +2;

167 % supported Elements

168 supElements = [2 9 21 23 ; % P1,P2, P3, P4 triangles

169 4 11 29 30]; % P1 , P2 , P3, P4 tetrahedra

170 %Elements ’ fields initialization

171 T.trB = []; T.domBd = [];

172 T.ttrh = []; T.domain = [];

173 T.faces = []; T.ttrh2faces = []; T.faces2ttrh = [];

174

175 for j=1: nBlocks

176 aux = str2num(meshFile{pointerLine });

177 deg = aux(3);

178 supElementsTest = (supElements ==deg);

179 indElements = pointerLine +(1: aux (4));

180 auxElm = meshFile(indElements);

181 str = strjoin(auxElm ,’\n’);

182 str = textscan(str ,’%f’);

183 elements = reshape(str{1}, [], numel(auxElm)) ’;

184 elements (:,1) =[];

185 if sum(supElementsTest (1,:))~=0 % 2D -> Face

186 T.trB = [T.trB; elements];

187 T.domBd = [T.domBd; ones(size(elements ,1) ,1)*aux(2)];

188 elseif sum(supElementsTest (2,:))~=0

189 T.ttrh = [T.ttrh; elements];

190 T.domain = [T.domain; ones(size(elements ,1) ,1)*aux(2)];

191 end

192 pointerLine = pointerLine+aux (4) +1;

193 end

The following section of the mesh file reads the elements within the mesh. A loop iterates
through all the entity blocks from lines 175 to 193 in order to store the elements in the mesh. At
line 176, a logical equality check is executed to verify the code of the elements belonging to the
block. Subsequently, lines 185 and 191 are used to determine whether the element is a triangle
or a tetrahedron, which is then used to store the elements in T.mesh.trB or T.mesh.ttrh,
respectively.

196 % Check if there are "ghost nodes"

197 nNodes = max(max(T.ttrh));

198 nodesTtrh = unique(T.ttrh (:));

199 nodesTrBd = unique(T.trB(:));

200 if ~isempty(setdiff(nodesTrBd ,nodesTtrh))

201 error(’Nodes in triangles which are not in ttrh’)

51

202 end

203 [~, indghostNodes]= setdiff (1: nNodes ,nodesTtrh);

204 if ~isempty(indghostNodes)

205 % Fixing

206 warning(’ghost nodes ... fixing ’)

207 p = nan(1,nNodes);

208 p(nodesTtrh) = 1: length(nodesTtrh);

209 T.coord(indghostNodes ,:) =[];

210 T.ttrh = p(T.ttrh);

211 T.trB = p(T.trB);

212 nNodes = max(max(T.ttrh));

213 end

214 T.nNodes = nNodes;

215 switch(size(T.ttrh ,2))

216 case (4)

217 T.deg =1;

218 case (10)

219 T.deg =2;

220 case (20)

221 T.deg =3;

222 case (35)

223 T.deg =4;

224 end

This section of the code is responsible for removing any inconsistencies in node numbering.
First, at line 197, the maximum index associated with a node is determined. Then, at lines
198-199, the nodes belonging to tetrahedral and triangular elements are sorted in ascending
order using the unique function. To ensure the mesh is three-dimensional or that every volume
is correctly meshed, line 200 checks if there is any occurrence of a boundary node that does not
appear in any tetrahedron.

It is possible that there are rows in T.mesh.coord without any nodes. This is because
some node indices may be missing, as seen in 3.2.4. Line 203 stores the missing node numbers
in a vector to remove any jumps in numbering. At lines 207-208, a vector p is created, which
contains the ordered numeration of nodes at the positions where there is an existing node index.
The rows in T.mesh.coord without a defined node are then removed at line 209. Finally, lines
210 and 211 use the vector p to correct the numbering in T.mesh.ttrh and T.mesh.trB. The
actual number of nodes in the mesh is defined at lines 212-214, and the degree of the mesh is
determined at lines 215-224.

228 %%% Boundary faces

229 v21 = T.coord(T.trB(:,1) ,:) - T.coord(T.trB(:,2) ,:);

230 v31 = T.coord(T.trB(:,1) ,:) - T.coord(T.trB(:,3) ,:);

231 T.trBNormal = cross(v21 , v31 , 2);

In the last portion of the code, additional data regarding the faces, and the size of the
elements are calculated at each point.Lines 229-230 compute the edge vectors x1 − x2 and
x1−x3 respectively, where xi are the components of the vertices of the triangle in a boundary.

v = cross(A, B, dim),

which performs the cross product of the vectors in both matrices contained in the dimension
dim. If the value of this parameter is 2, the cross product is performed over the row vectors
in the same position of the matrices A and B. This computation works as the numeration of
the vertices in the global coordinates of the triangle are defined such that the normals points
outwards.

52

233 %%% Tetrahedron faces

234

235 nElement = size(T.ttrh ,1);

236 indAux = [2 3 4; 1 4 3; 1 2 4; 1 3 2];

237 T.faces = [T.ttrh(:,indAux (1,:)); ...

238 T.ttrh(:,indAux (2,:)); ...

239 T.ttrh(:,indAux (3,:)); ...

240 T.ttrh(:,indAux (4,:))];

241 % We use only the faces ’ vertices

242 facesAux = sort(T.faces (: ,1:3) ,2);

243 [~,p1, p3] = unique(facesAux ,’rows’, ’first’);

244 [~,p2] = unique(facesAux ,’rows’, ’last’);

245 T.faces = T.faces(p1 ,:);

246 ind = zeros(nElement ,4); ind(:) = 1: numel(T.ttrh (: ,1:4));

247 T.ttrh2faces = p3(ind);

248 p1 = mod(p1 ,nElement) ; p1(p1==0) = nElement;

249 p2 = mod(p2 ,nElement) ; p2(p2==0) = nElement;

250 T.faces2ttrh = [p1, p2];

251 ind = p1==p2;

252 T.faces2ttrh(ind ,2) = nan;

Lines 235-252, performs the computation of geometric data pertaining to all faces of the
tetrahedra in the mesh. Specifically, line 236 stores, at each row, the vertices associated with
each face in an ordered fashion such that their outward normal points away from the corre-
sponding tetrahedron (check Figure 2.5). Subsequently, at line 237, the matrix T.mesh.faces

is generated, containing all faces arranged as



f11
...

f1,nttrh
...
f41
...

f4,nttrh


where fij is a row vector listing the global numeration of the vertices comprising the ith face
of the jth tetrahedron. However, some faces with identical sets of vertices may appear multiple
times in this matrix, albeit with different orders of the vertices. To overcome this challenge,
an auxiliary variable facesAux is introduced, which disregards the ordering of the vertices and
instead takes into account only their membership to each respective face.

At line 243, the first appearance of each unique face is computed using the command
unique with the arguments ‘first’ and ‘rows’. This command internally sorts the rows of
the matrix by the smallest values of the first column, and in case of a tie, by the values of the
next columns. The resulting sorted matrix is

uniqueSortedFaces =

 f̃1
...

f̃nFaces


where f̃i are the unique faces with sorted vertices. This matrix is not stored to avoid ruining the
orientation of the faces. Instead, the indices of the first occurrence of each face are stored in the

53

variable p1, which contains the indices of the rows in T.mesh.faces that satisfy the condition
facesAux(p1, :) == uniqueSortedFaces.

The variable p3 contains the location of each face in the sorted matrix uniqueSortedFaces,
such that facesAux == uniqueSortedFaces(p3, :). At line 244, the latest occurrence of each
face is computed using the unique command with the argument ‘last′, and their location is
stored in the variable p2.

Line 245 modifies the field T.mesh.faces to contain the unique faces with the correct
ordering of the vertices but with the rows permuted (due to the reordenation of the unique

command). At lines 246-247, the field T.mesh.facesttrh is created. To assemble it, the matrix
ind enumerates the faces of the tetrahedra, as given at line 237. Then with p3, the indices are
readjusted to the unique faces.

Lines 248-252 compute the tetrahedra that contain each face. Starting from line 237, each
face is initially located in (i− 1)nElement+ j, where j denotes the index of the tetrahedron,
and i denotes the index of the ith face within that tetrahedron. Line 248-249 applies the
modulus operation (i− 1)nElement+ j ≡ j(mod nElement) to determine the index of the
tetrahedron containing the face, except when j is equal to nElement. In this case, j represents
the last face of the tetrahedron and must be treated specially. The operation returns a value
of 0, which is then corrected to nElement.

Line 250 appends the tetrahedra containing the first and last occurrence of each face to a
matrix. However, if a face appears only once and its first and last occurrence are the same, the
tetrahedral information is redundant. The program detects and handles this situation using
lines 251-252.

255 v21 = T.coord(T.faces (:,1) ,:) - T.coord(T.faces (:,2) ,:);

256 v31 = T.coord(T.faces (:,1) ,:) - T.coord(T.faces (:,3) ,:);

257 T.facenormal = cross(v21 , v31 , 2);

258

259 %%% Elements

260

261 % edges ’ vectors

262 v12 = T.coord(T.ttrh (:,2) ,:)-T.coord(T.ttrh (:,1) ,:);

263 v13 = T.coord(T.ttrh (:,3) ,:)-T.coord(T.ttrh (:,1) ,:);

264 v14 = T.coord(T.ttrh (:,4) ,:)-T.coord(T.ttrh (:,1) ,:);

265

266 % Determinant

267 T.detBk = dot(v12 , cross(v13 , v14 , 2) ,2);

The computation of normal vectors for all faces is carried out in the same manner as for the
boundary elements. Additionally, the determinant of the affine matrices, for all the elements,
is computed at once using the triple product formula.

3.4 Data structure

To check the physical tags, the command T.ComplementaryInformation.keys can be used.
This returns a cell array with the physical tags created. The entities belonging to each physical
tag are returned with the command T.ComplementaryInformation(‘String Label’) can be
used, this returns a vector with the numerical labels of each entity belonging to that physical
groups as defined in the Entities section of the mesh file. If all entities associated to a physical
tag are to be displayed, we can use T.ComplementaryInformation.values.

The mesh structure T.mesh contains the following fields:

54

• nNodes: number of nodes in the mesh.

• deg: Degree of the elements used for the mesh.

• coord: nNodes×3 matrix. Each row contains the three components of the nodes in a
mesh.

T.mesh.coord =

 x1 y1 z1
...

xnNodes ynNodes znNodes


• trB: ntrB×dofA matrix. Each row contains the dofA pointers to the coord field, that is,
the nodes inside each triangular element in the boundary.

T.mesh.trB =

 i1

...
intrB


where ir is the vector of global indices belonging to the rth boundary element in a mesh,
say

[
ir1 · · · ir,dofA

]
.

• domBd: ntrB×1 column vector. Contains the numerical label of the surface to which each
elements in trB belongs.

• trBNormal: ntrB×3 matrix. The rth row contains the normal vector to the rth boundary
element in the mesh. This vector has magnitude equal to twice the area of the triangular
element.

T.mesh.trBNormal =

 nx,1 ny,1 nz,1
...

nx,ntrB ny,ntrB nz,ntrB


• ttrh: nTtrh×dofK matrix. Each row contains the dofK pointers to coord, that is, the
nodes inside each tetrahedral element.

T.mesh.ttrh =

 i1

...
inTtrh


where ir is the vector of global indices belonging to the rth tetrahedron in a mesh, say[
i1r · · · ir,dofK

]
.

• domain: nTtrh×1 column vector. Contains the numeric label of the volume to which
each element in ttrh belongs.

• detBk: nTtrh×1 column vector. The rth row of this vector contains the Jacobian deter-
minant associated to the affine mapping of the rth tetrahedron in the mesh Fr.

• faces: nFaces×3 matrix. Contains pointers to coord of the vertices of all faces belonging
to a tetrahedron in the mesh, with no repetition.

T.mesh.faces =

 i11 i12 i13
...

inFaces,1 inFaces,2 inFaces,3



55

• ttrh2faces: nTtrh×4 matrix. Each row has pointer to the faces field. The rth row
contain the four faces belonging to the rth tetrahedron.

T.mesh.ttrh2faces =

 ℓ11 ℓ12 ℓ13 ℓ14
...

...
ℓnTtrh,1 ℓnTtrh,2 ℓnTtrh,3 ℓnTtrh,4


• faces2ttrh: nFaces×2 matrix. Each row contains the pointers to the tetrahedra con-
taining each face. The rth row contains the two tetrahedrons sharing a common face.If a
face belongs to the boundary then the second row is set to NaN.

T.mesh.faces2ttrh =

 ℓ11 ℓ12
...

...
ℓnFaces,1 ℓnFaces,2


• facenormal: nFaces×3 matrix. The rth row contains the normal vector to the rth face
in the mesh. This vector has magnitude equal to twice the area of the triangular element.

T.mesh.trBNormal =

 nx,1 ny,1 nz,1
...

nx,ntrB ny,nFaces nz,nFaces


The field T.mesh.coord gives the nodes and their global numeration; to obtain the co-

ordinates of a node with global numeration i it is as simple as using T.mesh.coord(i, :).
If the nodes inside an element k are needed, for example a triangular element, the command
T.mesh.trB(k, :) gives the nodes in the triangle

[
ik1 · · · ik,dofA

]
. Then, the command

T.mesh.coord(T.mesh.trB(k,:),:) returns a matrix of size dofA× 3 of the form
xik1 yik1 zik1
xik2 yik2 zik2

...
xik,dofA yik,dofA zik,dofA


Similarly, the nodes in a tetrahedron k can be accessed using T.mesh.coord(T.mesh.ttrh(k, :), :).

If instead multiple triangular elements are indexed simultaneously, for example two at the same
time, then T.mesh.coord(T.mesh.trB([k1,k2],:),:) returns

xik1,1
yik1,1 zik1,1

xik2,1
yik2,1 zik2,1

xik1,2
yik1,2 zik1,2

xik2,2
yik2,2 zik2,2
...

x
i
k1
dofA

y
i
k1
dofA

z
i
k1
dofA

x
i
k2
dofA

y
i
k2
dofA

z
i
k2
dofA


That is, the first nodes of each element are given first; in the next rows, the coordinates of

the node with local numeration equal to two are given and so on. This is because Matlab/Oc-
tave reshapes internally the matrix T.mesh.trB([k1,k2],:) to a column vector, hence it is
equivalent to indexing the rows

56

[
ik1,1 ik2,1 · · · ik1,dofA ik2,dofA

]⊤
.

The triangular elements in the interior of an specific entity can be accessed with the
help of the command T.mesh.domBd==surfaceLabel. This returns a logical column vector
of the same size as domBd that equals 1 if an element is inside the surface and 0 other-
wise. The command ismember(T.mesh.domBd,

[
surfaceLabel1 . . . surfaceLabelp

]
) can

be used to check multiple entities at the same time. An example of this case is to use
the field T.ComplementaryInformation to gather the elements with an associated boundary
condition. The pointer to the nodes belonging to each triangular element is accessed using
T.mesh.trB(T.mesh.trB==surfaceLabels),:). Notice that the indexes on the rows is a log-
ical vector, Matlab returns the rows with a logical value of true. The same process can be
performed if a set of tetrahedrons are needed instead but using the field domain.

To obtain the Jacobian of the parameterization of the triangular surface element we use
vecnorm(T.mesh.trBNormal,2,2).

The command T.mesh.faces(T.mesh.ttrh2faces(k,ℓ),:) can be used to return the ver-
tices of ℓth face of the kth tetrahedron. Given a face k of the matrix T.mesh.face, a pointer to a
tetrahedron can be obtained using the command T.mesh.ttrh(T.mesh.faces2ttrh(k,ℓi),:),
where i = 1, 2.

The function trisurf can be used to plot a triangular mesh from the vector components
of the nodes conforming a triangular mesh and a matrix with the pointers to the vertices of
the triangles. For instance, the vectors and the matrix can be chosen from the fields coord and
trB. This yields a representation of the surface of the mesh. The command to represent this
function in this case is given by

trisurf(T.mesh.trB (: ,1:3),T.mesh.coord (:,1),T.mesh.trB(:,2),T.mesh.trB(:,3),

u,’facecolor ’,’interp ’)

If an additional vector u of the same size as coord is given, then the function colors the
surface element according to the values at the vertices and applies a linear interpolation to
produce a smooth representation of the solution within each triangular element. For higher
order elements, it is necessary to define subtriangles inside each element by connecting the
nodes. For arbitrary surfaces, a pointer similar to trB (with the vertices) is needed. From a
set of arbitrary points, the command delaunay(x,y,z) allows creating such a pointer matrix.

3.5 Lagrange Basis

The Lagrange basis in the reference element can be accessed with

[Ns2D,Ns3D,gradNs3D] = FEM3Dclass.basisNj(deg)

It contains all the basis functions shown in Section 2.2.4 stored in a cell array. The variable
gradNs3D contains a cell array of size R3×dofK, with the partial derivatives of the Lagrange basis.
Check appendix A to see the code developed to obtain these terms.

3.6 Integration formulas

The quadrature and cubature formulas for approximating the integrals needed in the assembly
process can be accessed using FEM3Dclass.quadRule2D and FEM3Dclass.quadRule3D respec-
tively. The weights and the evaluation nodes were taken from the python package quadpy[21]

57

for the triangle (T2) and tetrahedron (T3) respectively. The rules obtained on this package
are given directly in barycentric coordinates, so the application of the formula is as shown in
section 2.3.3. For the quadrature rules the formulas chosen have degree 3, 5, 7 and 9. For the
cubature rules, additional formulas are stored, they have degree 3, 5, 6, 7 and 9.

3.7 Local Matrices

In certain cases, it may be useful to use exact local matrices in the finite element method
(FEM). This is particularly true when the functions involved in Problem (2.1), such as κ, α or
c, are constant, or piecewise constant on each tetrahedra, which is a rather common scenario
in practical applications. In such cases, the mass matrix MK

c , the stiffness matrix SK
κ , the

boundary mass matrix Rα, and the advection matrix AK
β can be constructed exactly up to

computer precision.

Although approximate formulas will be used for the integrals in the implementation, the
exact matrices have been computed using exact integration and are already stored for the sake
of completeness. The command to obtain the local advection, mass and stiffness matrices is

[M,Sxx ,Sxy ,Sxz ,Syy ,Syz ,Szz , Ax, Ay, Az] = FEM3Dclass.local3DMatrices(deg)

and to obtain the boundary mass matrix we use

R = FEM3Dclass.localRobinMass(deg)

3.8 Assembly of the system of equations

For the assembly of the linear system we require to define the function associated to each term
of the system of equations. They may be given in two forms:

r = @(x,y,z) r(x,y,z)

or as

r = @(x,y,z, dom) r1 (x,y,z).* (dom ==1)+ r2(x,y,z).*(dom ==2) ...

where dom may be either T.mesh.domain or T.mesh.domBd (for Robin conditions it is a subset
of this vector containing only the elements in the Robin or Neumann boundary) and 1, 2 and
so on are the numerical labels of the entities. Naturally, other logical operators may be used.
For constant functions we will use

r(x,y,z)=cte+x*0;

Doing this we ensure that function r returns a constant (cte) vector of the same size as
the input (x).

3.8.1 Mass matrix

The assembly of the mass matrix is done with the function

Mc = femMassMatrix(obj , c)

where c is a handle function and obj is an object of the class.

58

Assume then we work with the cubature formula:∫
K̂

f̂ ≈ 1

6

nQ∑
ℓ=1

wℓf̂(λ̂ℓ).

12 % Geometry Data

13 T = obj.mesh;

14 nTtrh = size(T.ttrh ,1);

15 nNodes = T.nNodes;

16 dofK = size(T.ttrh ,2);

17

18 %%% Cubature rule

19 degQuad = max (2*T.deg -1,3);

20 quadRuleTtrh = obj.quadRule3D;

21 nodesQuad = quadRuleTtrh{degQuad }.nodes;

22 weights = quadRuleTtrh{degQuad }. weights;

23 nQ = length(weights);

24

25 % Evaluate Interpolation functions

26 PkValues =zeros(dofK , nQ);

27 for i = 1: length(obj.Nj3D)

28 PkValues(i,:) = obj.Nj3D{i}(nodesQuad (1,:),nodesQuad (2,:), ...

29 nodesQuad (3,:),nodesQuad (4,:));

30 end

31 PkProd = repelem(PkValues ,dofK ,1).* repmat(PkValues ,dofK ,1);

Lines 19-23 define the nodes use in the cubature formula which is then used in lines 26-30
for computing the individual Lagrange basis evaluated at each cubature node, which are then
stored in PkValues ∈ RdofK×nQ. Specifically, at PkValues(ℓ, r), the value of N̂ℓ evaluated at

the rth cubature node λ̂r is stored. Subsequently, at line 31, all combinations of the product
N̂iN̂j(λ̂r) are computed and stored in the matrix PkProd, defined as:

PkProd =



N̂1N̂1(λ̂1) · · · N̂1N̂1(λ̂nQ)
...

. . .
...

N̂1N̂dofK(λ̂1) · · · N̂1N̂dofK(λ̂nQ)
...

N̂1N̂dofK(λ̂1) · · · N̂1N̂dofK(λ̂nQ)
...

. . .
...

N̂dofKN̂dofK(λ̂1) · · · N̂dofKN̂dofK(λ̂nQ)


Furthermore, the function c must also be evaluated at the cubature nodes in the physical

domain.

33 % Cubature nodes in physical domain

34 px = T.coord (:,1); py = T.coord (:,2); pz = T.coord (:,3);

35 nodesX = px(T.ttrh (: ,1:4))*nodesQuad;

36 nodesY = py(T.ttrh (: ,1:4))*nodesQuad;

37 nodesZ = pz(T.ttrh (: ,1:4))*nodesQuad;

38

39 if nargin(c) == 3

40 val = c(nodesX , nodesY , nodesZ);

41 elseif nargin(c) == 4

42 val = c(nodesX , nodesY , nodesZ , T.domain*ones(1,nQ));

43 end

44 val = val.*T.detBk;

59

The x, y and z components in the physical domain of each cubature node are stored in
nodesX, nodesY, nodesZ respectively using Equation(2.13) for each individual component.
Lines 39-43 compute the value of c at each cubature node and store it in val. At line 44 the
computation detBKcr is done for every tetrahedron and every cubature node and stored in

val =

 detB1c1(λ̂1) · · · detB1c1(λ̂nQ)
...

. . .
...

detBnttrhcnttrh(λ̂1) · · · detBnttrhcnttrh(λ̂nQ)


46 % Cubature formula

47 PkProd = repmat(PkProd , nTtrh , 1);

48 val = repelem(val , dofK^2, 1);

49 val = val.* PkProd;

50 val = val*weights (:)/6;

In these lines the cubature formula is applied. Line 47 construct the block column vector

PkProd =

PkProd...
PkProd

 ∈ R(nttrh·dofK2)×nQ

and line 48, on the other hand, repeats dofK2 times each value obtained in val, resulting in

val =



detB1c1(λ̂1) · · · detB1c1(λ̂nQ)
...

. . .
...

detB1c1(λ̂1) · · · detB1c1(λ̂nQ)
...

detBnttrhcnttrh(λ̂1) · · · detBnttrhcnttrh(λ̂nQ)
...

. . .
...

detBnttrhcnttrh(λ̂1) · · · detBnttrhcnttrh(λ̂nQ)


∈ R(nttrh·dofK2)×nQ.

At line 49, the componentwise product is performed to obtain all the integrands of the
local mass matrix for every tetrahedron and cubature node. Finally, at line 50 the cubature
formula is implemented simultaneously for all elements on the last line noticing the summation
can be written as

∑
ℓ

wℓr(λ̂ℓ) =
[
r(λ̂1) · · · r(λ̂nQ)

]w1
...

wnQ

 .

Denoting withMK
c the local mass matrix of the tetrahedronK andMK

c (:) its vectorization
(collapsing the matrix into a column vector) then the matrix obtained is

val ≈

 M 1
c(:)
...

M nttrh
c (:)

 .

60

52 % Mass matrix assembly

53 indi = repmat(T.ttrh ,1,dofK); indi = indi ’;

54 indj = repelem(T.ttrh ,1,dofK); indj = indj ’;

55 Mc = sparse(indi (:), indj (:), val (:), nNodes , nNodes);

The last step is to assembly the matrix. Lines 53-54 uses the field ttrh containing the
indices vector of each tetrahedron to obtain all pairs of rows and columns (i, j) of the local
matrix for each tetrahedron. This is used in line 55 to assemble the mass matrix using the
command sparse to assembly a sparse matrix. This command receives as inputs a list of
row indices and column indices where the nonzero elements are localized. The corresponding
elements in val(:) are stored in those positions of a nNodes× nNodes matrix. This command
works such that if any pair (i, j) appears multiple times then the results are added. This
behavior allows adding the contribution of each tetrahedron containing nodes i and j to the
associated term in the mass matrix.

3.8.2 Stiffness Matrix

Two separate functions have been implemented for the assembly of the stiffness matrix. This
is motivated by the fact that when κ is equal to the identity matrix I3, the matrix CK =

B−1
K B−⊤

K can be computed exactly up to rounding errors and the matrix assembly from it can
be implemented without any further complication. The function

S = femStressMatrix(obj)

has been specifically developed to handle this scenario. The only input required is an object of
the class.

9 % Geometry Data

10 T = obj.mesh;

11 nttrh = size(T.ttrh ,1);

12 nNodes = T.nNodes;

13 dofK = size(T.ttrh ,2);

14

15 [~,Sxx ,Sxy ,Sxz ,Syy ,Syz ,Szz] = obj.local3DMatrices(T.deg);

16

17

18 %Ck matrix elements obtention

19 v12 = T.coord(T.ttrh (:,2) ,:)-T.coord(T.ttrh (:,1) ,:);

20 v13 = T.coord(T.ttrh (:,3) ,:)-T.coord(T.ttrh (:,1) ,:);

21 v14 = T.coord(T.ttrh (:,4) ,:)-T.coord(T.ttrh (:,1) ,:);

22

23 c11 = v13(:,3) .^2.*(v14(:,1) .^2+ v14(:,2) .^2)- ...

24 2.* v13(:,1).*v13(:,3).*v14(:,1).*v14(:,3) -2.* ...

25 v13(:,2).*v14(:,2).*(v13(:,1).*v14(:,1)+ ...

26 v13(:,3).*v14(:,3))+v13(:,2) .^2.*(v14(:,1) .^2+ ...

27 v14(:,3) .^2)+v13(:,1) .^2.*(v14(:,2) .^2+ ...

28 v14(:,3) .^2);

29 c11 = c11./T.detBk;

30 c22 = v12(:,3) .^2.*(v14(:,1) .^2+ v14(:,2) .^2)- ...

31 2.* v12(:,1).*v12(:,3).*v14(:,1).*v14(:,3) -2.* ...

32 v12(:,2).*v14(:,2).*(v12(:,1).*v14(:,1)+ ...

33 v12(:,3).*v14(:,3))+v12(:,2) .^2.*(v14(:,1) .^2+ ...

34 v14(:,3) .^2)+ v12(:,1) .^2.*(v14(:,2) .^2+ ...

35 v14(:,3) .^2);

36 c22 = c22./T.detBk;

37 c33 = v12(:,3) .^2.*(v13(:,1) .^2+ v13(:,2) .^2)- ...

38 2.* v12(:,1).*v12(:,3).*v13(:,1).*v13(:,3) -2.* ...

61

39 v12(:,2).*v13(:,2).*(v12(:,1).*v13(:,1)+ ...

40 v12(:,3).*v13(:,3))+v12(:,2) .^2.*(v13(:,1) .^2+ ...

41 v13(:,3) .^2)+ v12(:,1) .^2.*(v13(:,2) .^2+ ...

42 v13(:,3) .^2);

43 c33 = c33./T.detBk;

44 c12 = -v12(:,3).*v13(:,3).*(v14(:,1) .^2+ v14(:,2) .^2) +...

45 v12(:,3).*(v13(:,1).*v14(:,1)+ ...

46 v13(:,2).*v14(:,2)).* v14(:,3)+ ...

47 v12(:,2).*v14(:,2).*(v13(:,1).*v14(:,1)+ ...

48 v13(:,3).*v14(:,3))-v12(:,2).*v13(:,2).*(...

49 v14(:,1) .^2+ v14(:,3) .^2)+ ...

50 v12(:,1).*(v13(:,2).*v14(:,1).*v14(:,2)+ ...

51 v13(:,3).*v14(:,1).*v14(:,3)- ...

52 v13(:,1).*(v14(:,2) .^2+ v14(:,3) .^2));

53 c12 = c12./T.detBk;

54 c13 = v12(:,3).*(v13(:,1).*v13(:,3).*v14(:,1)+ ...

55 v13(:,2).*v13(:,3).*v14(:,2)- ...

56 v13(:,1) .^2.* v14(:,3)- v13(:,2) .^2.* v14(:,3))+ ...

57 v12(:,1).*(-v13(:,2) .^2.* v14(:,1)- ...

58 v13(:,3) .^2.* v14(:,1)+ ...

59 v13(:,1).*v13(:,2).*v14(:,2)+ ...

60 v13(:,1).*v13(:,3).*v14(:,3))+ ...

61 v12(:,2).*(v13(:,1).*v13(:,2).*v14(:,1)- ...

62 v13(:,1) .^2.* v14(:,2)+ ...

63 v13(:,3).*(-v13(:,3).*v14(:,2)+v13(:,2).*v14(:,3)));

64 c13 = c13./T.detBk;

65 c23 = -v12(:,3) .^2.*(v13(:,1).*v14(:,1)+ ...

66 v13(:,2).*v14(:,2))+ ...

67 v12(:,1).*v12(:,3).*(v13(:,3).*v14(:,1)+ ...

68 v13(:,1).*v14(:,3))+ ...

69 v12(:,2).*(v12(:,1).*v13(:,2).*v14(:,1)+ ...

70 v12(:,1).*v13(:,1).*v14(:,2)+ ...

71 v12(:,3).*v13(:,3).*v14(:,2)+ ...

72 v12(:,3).*v13(:,2).*v14(:,3))- ...

73 v12(:,2) .^2.*(v13(:,1).*v14(:,1)+ ...

74 v13(:,3).*v14(:,3))- ...

75 v12(:,1) .^2.*(v13(:,2).*v14(:,2)+ ...

76 v13(:,3).*v14(:,3));

77 c23 = c23./T.detBk;

78

79 Sk = kron(c11 ’, Sxx)+kron(c22 ’, Syy)+kron(c33 ’, Szz)+ ...

80 kron(c12 ’, Sxy+Sxy ’)+ kron(c13 ’,Sxz+Sxz ’)+ ...

81 kron(c23 ’, Syz+Syz ’);

Lines 23-77 compute the coefficients of the matrix CK that appears in the expression
for the stiffness matrix. These expressions have been precomputed using Mathematica and
transformed into Matlab/Octave code using the package ToMatlab [17].

Finally, lines 79-81 use the Kronecker product operator to assemble the global stiffness
matrix S. The Kronecker product of two matrices A ∈ Rn×m and B ∈ Rp×q is defined as

A⊗B =

a11B · · · a1mB
...

. . .
...

an1B · · · anmB

 ∈ Rnp×mq.

Here, the Kronecker product is used to stack the local stiffness matrices SK for each

62

tetrahedron K into a block matrix Sk with dimensions dofK× dofK · nttrh as

Sk =
[
S1 · · · Snttrh

]
Finally, the assembly is done with the following lines:

84 % Stiffness matrix assembly

85 [j,i] = meshgrid (1:dofK , 1:dofK);

86 indi = zeros(dofK , dofK*nttrh); indj = indi;

87 indi (:) = T.ttrh(:,i)’;

88 indj (:) = T.ttrh(:,j)’;

89 S = sparse(indi , indj , Sk, nNodes , nNodes);

The most general case where κ is a matrix whose components are in general dependent of
the position vectors is addressed with the function

[S] = femStiffnessMatrix(obj ,K)

The input arguments are an object obj of the class and a 3 × 3 cell array of function
handles K.

In order to compute the stiffness matrix S, cubature rules are required once again. How-
ever, the integrands in this case involve the products of derivatives of the Lagrange basis
functions. To evaluate these derivatives at the quadrature nodes, the code compute and stores
them individually using the following expressions:

20 % Geometry data

21 T = obj.mesh;

22 nttrh = size(T.ttrh ,1);

23 nNodes = T.nNodes;

24 dofK = size(T.ttrh ,2);

25

26 %Cubature Rule

27 degQuad = max (2*T.deg -1,3);

28 quadRuleTtrh = obj.quadRule3D;

29 nodesQuad = quadRuleTtrh{degQuad }.nodes;

30 weights = quadRuleTtrh{degQuad }. weights;

31 nQ = length(weights);

32

33 % Evaluate gradient of Interpolation function

34 gradPhi = zeros (3*dofK ,nQ);

35 for j=1:3

36 for i=1: dofK

37 gradPhi ((j-1)*dofK+(i-1)+1,:) = ...

38 obj.gradNj3D{j,i}(nodesQuad (1,:), nodesQuad (2,:), ...

39 nodesQuad (3,:), nodesQuad (4,:));

40 end

41 end

42 Sx = gradPhi (1:dofK ,:);

43 Sy = gradPhi(dofK +1:2*dofK ,:);

44 Sz = gradPhi (2* dofK +1:end ,:);

The variables Sx, Sy, Sz ∈ RdofK×nQ contain at each row the derivative of the Lagrange basis
with respect to x̂, ŷ and, ẑ respectively. The next step is to compute the inverses of BK .

47 % Bk^-1.sqrt(T.detBk)

48 v12 = T.coord(T.ttrh (:,2) ,:)-T.coord(T.ttrh (:,1) ,:);

49 v13 = T.coord(T.ttrh (:,3) ,:)-T.coord(T.ttrh (:,1) ,:);

50 v14 = T.coord(T.ttrh (:,4) ,:)-T.coord(T.ttrh (:,1) ,:);

63

51

52 b1 = cross(v13 ,v14 ,2);

53 b2 = cross(v14 ,v12 ,2);

54 b3 = cross(v12 ,v13 ,2);

55

56 ind = 1: nttrh;

57 ind32 = 3*ind(:) -2;

58 ind31 = 3*ind(:) -1;

59 ind30 = 3*ind(:);

60 indices = [ind32 ind31 ind30];

61 rowIndex = repmat(indices (:) ,3,1);

62 colIndex = reshape(repmat(indices ,3,1) ,[],1);

63

64 Bkp = [b1; b2; b3];

65 Bkp = Bkp./sqrt(repmat(T.detBk ,3,1));

66 BsInv = sparse(rowIndex , colIndex , Bkp);

This portion of the code compute the inverses of the Jacobian using Equation(2.26). Here,
a factor of 1

detBK
is missing in the inverse to ease the assembly of CK . These matrices are stored

in BsInv as a block diagonal matrix

BsInv =

Bs1 . . .

Bsnttrh

 ∈ R(3·nttrh)×(3·nttrh),

where Bs1, Bs2 and so on, are the inverses (up to the previously mentioned factor).

The computation of the diffusion matrix at the cubature nodes in the physical domain is
computed using:

68 % Cubature nodes in physical domain

69 px = T.coord (:,1); py = T.coord (:,2); pz = T.coord (:,3);

70 nodesX = px(T.ttrh (: ,1:4))*nodesQuad;

71 nodesY = py(T.ttrh (: ,1:4))*nodesQuad;

72 nodesZ = pz(T.ttrh (: ,1:4))*nodesQuad;

73

74 checkNargin = cellfun(@nargin ,K);

75 if sum(sum(checkNargin ~= checkNargin (1)))

76 error ([’The components of the diffusion matrix K should have’ ...

77 ’ the same number of inputs ’])

78 elseif nargin(K{1 ,1}) ==3

79 K11 = K{1,1}(nodesX , nodesY , nodesZ);

80 K12 = K{1,2}(nodesX , nodesY , nodesZ);

81 K13 = K{1,3}(nodesX , nodesY , nodesZ);

82 K21 = K{2,1}(nodesX , nodesY , nodesZ);

83 K22 = K{2,2}(nodesX , nodesY , nodesZ);

84 K23 = K{2,3}(nodesX , nodesY , nodesZ);

85 K31 = K{3,1}(nodesX , nodesY , nodesZ);

86 K32 = K{3,2}(nodesX , nodesY , nodesZ);

87 K33 = K{3,3}(nodesX , nodesY , nodesZ);

88 elseif nargin(K{1 ,1}) ==4

89 K11 = K{1,1}(nodesX , nodesY , nodesZ ,T.domain);

90 K12 = K{1,2}(nodesX , nodesY , nodesZ ,T.domain);

91 K13 = K{1,3}(nodesX , nodesY , nodesZ ,T.domain);

92 K21 = K{2,1}(nodesX , nodesY , nodesZ ,T.domain);

93 K22 = K{2,2}(nodesX , nodesY , nodesZ ,T.domain);

94 K23 = K{2,3}(nodesX , nodesY , nodesZ ,T.domain);

95 K31 = K{3,1}(nodesX , nodesY , nodesZ ,T.domain);

96 K32 = K{3,2}(nodesX , nodesY , nodesZ ,T.domain);

64

97 K33 = K{3,3}(nodesX , nodesY , nodesZ ,T.domain);

98 end

Here the most general case of κ not being a symmetric matrix is considered to enable the
assembly of a wider class of problems.

To apply the cubature formula for the computation of the stiffness matrix S, a for loop is
used to address potential memory issues that may arise when working with meshes that contain
a large number of elements.

101 % Cubature formula

102 Sval = 0;

103 for i=1:nQ

104 KK = [K11(:,i) K12(:,i) K13(:,i); ...

105 K21(:,i) K22(:,i) K23(:,i); ...

106 K31(:,i) K32(:,i) K33(:,i)];

107

108 Cs = sparse(rowIndex , colIndex , KK);

109 Cs = BsInv*Cs*BsInv ’;

110 aux = diag(Cs);

111 C11 = full(aux (1:3: end));

112 C22 = full(aux (2:3: end));

113 C33 = full(aux (3:3: end));

114 aux = diag(Cs ,1);

115 C12 = full(aux (1:3: end));

116 C23 = full(aux (2:3: end));

117 aux = diag(Cs ,-1);

118 C21 = full(aux (1:3: end));

119 C32 = full(aux (2:3: end));

120 aux = diag(Cs ,2);

121 C13 = full(aux (1:3: end));

122 aux = diag(Cs ,-2);

123 C31 = full(aux (1:3: end));

124

125 Sval = Sval + 1/6* weights(i)*(...

126 kron(C11 ’,Sx(:,i)*Sx(:,i)’) + ...

127 kron(C22 ’,Sy(:,i)*Sy(:,i)’) + ...

128 kron(C33 ’,Sz(:,i)*Sz(:,i)’) + ...

129 kron(C12 ’,Sx(:,i)*Sy(:,i)’) + ...

130 kron(C13 ’,Sx(:,i)*Sz(:,i)’) + ...

131 kron(C21 ’,Sy(:,i)*Sx(:,i)’) + ...

132 kron(C23 ’,Sy(:,i)*Sz(:,i)’) + ...

133 kron(C31 ’,Sz(:,i)*Sx(:,i)’) + ...

134 kron(C32 ’,Sz(:,i)*Sy(:,i)’) ...

135);

136 end

Inside the loop, the matrix Cs is constructed to contain the matrices CK in the block
diagonal matrixC1 . . .

Cnttrh

 =

Bs1 · KK1 · Bs1
⊤

. . .

Bsnttrh · KKnttrh · Bsnttrh⊤


where each element in the block has the form

Ci =

Ci
11 Ci

12 Ci
13

Ci
21 Ci

22 Ci
23

Ci
31 Ci

32 Ci
33

 ∈ R3×3.

65

The next lines collect the corresponding coefficients using the built-in Matlab function

diag(A,k).

This function returns the kth diagonal of the matrix A in vector form. The default value
of k is zero, which returns the main diagonal of the matrix. If k>0, it returns the kth diagonal
above the main diagonal, and if k<0, it returns the diagonal below the main diagonal. By using
this function, the coefficients Cij of every tetrahedron are stored.

Line 125 adds the term of the cubature formula using a similar idea to the femStressMatrix
case. The resulting matrix Sval has the same structure as the previous function and the as-
sembly is done exactly the same.

3.8.3 Advection Matrix

The computation of the advection matrix is done with

[A] = femAdvectionMatrixfemAdvectionMatrix(obj , v)

The input to this function are: a 3× 1 cell array v of functions handles and an object obj from
the class.

14 % Geometry data

15 T = obj.mesh;

16 dofK = size(T.ttrh ,2);

17 nNodes = T.nNodes;

18 nttrh=length(T.ttrh);

19

20 %Cubature Rule

21 degQuad = max (2*T.deg -1,3);

22 quadRuleTtrh = obj.quadRule3D;

23 nodesQuad = quadRuleTtrh{degQuad }.nodes;

24 weights = quadRuleTtrh{degQuad }. weights;

25 nQ = length(weights);

26

27 % Evaluate gradient of Interpolation function

28 gradPhi = zeros (3*dofK ,nQ);

29 for j=1:3

30 for i=1: dofK

31 gradPhi ((j-1)*dofK+(i-1)+1,:) = ...

32 obj.gradNj3D{j,i}(nodesQuad (1,:), nodesQuad (2,:), ...

33 nodesQuad (3,:), nodesQuad (4,:));

34 end

35 end

36 Sx = gradPhi (1:dofK ,:);

37 Sy = gradPhi(dofK +1:2*dofK ,:);

38 Sz = gradPhi (2* dofK +1:end ,:);

39 clear gradPhi

40

41 % Evaluate Interpolation functions

42 PkValues = zeros(dofK , nQ);

43 for j = 1: length(obj.Nj3D)

44 PkValues(j,:) = ...

45 obj.Nj3D{j}(nodesQuad (1,:),nodesQuad (2,:), ...

46 nodesQuad (3,:),nodesQuad (4,:));

47 end

The local matrix is assembled by computing the Lagrange functions and their gradi-
ents evaluated at the cubature nodes. Each component of the gradient function is stored

66

in Sx, Sy, Sz ∈ RdofK×nQ, and the values of the Lagrange basis are stored in PkValues.

49 % Bk^-1.(T.detBk)

50 v12 = T.coord(T.ttrh (:,2) ,:)-T.coord(T.ttrh (:,1) ,:);

51 v13 = T.coord(T.ttrh (:,3) ,:)-T.coord(T.ttrh (:,1) ,:);

52 v14 = T.coord(T.ttrh (:,4) ,:)-T.coord(T.ttrh (:,1) ,:);

53

54 b1 = cross(v13 ,v14 ,2);

55 b2 = cross(v14 ,v12 ,2);

56 b3 = cross(v12 ,v13 ,2);

57

58 ind = 1: nttrh;

59 ind32 = 3*ind(:) -2;

60 ind31 = 3*ind(:) -1;

61 ind30 = 3*ind(:);

62 indices = [ind32 ind31 ind30];

63 rowIndex = repmat(indices (:) ,3,1);

64 colIndex = reshape(repmat(indices ,3,1) ,[],1);

65

66 Bkp = [b1; b2; b3];

67 BsInv = sparse(rowIndex , colIndex , Bkp);

The components of BK up to a missing factor of 1
detBK

are stored in the diagonals of the

block matrix BsInv ∈ R3·nttrh×3·nttrh. The next step is to evaluate the vector v at the cubature
nodes in the physical domain.

70 % Cubature nodes in physical domain

71 px = T.coord (:,1); py = T.coord (:,2); pz = T.coord (:,3);

72 nodesX = px(T.ttrh (: ,1:4))*nodesQuad;

73 nodesY = py(T.ttrh (: ,1:4))*nodesQuad;

74 nodesZ = pz(T.ttrh (: ,1:4))*nodesQuad;

75

76 checkNargin = cellfun(@nargin ,v);

77 if sum(sum(checkNargin ~= checkNargin (1)))

78 error ([’The components of the velocity vector v should have’ ...

79 ’ the same number of inputs ’])

80 elseif nargin(v{1}) ==3

81 vValx = v{1}(nodesX , nodesY , nodesZ);

82 vValy = v{2}(nodesX , nodesY , nodesZ);

83 vValz = v{3}(nodesX , nodesY , nodesZ);

84 elseif nargin(v{1}) ==4

85 vValx = v{1}(nodesX , nodesY , nodesZ , T.domain);

86 vValy = v{2}(nodesX , nodesY , nodesZ , T.domain);

87 vValz = v{3}(nodesX , nodesY , nodesZ , T.domain);

88 end

89 vVal = [vValx vValy vValz];

With this code, all the components are stored in

vVal =
[
vValx vValy vValz

]
=

 v1X,1 · · · v1X,nQ v1Y,1 · · · v1Y,nQ v1Z,1 · · · v1Z,nQ
...

. . .
...

...
. . .

...
...

. . .
...

vnttrhX,1 · · · vnttrhX,nQ vnttrhY,1 · · · vnttrhY,nQ vnttrhZ,1 · · · vnttrhZ,nQ

 ∈ Rnttrh×(3·nQ).

Then, the cubature formula is applied following a similar idea to the assembly of the stiffness
matrix.

92 Aval = 0;

67

93 for i=1:nQ

94 vnQ = sparse(indices , [ind ind ind], vVal(:, i:nQ:end), ...

95 3*nttrh , 3*nttrh);

96 vnQ = BsInv*vnQ;

97 vnQ = vnQ(:,ind);

98

99 a1 = full(diag(vnQ(indices (:,1) ,:)));

100 a2 = full(diag(vnQ(indices (:,2) ,:)));

101 a3 = full(diag(vnQ(indices (:,3) ,:)));

102

103 Aval = Aval+ 1/6* weights(i)*(...

104 kron(a1 ’, PkValues(:,i)*Sx(:,i)’) + ...

105 kron(a2 ’, PkValues(:,i)*Sy(:,i)’) + ...

106 kron(a3 ’, PkValues(:,i)*Sz(:,i)’));

107 end

At line 94, the block matrix

vnQ =

v
1
i

. . .

vnttrhi


is computed. Here vKi is a column vector containing the components of the velocity function
evaluated at the ith cubature node inside the tetrahedron K, this allows to perform at line 96
the block matrix product of the inverses and the velocity functionBs1 · v

1
i

. . .

Bsnttrh · vnttrhi


Line 99-101 stores the components of the resultant column vectors in a1, a2, a3 ∈ Rnttrh.

Lastly the line 103-106 adds the term of the individual component using the kronecker product.
The assembly process is the same as for S.

110 % Advection matrix assembly

111 [j, i] = meshgrid (1:dofK ,1: dofK);

112 indi = zeros(dofK , dofK*nttrh); indj = indi;

113 indi (:) = T.ttrh(:,i)’;

114 indj (:) = T.ttrh(:,j)’;

115 A = sparse(indi , indj , Aval , nNodes ,nNodes);

3.8.4 Source term

The assembly of the source vector is performed using the function

b = femSourceTerm(obj , f)

where f is a function handle and obj is an object from the class.

12 % Geometry data

13 T = obj.mesh;

14 nTtrh = size(T.ttrh ,1);

15 nNodes = T.nNodes;

16 dofK = size(T.ttrh ,2);

17

18 % Cubature rule

68

19 degQuad = max (2*T.deg -1,3);

20 quadRuleTtrh = obj.quadRule3D;

21 nodesQuad = quadRuleTtrh{degQuad }.nodes;

22 weights = quadRuleTtrh{degQuad }. weights;

23 nQ = length(weights);

24

25 % Evaluate Interpolation functions

26 PkValues = zeros(dofK , nQ);

27 for i = 1: length(obj.Nj3D)

28 PkValues(i,:) = obj.Nj3D{i}(nodesQuad (1,:),nodesQuad (2,:), ...

29 nodesQuad (3,:),nodesQuad (4,:));

30 end

31

32 % Cubature nodes in physical domain

33 px = T.coord (:,1); py = T.coord (:,2); pz = T.coord (:,3);

34 nodesX = px(T.ttrh (: ,1:4))*nodesQuad;

35 nodesY = py(T.ttrh (: ,1:4))*nodesQuad;

36 nodesZ = pz(T.ttrh (: ,1:4))*nodesQuad;

37

38

39 if nargin(f) == 3

40 val = f(nodesX , nodesY , nodesZ);

41 elseif nargin(f) == 4

42 val = f(nodesX , nodesY , nodesZ , T.domain*ones(1,nQ));

43 end

44 val = val.*T.detBk;

45

46 % Cubature Formula

47 PkValues = repmat(PkValues ,nTtrh ,1);

48 val = repelem(val ,dofK ,1);

49 val = val.* PkValues;

50 val = val*weights (:)/6;

Similar to the mass matrix, line 26 compute the Lagrange basis evaluated at each cubature
node and lines 39-44 compute the value of f at the cubature nodes inside each tetrahedron,
which is then multiplied by the determinant of the same element in line 44.

To apply the cubature formula, line 47 repeats all the interpolating functions for every
tetrahedron and line 48 repeats the values of f for every tetrahedron. This is used in line 49
to obtain all the integrands of the source vector over each tetrahedron and evaluated at each
cubature node. Finally, line 50 computes the cubature rule

52 % Source vector assembly

53 indi = T.ttrh ’;

54 indi = indi (:);

55 b = accumarray(indi , val , [nNodes , 1]);

Unlike the previous cases, here accumarray is used to assemble the vector. The functionality is
similar to the sparse function. It creates a vector with nNodes components with entries equal
to the values of val located in the positions as given by indi. As with the other function, in
case an index appears multiple times the results are added.

3.8.5 Robin Boundary condition

The Robin boundary condition can be implemented by constructing the nNodes× nNodes

boundary matrix Rα and the nNodes traction vector tr. The assembly of these two terms
are performed with the function

69

[t,MR] = femRobin(obj , robin , gN, varargin)

This function requires as inputs: Robin, a logical vector with ntrB components indicating
which boundary elements belong to the Robin/Neumann boundary (i.e. the vector contains
one for elements in those boundaries and zeros otherwise). The argument gN is a function
handle with the boundary condition which may have two different forms: a scalar function han-
dle or a function handle with vector input, i.e. gN = @(x,y,z) [gNX(x,y,z), gnY(x,y,z),

gnZ(x,y,z)] (it may also have an optional fourth argument). Additionally, there are several
optional arguments that can be used, as shown below:

34 p = inputParser;

35 addRequired(p,’obj’)

36 addRequired(p,’robin ’)

37 addRequired(p, ’gN’)

38 addParameter(p, ’alpha’, @(x,y,z) 0.*x);

39 addParameter(p, ’exact’, nan);

40 parse(p, obj , robin , gN, varargin {:});

41

42 % Obtention of robin parameters

43 alpha = p.Results.alpha;

44 u = p.Results.exact;

The implementation of optional arguments in the function femRobin enables the passing of
these arguments in any order by specifying the string ‘alpha’ or ‘exact’ as the first argument.
If ‘alpha’ is specified, the next parameter is expected to be a function handle in one of two
forms: @(x,y,z) alpha(x,y,z) or @(x,y,z,domBd) alpha(x,y,z,domBd). If this argument
is not specified, the default value is set to alpha = @(x,y,z) 0*x, that is, we assume we are
working with Neumann conditions. If ‘exact’ is specified the next parameter is a function
handle with the exact solution to the differential problem. This second term is only required
if the boundary condition is robin and the user has only available the computation of the
Neumann term as a function handle of either a scalar or a vector function.

46 % Geometry Data

47 T = obj.mesh;

48 trBR = T.trB(robin ,:);

49 domBdR = T.domBd(robin);

50 ntrBR = size(trBR ,1);

51 normal = T.trBNormal(robin ,:);

52 detAk = vecnorm(normal ,2,2);

53 nNodes = T.nNodes;

54 dofA = size(T.trB ,2);

55

56

57 %%% Quadrature rule

58 degQuad = max (2*T.deg -1,3);

59 quadRuleTr = obj.quadRule2D;

60 nodesQuad = quadRuleTr{degQuad }.nodes;

61 weights = quadRuleTr{degQuad }. weights; weights = weights (:);

62 nQ = length(weights);

63

64 % Evaluate Interpolation functions

65 PkValues = zeros(dofA , nQ);

66 for j = 1: length(obj.Nj2D)

67 PkValues(j,:) = obj.Nj2D{j}(nodesQuad (1,:) ,...

68 nodesQuad (2,:),nodesQuad (3,:));

69 end

70

71 % Quadrature nodes in physical domain

70

72 px = T.coord (:,1); py = T.coord (:,2); pz = T.coord (:,3);

73 nodesX = px(trBR (: ,1:3))*nodesQuad;

74 nodesY = py(trBR (: ,1:3))*nodesQuad;

75 nodesZ = pz(trBR (: ,1:3))*nodesQuad;

76

77 %%% Traction term

78 if nargin(gN) == 3

79 val = gN(nodesX , nodesY , nodesZ);

80 elseif nargin(gN) == 4

81 val = gN(nodesX , nodesY , nodesZ , domBdR*ones(1,nQ));

82 end

83

84 if size(val ,2)==nQ*3

85 normal = kron(normal , ones(1, size(val ,2) /3));

86 val = val.* normal;

87 val = val(:,1:nQ)+val(:,nQ +1:2*nQ)+val(:,2*nQ+1:end);

88 elseif size(val ,2)==nQ

89 val = val.* detAk;

90 end

91 if isa(u,’function_handle ’)

92 if nargin(p.Results.exact)==3

93 val = val + alpha(nodesX , nodesY , nodesZ).*...

94 u(nodesX , nodesY , nodesZ).*detAk;

95 elseif nargin(p.Results.exact)==4

96 val = val + alpha(nodesX , nodesY , nodesZ , domBdR).*...

97 u(nodesX , nodesY , nodesZ , domBdR).*detAk;

98 end

99 end

100 val = repmat(PkValues ,ntrBR ,1).* repelem(val ,dofA , 1);

101 val = val*weights /2;

The computation of the Lagrange function is done as in the previous cases but now using
their expressions restricted to the faces. The next step is to compute the function gN at the
quadrature nodes. If it was given as a function handle with a vector function then

val =

 gN1X,1 · · · gN1X,nQ gN1Y,1 · · · gN1Y,nQ gN1Z,1 · · · gN1Z,nQ
...

. . .
...

...
. . .

...
...

. . .
...

gNntrBRX,1 · · · gNntrBRX,nQ gNntrBRY,1 · · · gNntrBRY,nQ gNntrBRZ,1 · · · gNntrBRZ,nQ

 ∈ RntrBR×(3·nQ)

is a block matrix where at each block there is each component of the gradient vector evaluated
at each quadrature node. On the other hand, if it is a scalar function then

val =

 gN11 · · · gN1nQ
...

. . .
...

gNntrBR1 · · · gNntrBRnQ

 ∈ RntrBR×nQ.

The first case is considered at lines 84-87. Here

normal =

 n1
x · · · n1

x n1
y · · · n1

y n1
z · · · n1

z
...

. . .
...

...
. . .

...
...

. . .
...

nntrBR
x · · · nntrBR

x nntrBR
y · · · nntrBR

y nntrBR
z · · · nntrBR

z

 ∈ RntrBR×nQ,

is a matrix containing at each row the components of the normal vectors to each element. Then,
lines 86-87 computes the dot product between the two vectors for each quadrature node. Here,
the normal vectors contain the Jacobian of the parameterization, this is the reason why there

71

is no need to add the Jacobian to this term. The case where gN is a scalar function handle is
handled at line 89.

In case exact is given, the term αu is added to the previous term at lines 91-99. The
quadrature rule is implemented using:

100 val = repmat(PkValues ,ntrBR ,1).* repelem(val ,dofA , 1);

101 val = val*weights /2;

Finally, to assemble the traction vector, the idea is the same as for the source vector.

103 % Traction vector assembly

104 id = trBR ’;

105 t = accumarray(id(:), val , [nNodes , 1]);

The computation of the matrix Rα is done the exact same way as M c but with the
Lagrange basis in the triangular element.

103 %%% Mass Boundary matrix

104 % Product of interpolation function at every quadrature node

105 PkProd = repmat(PkValues , dofA , 1).* repelem(PkValues , dofA , 1);

106 PkProd = repmat(PkProd , ntrBR , 1);

107

108

109 if nargin(alpha) == 3

110 val = alpha(nodesX , nodesY , nodesZ);

111 elseif nargin(alpha) == 4

112 val = alpha(nodesX , nodesY , nodesZ , domBdR*ones(1,nQ));

113 end

114 val = val.* detAk;

115

116 val = repelem(val , dofA^2, 1);

117 val = val.* PkProd;

118 val = val*weights /2;

119

120 % Boundary mass matrix assembly

121 indi = repmat(trBR , 1, dofA); indi=indi ’;

122 indj = repelem(trBR , 1, dofA); indj=indj ’;

123 MR = sparse(indi (:), indj (:), val (:), nNodes , nNodes);

3.9 Finite element evaluation

After obtaining the solution of the FEM problem at the nodes, it may be necessary to evaluate
the solution at other points in the domain. This can be accomplished easily if the tetrahedron
that contains each point is known, as the solution can be evaluated using the barycentric
coordinates of the point and Equation(2.13). This is done with the function

[val ,Meval ,barPt ,indTtrh ,indPtError] = evalFEM3DUh(uh,obj ,pt,varargin)

The function takes as inputs the finite element defined by its values at the nodes (uh), an
object from the class fem3Dclass, a matrix pt containing at each row the coordinates of the
points where the solution is to be interpolated, and an optional parameter list containing the
indices of the tetrahedra that might contain the points. If list is passed, the function will
locate the points in pt over these tetrahedra. Otherwise, the computation is performed for all
tetrahedra in the mesh. This allows for computations of multiple problems in case we have the
same domain without having to recompute everything each time.

72

The output includes a vector val with the finite element evaluated at the input points, a
matrix Meval containing the basis functions evaluated at each point, a matrix barPt with the
barycentric coordinates with respect to the tetrahedron each point belongs to, a vector indTtrh
where the jth entry points to the tetrahedron (in the field ttrh) the jth point belongs to, and
a logical vector indPtError with the points where it was not possible to find a tetrahedron
containing it. If the input uh is an empty array [], then the output val has the value NaN.
For the points where indPtError=true, the obtained values are extrapolations to the nearest
tetrahedron. If those values are not of interest, then val(~indPtError) retrieves only the rows
belonging to nodes inside the domain. The steps performed in this function are shown below.

42 %% Find Elements containing the points

43 x = obj.mesh.coord (:,1);

44 y = obj.mesh.coord (:,2);

45 z = obj.mesh.coord (:,3);

46

47 x = x(obj.mesh.ttrh(list ,1:4).’);

48 y = y(obj.mesh.ttrh(list ,1:4).’);

49 z = z(obj.mesh.ttrh(list ,1:4).’);

50

51 % Block diagonal matrix to compute the barycentric coordinates

52 nT = length(list);

53 jaux = 1:nT*4;

54 jaux = [1 1 1 1]’*jaux (:) ’;

55

56 iaux = 1:4:nT*4;

57 iaux = kron(iaux , [1 1 1 1]);

58 iaux= bsxfun(@plus ,[0 1 2 3]’,iaux);

59

60

61 matrix = sparse(iaux (:), jaux (:) ,[ones (1,4*nT); x(:) ’; y(:) ’;z(:) ’], 4*nT

,4*nT);

62

63

64

65 nPt = size(pt ,1);

66 bt = kron(ones(nT ,1) ,[pt(:,1).^0 pt]’);

67

68 aux = matrix\bt;

At lines 43-49, the coordinates of the vertices of the tetrahedra where the points are going
to be tested against, are stored in a matrix of size nPt× nT, where nPt is the number of points
and nT is the length of list. Then, at line 61, the matrix

matrix =




1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4


1

. . . 
1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4


nttrh


∈ R4·nttrh×4·nttrh

is created, which contains the coefficient matrix needed to compute the barycentric coordinates
of a point as given in Equation(2.6) for every tetrahedron. At line 66, the right-hand side of
this Equation is computed for every point and is stored in

73

bt =


1⊤
nPt

pt⊤

...
1⊤
nPt

pt⊤

 ∈ R4·nttrh×nPt

where 1⊤
nPt is a row vector full of ones with length nPt.

Line 68 solves a block system of equations to find the barycentric coordinates of each point
for all tetrahedra in list. Each block in this system corresponds to a single tetrahedron in the
mesh and is responsible for finding the barycentric coordinates of every point solving


1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4


−1

i

[
1 · · · 1
pt1 · · · ptnPt

]
=



1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4


−1

i

[
1
pt1

]
· · ·


1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4


−1

i

[
1

ptnPt

] .

Once the system is solved, the resulting matrix has the form

aux =

 λ1(pt1) · · · λ1(ptnPt)
...

λnttrh(pt1) · · · λnttrh(ptnPt)

 ∈ R4·nttrh×nPt.

This block matrix contains at each row the barycentric coordinates of all points for a
specific tetrahedron. We can use this to determine the location of each point.

69 ind = abs(aux (1:4:end ,:))+abs(aux (2:4:end ,:)) + ...

70 abs(aux (3:4:end ,:))+abs(aux (4:4:end ,:));

71

72 [aux2 ,indTtrh] = min(abs(ind -1));

73

74 Meval = sparse(nPt ,obj.mesh.nNodes);

75 ind3= sub2ind(size(ind),indTtrh ,1: nPt);

76

77 % barycentric coordinates

78 barPt= [aux (4*(ind3 -1)+1); ...

79 aux (4*(ind3 -1)+2); ...

80 aux (4*(ind3 -1)+3); ...

81 aux (4*(ind3 -1)+4)];

82 % in tetrahedra indTtrh

At line 69, the sum over the absolute values of the barycentric coordinates of each point
is computed and stored in a matrix ind ∈ Rnttrh×nPt, where each row represents a tetrahedron
and each column contains the sum of the barycentric coordinates of a point. For the sum to be
greater than one it must mean that at least one coordinate is negative and is therefore outside
the element, therefore the only way a point is inside the element is for the sum be equal to one.

74

This is checked at line 72, and the tetrahedra containing each point are stored in indTtrh.
If a point is outside the mesh, the value in aux2 will not equal zero, and the closest tetrahedron
is stored instead. At line 75, the location of every tetrahedron is transformed to linear indices
to obtain the tetrahedra using only one index, which is used in line 78 to store the barycentric
coordinates of the points inside the tetrahedra containing them in

barPt =
[
λ̂

i1
(pt1) · · · λ̂

inPt
(ptnPt)

]
∈ R4×nPt.

93 aux = zeros(size(obj.mesh.ttrh ,2),nPt);

94 for j = 1: length(obj.Nj3D)

95 aux(j,:)= obj.Nj3D{j}(barPt (1,:),barPt (2,:) ,...

96 barPt (3,:),barPt (4,:));

97 end

98 % index

99 indi = kron (1:nPt ,ones(1,size(obj.mesh.ttrh ,2))) ;

100 indj = obj.mesh.ttrh(list(indTtrh) ,:) ’; indj = indj (:);

101 Meval = sparse(indi ,indj ,aux(:),nPt ,obj.mesh.nNodes);

102

103 % Evaluation:

104

105 val = Meval*uh;

The Lagrange basis functions are computed at lines 93-97 using the barycentric coordinates.
Then, at lines 99-101, the matrix Meval ∈ RnPt×nNodes is assembled, where each row contains
the basis function values φi evaluated at a point. Most of these entries are zero, except for
those functions associated with the nodes contained in the element where the point belongs.
This matrix is used to compute the solution at the specified points via a matrix-vector product,
and the results are stored in val ∈ RnPt.

Chapter 4

Numerical examples

In this section, we present a series of numerical experiments conducted using the package in-
troduced in the previous chapter. First, we examine the errors obtained for various orders
of approximation when compared to a known manufactured solution. This analysis is per-
formed on multiple meshes to assess the accuracy and convergence properties of our package.
Next, we showcase the capabilities of our package by solving two different problems. Through
these examples, we demonstrate the utilization of specific functionalities developed within our
package.

4.1 Error analysis

Figure 4.1: Domain of study.

We consider the advection-diffusion-reaction equation
−∇ ·

(
κ∇u

)
+ β · ∇u+ cu = f, in Ω,

u = uD, on ΓD,(
κ∇u

)
· n̂+ αu = gR on ΓR,

(4.1)

with diffusion matrix κ = I3, i.e. the identity matrix, the velocity field is defined as

β =
[
0.5(1 + cos xy) 0.5(1− cosxz) 0.5(1 + sin yz)

]⊤
and reaction term c = 0.5e−xyz. The source term f is chosen such that the solution to this
problem is given by u = cosπx cos πy cos πz. The coefficient α in the Robin condition is chosen
as α = 0.1+ x2 + y2. For the boundary conditions, the Dirichlet boundary data uD is obtained
from the exact solution, and the Robin data gR is obtained from

(
κ∇u

)
·n̂+αu = gN+αu = gR.

75

76

In Figure 4.1, we can see the polygonal domain used in this study. The boundaries are
color-coded: the Dirichlet boundary ΓD is represented in red, and the Robin boundary ΓR is
shown in blue. This choice of a polyhedra domain is done to prevent geometric errors that arise
from approximating a curved domain Ω. By using a polyhedral domain, any errors obtained in
the resolution are solely attributed to the approximation of the exact solution with piecewise
polynomials.

Since the solution u is known in advance, the errors can be computed exactly by comparing
the results obtained at the nodes. For this case, we use the max-norm, which is computed by
obtaining the largest error in absolute value from the exact solution:

∥u− uh∥∞ = max
j

{|u(vj)− uh(vj)|}.

In this example, we have tested the behavior of all elements considered in this dissertation,
ranging from P1 to P4 elements. For each element, we have used four meshes of different sizes.
For this purpose, we have specified the maximum size allowed for the elements in GMSH and
allowed the software to individually mesh each case. Consequently, instead of obtaining the
same meshes with nodes appropriately located for elements of each degree, we obtained different
meshes. This does not pose a problem for the subject of study, as this test only aims to show
the convergence of uh to the solution u. The conduction of this experiment was performed
with the 128GB Turing computer in Tudela, running Ubuntu 220.04 LTS with a processor Intel
Xeon E5-2630 v4 (10 cores) at 3.1GHz.

4.1.1 MSH file reading

We start by examining the time required for the function importGMSH3D to create the T.mesh

structure. To evaluate this, we compared the time taken in relation to the number of elements
and the number of nodes. The results of this comparison are presented in Figure 4.2.

From the results, we observe that the function exhibits similar performance when the
number of nodes in the mesh remains constant regardless of the order of the elements. However,
when considering the number of tetrahedra in the mesh, there is a significant difference in the
size of the meshes generated. This indicates that the distribution of nodes in the mesh, as
determined by the number of elements, as well as the degree of the elements, is more crucial
than the overall number of nodes for the function performance.

Figure 4.2: File reading time.

77

Figure 4.3: Assembly time of each term for P1 elements (above-right), P2 elements
(above-left), P3 elements (below-left) and P4 elements (below-right).

4.1.2 Assembly time

Next, we examine the time taken to assemble each term of the system of equations. Since
the diffusion matrix is the identity, we can use both functions femStiffnessMatrix and
femStressMatrix to assemble the stiffness matrix. Figure 4.3 illustrates the time required
to construct each term. In the example only the computation for the first three meshes are
shown.

We observe that the assembly time for the Robin mass matrix and the traction vector is
significantly shorter than for the other terms. This is expected since the number of elements on
the boundary is, in general, much smaller than the number of tetrahedral elements, resulting
in a reduced number of computations.

The assembly of the source term follows, and as we increase the order of the elements,
the difference in assembly time compared to the other terms becomes more noticeable. This
can be attributed to the fact that higher-order elements involve a greater number of Lagrange
basis functions and nodes for the cubature formulas. Also, this term requires working with
each individual Lagrange basis, consequently this function requires fewer operations compared
to performing products of these terms, leading to a faster assembly time.

78

The stiffness matrix constructed with femStressMatrix follows, which makes sense as
it does not involve the use of cubature rules. Next in terms of computational time are the
assembly of the mass matrix, advection matrix, and the stiffness matrix. As expected, the
stiffness matrix takes the longest, since it involves a larger number of operations. However,
we encountered issues with the assembly of the mass matrix. Specifically, the assembly of
PkProd leads to large matrices beings constructed, resulting to noticeable memory problems.
Nevertheless, this is not a problem unless very fine meshes are used.

Overall, the time required for assembling the different terms of the system of equations
varies as we increase the number of nodes. However, this time remains at reasonable values,
even for large systems. For some of the tested cases the time required for the assembly takes
longer than the resolution of the system, but even in those cases the computing time is small.

4.1.3 Convergence analysis

Figure 4.4: Errors in the maximum norm versus the diameter of the mesh (left) and the
number of nodes(right).

For solving the system of equations we have used the backslash command in Matlab
except for the second and third refinement. In these cases we have solved the system by a
Krylov (iterative) solver, specifically the biconjugate gradient stabilized method with a stopping
criteria (tolerance) for the relative residual equal to 1 × 10−11. The method is preconditioned
with an incomplete LU factorization. Despite the very small tolerance used in the calculations,
this preconditioner is shown to significantly reduce the number of iterations to less than 1,000
in this particular experiment. Let us point out that the purpose of selecting such a small
tolerance, which is several orders of magnitude smaller than the expected error of the finite
element solution itself, is done with the aim of ensuring that the iterative method has a negligible
impact on the error in the finite element approximation.

Table 4.1 presents the diameter of each tested mesh, which is defined as the length of the
largest edge in the mesh. With this, we have a measure on the size of the mesh. From the table,
we can see that for two consecutive meshes, there is no a factor of two in the size of the mesh.
This is because, unlike triangles, a tetrahedron cannot be split into several similar tetrahedrons.
The variation in the mesh size is attributed to the fact that GMSH generates non-structured
meshes. Once again, we point out that in this study, less emphasis was placed on carefully
controlling the mesh generation process, which contributed to the observed differences in mesh
structures.

The errors obtained in the maximum norm are visually represented in Figure 4.4 and
quantitatively summarized in Table 4.2. These results show that the numerical solution does in

79

fact converge to the exact solution, as noticed from the fact that the error is reduced as we use
finer meshes. As anticipated, increasing the degree of the polynomial basis leads to improved
approximations, resulting in smaller errors.

No-refinement First refinement Second refinement Third refinement
P1 5.2793× 10−1 4.3481× 10−1 2.3237× 10−1 1.2414× 10−1

P2 5.2793× 10−1 2.8048× 10−1 1.4582× 10−1 9.2956× 10−2

P3 5.2793× 10−1 2.8458× 10−1 1.4654× 10−1 8.7633× 10−2

P4 5.2793× 10−1 2.8458× 10−1 1.4654× 10−1 8.7633× 10−2

Table 4.1: Mesh diameter h.

No-refinement First refinement Second refinement Third refinement
P1 1.6214× 10−1 8.9875× 10−2 2.9961× 10−2 8.6810× 10−3

P2 1.8983× 10−2 4.1761× 10−3 5.2820× 10−4 8.2146× 10−5

P3 3.9931× 10−3 3.3593× 10−4 3.0034× 10−5 3.0094× 10−6

P4 5.3841× 10−4 2.2974× 10−5 8.1202× 10−7 3.9850× 10−8

Table 4.2: Errors in the maximum norm.

4.2 Loaded Connecting rod

-5
0
5

10

10
-3

15

-0.1

-0.08 0.04

-0.06 0.02

-0.04 0

-0.02 -0.02

0 -0.04

Figure 4.5: Connecting rod geometry.

The connecting rod is a vital mechanical component within the crank-connecting rod
mechanism. Its primary function is to convert a reciprocating motion into rotational motion of
the crank, and vice versa. This mechanism is widely employed in internal combustion engines,
serving as a means to convert the thermal energy generated during the combustion process
into mechanical energy. This mechanism operates on the principle that when combustion takes
place, the piston moves in a downward direction, transmitting this motion to the connecting rod.
Consequently, the connecting rod converts this linear motion into circular motion, transferring it
to the crankshaft. The resulting circular motion can then be employed to drive the transmission
system, ultimately powering the wheels and propelling the vehicle forward.

This study is dedicated to examining the displacement of the rod when subjected to a
uniform pressure load of P = 20MPa applied to the smaller end of the road. This load represents

80

the force transmitted by the piston to the cylindrical area. For the purpose of our analysis, we
have chosen to focus on steel as the material of interest, with Young’s modulus of E = 200GPa
and a Poisson’s ratio of ν = 0.3.

To study the static state of the rod it is necessary to prevent any translational or rotational
motion. For this reason we have considered the larger end, which is connected to the crankshaft,
to be a fixed support. By adopting this configuration, we can effectively analyze and understand
the behavior of the rod under the applied pressure load.

The geometry considered is shown in Figure 4.5. In blue, we can see the portion of
the connecting rod that is connected to the crankshaft. As mentioned before, this surface is
modelled as a fixed support, therefore the displacements of all nodes belonging to it are set to
zero. On the other hand, in red, we have the cylindrical surface that will be in contact with the
piston (or more specifically the needle bearing between these two elements). When modeling
the load on the smaller end, it is necessary to consider that the load varies across different
triangles in the mesh due to variations in both the area and orientation of the elements. The
compressive load vector experienced by a triangle A can be defined as:

PA = −P
nA

∥nA∥
,

where nA is the normal to the triangle. This expression allows computing the contribution of
the load to each individual element in the boundary. For the numerical test we have used a
mesh with P2 elements comprised of 129, 218 nodes, 83, 333 tetrahedral, and 18, 732 triangles
on the boundary.

The displacements obtained are represented in Figure 4.6. The total displacement was
computed using the usual Euclidean norm

∥u∥ =
√
u2

x + u2
y + u2

z.

The results shows that the smaller end undergoes the most significant displacement, with
a maximum value of ∥u∥ ≈ 2.5µm.

For the remaining displacements, their magnitudes and directions are represented. In
particular, for the ux displacement, it can be observed that the outermost part experiences the
most movement in this orientation, with a displacement ux ≈ 2.2µm. This result is expected,
as this is the zone where the compression loads points the most towards the x-axis. From this
result it can be seen that this displacement is positive, indicating that this portion tends to
stretch.

As a consequence of this stretching, there is also an elongation in the neighbor points,
albeit to a lesser extent. This attenuation occurs due to the combined influence of the load
acting upon those points and the body of the connecting rod, which counters the stretching
motion by exerting a force in the opposite direction to maintain the equilibrium. Consequently,
it can be observed that the displacement diminishes significantly as one moves away from the
smaller end.

Regarding the displacement uy, it can be observed that the sections with the most dis-
placement are those where the compressive load points in the direction of the y-axis. From
their sign, it is apparent that those regions are stretching. The maximum values attained are
similar to before, with a displacement of uy ≈ 2.4µm. This result is consistent with what we
would be expected in reality, as the plot shows that the cylinder tends to expand symmetrically
around its center due to the compressive load in the interior.

81

(a) Total displacement. (b) Displacement in the x-direction.

(c) Displacement in the y-direction. (d) Displacement in the z-direction.

Figure 4.6: Displacements in the connecting rod.

Computing the displacement, uz we can see that nonzero values appear in the smaller
end. This occurrence can be attributed to the discretization of the mesh. Since the surface is
approximated using triangles, the normal vectors possess slight tilts away from the xy-plane.
Consequently, when the load is projected onto these elements, a nonzero component in the z
direction appears. However, it is important to note that the obtained displacements for uz are
still one order of magnitude smaller compared to the other displacements and, therefore, do
not significantly influence the overall results.

4.3 Heat equation

Figure 4.7: Finned block cylinder.

In this example we study a finned cylinder engine shown in Figure 4.7. The cylinder is a

82

component in automobiles subject to high temperatures due to the combustion in its interior.
For this reason, fins are usually placed in the exterior; to increase the contact area with the
surrounding air and hence improving the heat transfer [2, 3].

The geometry of study Figure 4.7, which is based on the geometry presented in the reference
[3]. The necessary data for the properties of the cylinder were also extracted from this source.
Gray Cast iron was selected as the material of choice, exhibiting a density of ρ = 7200 kg/m3,
a specific heat capacity of Cp = 447 J/kgK, and a thermal conductivity of κ = 52 W/mK. In
this case the material is considered to be isotropic and homogeneous, therefore all values are
assumed to be uniform throughout the whole volume.

For the boundary conditions we take the inner wall to have a fixed temperature of T =
300◦C. In the exterior surfaces we assume a heat transfer between stagnant air and the surface
of the material with a convection coefficient of h = 5W/m2K.

To begin, let us compare the temperatures of the cylinder with and without fins in the
stationary regime, that is, ∂T

∂t
= 0. In both cases, we utilize P1 elements. The mesh for the

former configuration consists of 9, 229 nodes and a total of 28, 939 tetrahedra, while the latter
configuration employs 2, 144 nodes and 7, 361 tetrahedra. The difference in element count arises
from the inclusion of fins, which, due to their small thickness, requires an increased number
of tetrahedra in that particular region. Nevertheless, the number of tetrahedra in the cylinder
portion of the mesh remains comparable, enabling a meaningful comparison between the results
obtained.

In Figure 4.8, we present the temperature fields obtained for both cases. Notably, in the
case with fins, the results obtained exhibit similarity to those reported in [3], validating the
correctness of our results. It is apparent that the temperature of the finned cylinder is slightly
lower than that of the cylinder without fins. This effect can be attributed to the presence of
fins, which increase the contact area between the air and the material from A = 23, 177.83m2

to A = 114, 722.71m2. Consequently, there is a small enhancement in heat rate transfer.

Based on these results, it becomes evident that the utilization of fins plays a crucial role.
By reducing the working temperature of the material, not only are the mechanical properties
enhanced, but the overall service life of the component is also increased.

Next, we shift our focus to the transient study of the finned cylinder, which initially
has a temperature of T0 = 20◦C. The boundary condition remain the same as before. To
conduct this experiment, we employ the second-order Crank-Nicolson scheme with a fixed time
step of τ = 0.05s. This scheme allows us to accurately analyze the temporal behavior of the
temperature field and observe its convergence towards the stationary state.

In Figure 4.9, the temperature fields are displayed at different instant of times. They
clearly show that the overall temperature of the cylinder gradually increases over time. This
phenomenon is due to the limited ability of the surrounding air to dissipate all the heat resulting
from the temperature gradient between the inner surface and the rest of the cylinder. However,
as the temperatures in the remaining regions of the cylinder approach the temperature of the
inner surface, the thermal gradient diminishes in magnitude. Eventually, a thermal equilibrium
is achieved, where the heat transfer with the air reaches a balance with the conduction heat
transfer, leading to a nearly constant temperature.

This observation is further supported by Figure 4.10, which represents the maximum tem-
perature variation ∆T in the cylinder at each instant of time. The plot clearly illustrates that
around t ≈ 40s, the temperature begins to stabilize to the stationary case.

83

(a) Top view. (b) Perspective.

(c) Top view. (d) Perspective.

Figure 4.8: Temperature field in a cylinder with fins (above) and without fins (below).

84

Figure 4.9: Temperature field of the finned cylinder block at t = 1s (top-left), t = 8s
(top-right), t = 20s (bottom-left) and t = 40s (bottom-right).

Figure 4.10: Maximum temperature variation.

Chapter 5

Conclusions and future Work

In this project, we have successfully developed a robust and efficient package for solving com-
plex Finite Element problems over arbitrary domains. Currently, our package is capable of
effectively handling tetrahedral meshes up to degree four, which surpasses the limitations of
many commercial codes that usually support only up to degree two.

Recognizing the importance of optimizing code efficiency, we have tried to achieve high-
performance in our current implementation. However, we acknowledge that there is always
room for improvement. Future modifications can focus on optimizing memory consumption
and computation time, enabling users to tackle even larger and more challenging problems
efficiently.

To further enhance the package, we can explore the inclusion of additional element types,
such as hexahedral elements or edge elements. By incorporating these ideas, we can extend
the range of problems that can be effectively solved and enhance the accuracy of simulations
in complex scenarios.

Additionally, the integration of postprocessing capabilities would significantly enhance the
practical utility of our package. While our project did not extensively explore these features,
the incorporation of a-posteriori error estimation methods and other relevant postprocessing
techniques can offer valuable insights and validate the accuracy of the obtained results. It
is worth noting that certain fields within our project were intentionally designed to generate
relevant data that can be utilized for performing these computations.

In conclusion, this work presents a package to solve Finite Element problems. Throughout
this project, I have not only learned how to model and solve problems but also gained a deeper
understanding of the computations involved in implementing these methods. This knowledge
has provided me with a solid foundation for comprehending the internal routines of commercial
solvers used in various engineering applications.

By continually refining and expanding this package capabilities, we aim to provide engi-
neers and scientists with a valuable tool for addressing a diverse range of challenges without
the need to spend money to do so.

85

Bibliography

[1] M. Emam A. M. Radwan and M. Ahmed. “Comparative Study of Active and Passive
Cooling Techniques for Concentrated Photovoltaic Systems”. In: Oct. 2017, pp. 475–505.

[2] C.R. Sonawane et al. “Numerical simulation to evaluate the thermal performance of engine
cylinder Fins: Effect of fin geometry and fin material”. In: Materials Today: Proceedings
49 (2022). GC-RASM 2021, pp. 1590–1598.

[3] S. Durgam et al. “Thermal analysis of fin materials for engine cylinder heat transfer
enhancement”. In: 1126.1 (Mar. 2021), p. 012071.

[4] J. Alberty et al. “Matlab Implementation of the Finite Element Method in Elasticity”.
In: Computing 69 (2002), pp. 239–263.

[5] M. S. Alnaes et al. “The FEniCS Project Version 1.5”. In: Archive of Numerical Software
3 (2015).

[6] A. Ern and J.L. Guermond. Theory and Practice of Finite Elements. Applied Mathemat-
ical Sciences.

[7] FreeCAD Community. FreeCAD. https://www.freecadweb.org/. 2023.

[8] C. Geuzaine and J.F. Remacle. Gmsh. Version 4.6.0. June 22, 2020. url: http://gmsh.
info/.

[9] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order.
Classics in Mathematics. Springer Berlin, Heidelberg, 2001.

[10] P.L. Gould. “Introduction to Linear Elasticity”. In: Springer, 2018.

[11] M.A. Herrero. “Reaction-diffusion systems: a mathematical biology approach”. In: 2003.

[12] J. Jaśkowiec and N. Sukumar. “High-order cubature rules for tetrahedra”. In: Interna-
tional Journal for Numerical Methods in Engineering 121.11 (2020), pp. 2418–2436.

[13] S. Koukal and M. Kř́ıžek. “Curved affine quadratic finite elements”. In: Journal of Com-
putational and Applied Mathematics 63.1 (1995). Proceedings of the International Sym-
posium on Mathematical Modelling and Computational Methods Modelling 94, pp. 333–
339.

[14] P. Lahuerta. “FEM Modelization Using Gmsh and GetDP: Examples and Guidelines”.
Bachelor’s Thesis. Universitat Rovira I Virgili, 2015.

[15] M.A Londoño and M. Hebert. “Optimal shape parameter for meshless solution of the 2D
Helmholtz equation”. In: CT&F Ciencia, Tecnoloǵıa y Futuro (2019).

[16] J.H. Tang M.J. Grote F. Nataf and P.H. Tournier. “Parallel controllability methods for
the Helmholtz equation”. In: Computer Methods in Applied Mechanics and Engineering
362 (2020), p. 112846.

[17] H. Ojanen. Mathematica Expression to Matlab m-file Converter. url: https://library.
wolfram.com/infocenter/MathSource/577/.

[18] OpenAI. ChatGPT: [Large language model]. https://openai.com. 2023.

[19] Paharuddin et al. “Numerical solutions to Helmholtz equation of anisotropic functionally
graded materials”. In: Journal of Physics: Conference Series 1341.8 (2019), p. 082012.

87

https://www.freecadweb.org/
http://gmsh.info/
http://gmsh.info/
https://library.wolfram.com/infocenter/MathSource/577/
https://library.wolfram.com/infocenter/MathSource/577/
https://openai.com

88

[20] F.J. Sayas. A gentle introduction to the Finite Element Method. 2015.

[21] N. Schlömer. quadpy. https://github.com/sigma-py/quadpy.

[22] Y. Sun, A.S. Jayaraman, and G.S. Chirikjian. “Approximate solutions of the advec-
tion–diffusion equation for spatially variable flows”. In: Physics of Fluids 34.3 (2022).

[23] V. Thomee. Galerkin Finite Element Methods for Parabolic Problems. Springer Series in
Computational Mathematics. Springer Berlin Heidelberg, 2013.

[24] A.N. Tikhonov and A.A. Samarski. Equations of Mathematical Physics. Dover Books on
Physics. Dover Publications.

[25] L.N. Trefethen. Approximation Theory and Approximation Practice, Extended Edition.
Society for Industrial and Applied Mathematics, 2019.

[26] Y.A. Çengel and A.J. Ghajar. Heat and Mass Transfer: Fundamentals & Applications.
Asia Higher Education Engineering/Computer Science Mechanica. McGraw Hill Educa-
tion.

https://github.com/sigma-py/quadpy

Appendix A

Lagrange Basis

For computing the basis elements, it was necessary to create a tetrahedral reference element
in GMSH. It should be obvious that the global numbering of the element coincide with the
local numbering. However, it was not possible to create a mesh such that this was the case.
Instead, while the node placement satisfied the rules presented in 2.2.4, the node 2 did not lie

in the x-axis. This was taken into account when computing the functions N̂i

K̂
in barycentric

coordinates. The procedure followed is shown below.

1 degree = 4;

2

3 switch degree

4

5 case 1

6 vertices = ...

7 [0 0 0;

8 0 1 0;

9 0 0 1;

10 1 0 0];

11

12 disp(’P1’)

13 disp(’==’)

14 disp(’’)

15 % P1

16

17 barP1 = ...

18 [1 0 0 0;...

19 0 1 0 0;...

20 0 0 1 0;...

21 0 0 0 1];

22 barP = barP1;

23

24 disp(’The tempative order’)

25 PsOurs = barP1*vertices;

26 disp(PsOurs)

27

28

29 % GMSH

30 t = [1 2 3 4];

31 PsGMSH= ...

32 [1 0 0 0

33 2 0 1 0

34 3 0 0 1

35 4 1 0 0];

36

37

38

89

90

39

40

41 PsGMSH= PsGMSH(t ,2:4);

42 disp(’GMSH’)

43 disp(PsGMSH)

44

45 disp(’Check’)

46 disp(PsGMSH -PsOurs)

47

48 case 2

49 disp(’P2’)

50 disp(’==’)

51 % P2

52

53 barP2 = ...

54 [1 0 0 0;...

55 0 1 0 0;...

56 0 0 1 0;...

57 0 0 0 1;...

58 1/2 1/2 0 0;...

59 0 1/2 1/2 0;...

60 1/2 0 1/2 0;...

61 1/2 0 0 1/2;...

62 0 0 1/2 1/2;...

63 0 1/2 0 1/2];

64 barP = barP2;

65 disp(’The tempative order’)

66 PsOurs= barP2*vertices;

67 disp(PsOurs)

68

69 % GMSH

70

71 t = [1 2 3 4 5 6 7 8 10 9];

72 PsGMSH = [...

73 1 0 0 0 ;

74 2 0 1 0 ;

75 3 0 0 1 ;

76 4 1 0 0 ;

77 5 0 0.5 0 ;

78 6 0 0.5 0.5 ;

79 7 0 0 0.5 ;

80 8 0.5 0 0 ;

81 9 0.5 0.5 0 ;

82 10 0.5 0 0.5];

83

84 PsGMSH = PsGMSH(t ,2:4);

85

86 disp(’GMSH’)

87 disp(PsGMSH)

88

89 disp(’Check’)

90 disp(PsGMSH -PsOurs)

91

92 case 3

93 % P3

94

95 barP3 = ...

96 [1 1 0 0 0;...

97 2 0 1 0 0;...

98 3 0 0 1 0;...

91

99 4 0 0 0 1;...

100 % Edges

101 % y = 0, z = 0;

102 5 2/3 1/3 0 0;...

103 6 1/3 2/3 0 0;...

104 % z = 0, x+y =1;

105 7 0 2/3 1/3 0;...

106 8 0 1/3 2/3 0;...

107 % x = 0,z =0;

108 9 1/3 0 2/3 0;...

109 10 2/3 0 1/3 0;...

110 % x = 0, y =0;

111 11 1/3 0 0 2/3;...

112 12 2/3 0 0 1/3;...

113 % x = 0, y+z =0;

114 13 0 0 1/3 2/3;...

115 14 0 0 2/3 1/3;...

116 % y = 0, x+z =1;

117 15 0 1/3 0 2/3;...

118 16 0 2/3 0 1/3;...

119 %

120 % internal faces nodes

121 % z=9

122 17 1/3 1/3 1/3 0;...

123 % y=0

124 18 1/3 1/3 0 1/3;...

125 % x=0

126 19 1/3 0 1/3 1/3;...

127 % x+y+z=1

128 20 0 1/3 1/3 1/3;...

129];

130 barP3 =barP3(:,end -3:end);

131 barP = barP3;

132

133 disp(’The tempative order’)

134 PsOurs= barP3*vertices;

135 disp(PsOurs)

136

137

138 PsGMSH = [...

139 1 0 0 0 ;...

140 2 0 1 0 ;...

141 3 0 0 1 ;...

142 4 1 0 0 ;...

143 5 0 1/3 0 ;...

144 6 0 2/3 0 ;...

145 7 0 2/3 1/3 ;...

146 8 0 1/3 2/3 ;...

147 9 0 0 2/3 ;...

148 10 0 0 1/3 ;...

149 11 1/3 0 0 ;...

150 12 2/3 0 0 ;...

151 13 1/3 2/3 0 ;...

152 14 2/3 1/3 0 ;...

153 15 1/3 0 2/3 ;...

154 16 2/3 0 1/3 ;...

155 17 0 1/3 1/3 ;...

156 18 1/3 1/3 0 ;...

157 19 1/3 1/3 1/3 ;...

158 20 1/3 0 1/3];

92

159

160 t = [1 2 3 4 5 6 7 8 9 10 12 11 16 15 14 13 17 18 20 19];

161 PsGMSH = PsGMSH(t ,2:4);

162

163

164 disp(’GMSH’)

165 disp(PsGMSH)

166

167 disp(’Check’)

168 disp(PsGMSH -PsOurs)

169

170 case 4

171 % P4

172

173

174 barP4 = ...

175 [1 1 0 0 0;...

176 2 0 1 0 0;...

177 3 0 0 1 0;...

178 4 0 0 0 1;...

179 % edges

180 % y = z = 0

181 5 3/4 1/4 0 0;...

182 6 2/4 2/4 0 0;...

183 7 1/4 3/4 0 0;...

184 % z = 0, x+y=1

185 8 0 3/4 1/4 0;...

186 9 0 2/4 2/4 0;...

187 10 0 1/4 3/4 0;...

188 % x = z =0

189 11 1/4 0 3/4 0;...

190 12 2/4 0 2/4 0;...

191 13 3/4 0 1/4 0;...

192 % x = 0, y =0;

193 14 1/4 0 0 3/4;...

194 15 2/4 0 0 2/4;...

195 16 3/4 0 0 1/4;...

196 % x= 0, y+z=0

197 17 0 0 1/4 3/4;...

198 18 0 0 2/4 2/4;...

199 19 0 0 3/4 1/4;...

200 % y=0, x+z=1

201 20 0 1/4 0 3/4;...

202 21 0 2/4 0 2/4;...

203 22 0 3/4 0 1 /4;...

204 % internal faces z=0

205 23 2/4 1/4 1/4 0;...

206 24 1/4 1/4 2/4 0;

207 25 1/4 2/4 1/4 0; ...

208 % internal faces y =0

209 26 2/4 1/4 0 1/4 ;...

210 27 1/4 2/4 0 1/4 ;...

211 28 1/4 1/4 0 2/4 ;...

212 % internal faces x= 0

213 29 2/4 0 1/4 1/4 ;...

214 30 1/4 0 1/4 2/4 ;...

215 31 1/4 0 2/4 1/4 ;...

216 % internal faces x+y+z=1 OK

217 32 0 1/4 1/4 2/4 ;...

218 33 0 2/4 1/4 1/4 ;...

93

219 34 0 1/4 2/4 1/4 ;...

220 % internal nodes

221 35 1/4 1/4 1/4 1/4;...

222];

223

224 barP4 = barP4(:,end -3:end);

225 barP = barP4;

226

227

228 disp(’The tempative order’)

229 PsOurs= barP4*vertices;

230 disp(PsOurs)

231

232

233 PsGMSH = [...

234 1 0 0 0 ;

235 2 0 1 0 ;

236 3 0 0 1 ;

237 4 1 0 0 ;

238 5 0 0.25 0 ;

239 6 0 0.5 0 ;

240 7 0 0.75 0 ;

241 8 0 0.75 0.25 ;

242 9 0 0.5 0.5 ;

243 10 0 0.25 0.75 ;

244 11 0 0 0.75 ;

245 12 0 0 0.5 ;

246 13 0 0 0.25 ;

247 14 0.25 0 0 ;

248 15 0.5 0 0 ;

249 16 0.75 0 0 ;

250 17 0.25 0.75 0 ;

251 18 0.5 0.5 0 ;

252 19 0.75 0.25 0 ;

253 20 0.25 0 0.75 ;

254 21 0.5 0 0.5 ;

255 22 0.75 0 0.25 ;

256 23 0 0.25 0.25 ;

257 24 0 0.5 0.25 ;

258 25 0 0.25 0.5 ;

259 26 0.25 0.25 0 ;

260 27 0.25 0.5 0 ;

261 28 0.5 0.25 0 ;

262 29 0.25 0.5 0.25 ;

263 30 0.25 0.25 0.5 ;

264 31 0.5 0.25 0.25 ;

265 32 0.25 0 0.25 ;

266 33 0.5 0 0.25 ;

267 34 0.25 0 0.5 ;

268 35 0.25 0.25 0.25];

269

270 t = [1 2 3 4 5 6 7 8 9 10 11 12 13 16 15 14 22 21 20 19 18 17 ...

271 23 25 24 26 27 28 32 33 34 31 29 30 35];

272 PsGMSH = PsGMSH(t ,2:4);

273

274

275

276 disp(’GMSH’)

277 disp(PsGMSH)

278

94

279 disp(’Check’)

280 disp(PsGMSH -PsOurs)

281 end

282

283

284 % We try to compute the basis now for P4. First , barycentric functions

285

286

287

288 h =1/ degree;

289 disp(’Nodes in barycentric coordinates ’)

290 barP

291 disp(’Basis ’)

292

293 lambda {1} = @(l1,l2,l3 ,l4) l1;

294 lambda {2} = @(l1,l2,l3 ,l4) l2;

295 lambda {3} = @(l1,l2,l3 ,l4) l3;

296 lambda {4} = @(l1,l2,l3 ,l4) l4;

297

298 syms l1 l2 l3 l4

299 clear N

300 % Choose the degree (up to four)

301

302 for i=1: length(barP)

303 p =sym(’1’);

304 for j = 1:4

305 for r = 1: degree

306 if barP(i,j) >=r/degree

307 coef = lambda{j}(barP(i,1),barP(i,2),barP(i,3),barP(i,4))-(r

-1)*h;

308 p = p*(lambda{j}(l1,l2,l3,l4) -(r-1)*h)/coef ...

309 ;

310 end

311 end

312 end

313 N{i} = matlabFunction(p,’vars’,{l1,l2,l3,l4});

314 end

315 Ns = [];

316 for j =1: length(barP)

317 Ns = [Ns;...

318 %j

319 N{j}(l1,l2,l3,l4)];

320 end

321 disp(’Basis functions ’)

322 Ns

323 % Check

324 checkingBasis = zeros(length(barP));

325 for j = 1: length(checkingBasis)

326 checkingBasis (:,j) = N{j}(barP (:,1),barP (:,2),barP (:,3),barP (:,4));

327 end

328 disp(’Next matrix MUST be the identity ’)

329 checkingBasis

330

331 barP

332 Ns

333

334 % clf;

335 hold on

336 for j=1: length(barP)

337 plot3(barP(j,2),barP(j,3),barP(j,4),’ro’)

95

338 xlabel(’x’)

339 ylabel(’y’)

340 zlabel(’z’)

341 text(barP(j,2) +0.03, barP(j,3) +0.03, barP(j,4) +0.03, num2str(j))

342 end

343

344

345

346 % bases

The partial derivatives of N̂i can be computed using the chain rule, this results in

∂N̂i

∂x̂k

=
4∑

i=1

∂N̂i

∂λi

∂λi

∂x̂k

,

for x̂k = x̂, ŷ, ẑ. To handle this operation, it has to be noticed that ∂λi

∂x̂k
∈ {−1, 0, 1}, meaning

the derivatives are constant functions. Thus, N̂i can be derived, and each term can be multiplied
by the corresponding constant factor. This was accomplished using the following code.

1 syms x y z l1(x,y,z) l2(x,y,z) l3(x,y,z) l4(x,y,z)

2

3

4 [~, Ns3D1] = FEM3Dclass.basisNj (1);

5 [~, Ns3D2] = FEM3Dclass.basisNj (2);

6 [~, Ns3D3] = FEM3Dclass.basisNj (3);

7 [~, Ns3D4] = FEM3Dclass.basisNj (4);

8

9 Ns3Dk = {Ns3D1 , Ns3D2 , Ns3D3 , Ns3D4 };

10 gradNs3Dk = cell (4,1);

11

12

13 for j =1:4

14 Ns3D = Ns3Dk{j};

15 gradNs3D = cell(3, length(Ns3D));

16 for i=1: length(Ns3D)

17 Ni = Ns3D{i};

18

19 Nix = string(diff(Ni(l1(x,y,z),l2(x,y,z),l3(x,y,z),l4(x,y,z)),x));

20 Nix = strrep(Nix , ’diff(l1(x, y, z), x)’,’-1’);

21 Nix = strrep(Nix , ’diff(l2(x, y, z), x)’,’1’);

22 Nix = strrep(Nix , ’diff(l3(x, y, z), x)’,’0’);

23 Nix = strrep(Nix , ’diff(l4(x, y, z), x)’,’0’);

24 Nix = strrep(Nix , ’l1(x, y, z)’,’l1’);

25 Nix = strrep(Nix , ’l2(x, y, z)’,’l2’);

26 Nix = strrep(Nix , ’l3(x, y, z)’,’l3’);

27 Nix = strrep(Nix , ’l4(x, y, z)’,’l4’);

28

29 Niy = string(diff(Ni(l1(x,y,z),l2(x,y,z),l3(x,y,z),l4(x,y,z)),y));

30 Niy = strrep(Niy , ’diff(l1(x, y, z), y)’,’-1’);

31 Niy = strrep(Niy , ’diff(l2(x, y, z), y)’,’0’);

32 Niy = strrep(Niy , ’diff(l3(x, y, z), y)’,’1’);

33 Niy = strrep(Niy , ’diff(l4(x, y, z), y)’,’0’);

34 Niy = strrep(Niy , ’l1(x, y, z)’,’l1’);

35 Niy = strrep(Niy , ’l2(x, y, z)’,’l2’);

36 Niy = strrep(Niy , ’l3(x, y, z)’,’l3’);

37 Niy = strrep(Niy , ’l4(x, y, z)’,’l4’);

38

39 Niz = string(diff(Ni(l1(x,y,z),l2(x,y,z),l3(x,y,z),l4(x,y,z)),z));

40 Niz = strrep(Niz , ’diff(l1(x, y, z), z)’,’-1’);

96

41 Niz = strrep(Niz , ’diff(l2(x, y, z), z)’,’0’);

42 Niz = strrep(Niz , ’diff(l3(x, y, z), z)’,’0’);

43 Niz = strrep(Niz , ’diff(l4(x, y, z), z)’,’1’);

44 Niz = strrep(Niz , ’l1(x, y, z)’,’l1’);

45 Niz = strrep(Niz , ’l2(x, y, z)’,’l2’);

46 Niz = strrep(Niz , ’l3(x, y, z)’,’l3’);

47 Niz = strrep(Niz , ’l4(x, y, z)’,’l4’);

48

49

50 Nix = str2sym(Nix); Nix = string(Nix);

51 Niy = str2sym(Niy); Niy = string(Niy);

52 Niz = str2sym(Niz); Niz = string(Niz);

53

54

55 Nix = append(’@(l1 ,l2 ,l3 ,l4)’, Nix);

56 Niy = append(’@(l1 ,l2 ,l3 ,l4)’, Niy);

57 Niz = append(’@(l1 ,l2 ,l3 ,l4)’, Niz);

58

59 if j==1

60 Nix = append(Nix , ’+0*l1’);

61 Niy = append(Niy , ’+0*l1’);

62 Niz = append(Niz , ’+0*l1’);

63 end

64 if Nix == ’@(l1 ,l2 ,l3 ,l4)0’

65 Nix = append(Nix , ’+0*l1’);

66 end

67 if Niy == ’@(l1 ,l2 ,l3 ,l4)0’

68 Niy = append(Niy , ’+0*l1’);

69 end

70 if Niz == ’@(l1 ,l2 ,l3 ,l4)0’

71 Niz = append(Niz , ’+0*l1’);

72 end

73

74 Nix = strrep(Nix ,’*’,’.*’);

75 Niy = strrep(Niy ,’*’,’.*’);

76 Niz = strrep(Niz ,’*’,’.*’);

77

78

79 gradNs3D{1,i} = str2func(Nix);

80 gradNs3D{2,i} = str2func(Niy);

81 gradNs3D{3,i} = str2func(Niz);

82 end

83 gradNs3Dk{j} = gradNs3D;

84 end

It is worth noting that the procedure commented above is not implemented in Matlab,
as usually writing the dependence of one set of variables on another means that the resultant
expression is in terms of the latter set. Therefore, the barycentric coordinates were written
implicitly in terms of (x̂, ŷ, , ẑ), and the terms ∂λi

∂x̂k
were handled using string manipulations.

Appendix B

Example codes

B.1 Connecting rod

1 %% Displacement analysis of a connecting rod.

2

3 % Mesh file

4 T = FEM3Dclass(’ConnectingRod_order2.msh’);

5 % T = FEM3Dclass(’ConnectingRod.msh ’); % Comment lines 136 -139. Uncomment

140

6

7 %% Geometry Visualization

8 Loaded = T.ComplementaryInformation(’Loaded Surface ’);

9 Loaded = T.mesh.domBd == Loaded;

10 LoadedSurface = T.mesh.trB(Loaded , 1:3);

11

12 Fixed = T.ComplementaryInformation(’Fixed Support ’);

13 Fixed = T.mesh.domBd ==Fixed;

14 FixedSurface = T.mesh.trB(Fixed , 1:3);

15

16 Free = T.ComplementaryInformation(’Free Surface ’);

17 Free = ismember(T.mesh.domBd ,Free);

18 FreeSurface = T.mesh.trB(Free , 1:3);

19

20 %

21 figure ()

22 hold on

23 trimesh(LoadedSurface , T.mesh.coord (:,1),T.mesh.coord (:,2), ...

24 T.mesh.coord (:,3),’FaceColor ’, ’red’, ’EdgeColor ’,’black ’)

25 trimesh(FixedSurface , T.mesh.coord (:,1),T.mesh.coord (:,2), ...

26 T.mesh.coord (:,3),’FaceColor ’, ’blue’, ’EdgeColor ’,’black ’)

27 trimesh(FreeSurface , T.mesh.coord (:,1),T.mesh.coord (:,2), ...

28 T.mesh.coord (:,3),’FaceColor ’, ’#808080 ’, ’EdgeColor ’,’black ’)

29

30 axis(’equal’)

31 view (32.6577 ,18.1538)

32 %% Data

33

34 %%% Material Properties

35 % Young Modulus

36 E = 2e11; %Pa

37 % Poisson Coefficient

38 nu = 0.3;

39 %%% Lame Parameters

40 lambda = E*nu/(1+nu)/(1 -2*nu);

41 mu = E/(1+nu)/2;

42 %% Load

43 q = 20;

97

98

44 q = q*1e6; %MPa

45

46

47

48 % Director cosines

49 LoadedUnitNormal = T.mesh.trBNormal(Loaded ,:);

50 LoadedUnitNormal = LoadedUnitNormal ./ vecnorm(LoadedUnitNormal ,2,2);

51 cosThetaX = LoadedUnitNormal (:,1);

52 cosThetaY = LoadedUnitNormal (:,2);

53 cosThetaZ = LoadedUnitNormal (:,3);

54

55 qX =@(x,y,z) -q.* cosThetaX + x.*0;

56 qY =@(x,y,z) -q.* cosThetaY + x.*0;

57 qZ =@(x,y,z) -q.* cosThetaZ + x.*0;

58

59 %% Boundary Condition nodes

60 % Fixed Nodes

61 fixedNodes = T.mesh.trB(Fixed ,:); fixedNodes = unique(fixedNodes);

62 % Load

63 loadedNodes = T.mesh.trB(Loaded ,:); loadedNodes = unique(loadedNodes);

64

65

66 nNodes = T.mesh.nNodes;

67 iD = fixedNodes; iD2 = [iD; iD+nNodes; iD+nNodes *2];

68 inD = (1: length(T.mesh.coord)*3) ’; inD = setdiff(inD , iD2);

69

70 %% System Construction

71

72 %%% Assembly

73

74 % Stiffness Matrix

75 A = {@(x,y,z) mu+2* lambda+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0;

76 @(x,y,z) 0+x.*0, @(x,y,z) mu+x.*0, @(x,y,z) 0+x.*0;

77 @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) mu+x.*0};

78 S11 = femStiffnessMatrix(T,A);

79

80 A = {@(x,y,z) mu+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0;

81 @(x,y,z) 0+x.*0, @(x,y,z) lambda +2*mu+x.*0, @(x,y,z) 0+x.*0;

82 @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) mu+x.*0};

83 S22 = femStiffnessMatrix(T,A);

84

85 A = {@(x,y,z) mu+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0;

86 @(x,y,z) 0+x.*0, @(x,y,z) mu+x.*0, @(x,y,z) 0+x.*0;

87 @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) lambda +2*mu+x.*0};

88 S33 = femStiffnessMatrix(T,A);

89

90 A = {@(x,y,z) 0+x.*0, @(x,y,z) lambda+x.*0, @(x,y,z) 0+x.*0;

91 @(x,y,z) mu+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0;

92 @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0};

93 S12 = femStiffnessMatrix(T,A);

94

95 A = {@(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) lambda+x.*0;

96 @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0;

97 @(x,y,z) mu+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0};

98 S13 = femStiffnessMatrix(T,A);

99

100 A = {@(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0;

101 @(x,y,z) 0+x.*0, @(x,y,z) 0+x.*0, @(x,y,z) lambda+x.*0;

102 @(x,y,z) 0+x.*0, @(x,y,z) mu+x.*0, @(x,y,z) 0+x.*0};

103 S23 = femStiffnessMatrix(T,A);

99

104

105 matrix = [S11 S12 S13

106 S12 ’ S22 S23

107 S13 ’ S23 ’ S33];

108

109 % Neglect body forces

110 F = zeros(nNodes *3,1);

111

112 % Load

113 tX = femRobin(T, Loaded , qX);

114 tY = femRobin(T, Loaded , qY);

115 tZ = femRobin(T, Loaded , qZ);

116 t = [tX; tY; tZ];

117

118

119 % Solution initialization

120 u = zeros(nNodes *3,1);

121

122 % System Resolution

123 F = F+t; F = F(inD);

124 F = F-matrix(inD , iD2)*u(iD2);

125 matrix = matrix(inD , inD);

126 u(inD) = matrix\F;

127

128 %%

129 uX = u(1: nNodes);

130 uY = u(nNodes +1:2* nNodes);

131 uZ = u(2* nNodes +1:3* nNodes);

132 %% PLOT SOLUTION

133 SurfaceSubTriangles = [1 4 6; 2 5 4; 3 6 5; 6 4 5];

134

135 trB = [T.mesh.trB(:, SurfaceSubTriangles (1,:));

136 T.mesh.trB(:, SurfaceSubTriangles (2,:));

137 T.mesh.trB(:, SurfaceSubTriangles (4,:))];

138 T.mesh.trB(:, SurfaceSubTriangles (3,:));

139 % trB = T.mesh.trB;

140

141 figure;

142 trisurf(trB , T.mesh.coord (:,1),T.mesh.coord (:,2),T.mesh.coord (:,3) ,...

143 vecnorm ([uX uY uZ],2,2), ’FaceColor ’,’interp ’,’EdgeColor ’,’none’

);

144 colorbar

145 colormap turbo

146 xlabel(’x’)

147 ylabel(’y’)

148 zlabel(’z’)

149 axis(’equal ’)

150 view (45 ,30)

151

152 fig = figure;

153 trisurf(trB , T.mesh.coord (:,1),T.mesh.coord (:,2),T.mesh.coord (:,3) ,...

154 uX, ’FaceColor ’,’interp ’,’EdgeColor ’,’none’);

155 colorbar

156 colormap turbo

157 xlabel(’x’)

158 ylabel(’y’)

159 zlabel(’z’)

160 axis(’equal ’)

161 view (45 ,30)

162

100

163 figure;

164 trisurf(trB , T.mesh.coord (:,1),T.mesh.coord (:,2),T.mesh.coord (:,3) ,...

165 uY, ’FaceColor ’,’inter p’,’EdgeColor ’,’none’);

166 colorbar

167 colormap turbo

168 xlabel(’x’)

169 ylabel(’y’)

170 zlabel(’z’)

171 axis(’equal ’)

172 view (45 ,30)

173

174 figure;

175 trisurf(trB , T.mesh.coord (:,1),T.mesh.coord (:,2),T.mesh.coord (:,3) ,...

176 uZ, ’FaceColor ’,’interp ’,’EdgeColor ’,’none’);

177 colorbar

178 colormap turbo

179 xlabel(’x’)

180 ylabel(’y’)

181 zlabel(’z’)

182 axis(’equal ’)

183 view (45 ,30)

B.2 Finned cylinder

1 T = FEM3Dclass(’CylinderFins.msh’);

2 %% Properties

3

4 % density

5 rho = 7200;

6 % Thermal Conductivity

7 k = 52;

8 % Heat capacity

9 Cp = 447;

10

11

12 % Interior surface Temperature

13 TInt = 300; TInt = TInt +273;

14 % Convection

15 h = 5;

16 TInf = 27; TInf = TInf +273;

17 gR = @(x,y,z) h*TInf+x*0;

18 alpha = @(x,y,z) h+x*0;

19

20 % Initial condition

21 T0 = 20; T0 = T0 +273;

22 % time step

23 tau = 0.05;

24 t0 = 0;

25 tf = 120;

26

27

28 %% Show geometry

29

30 FixedTempSur = T.ComplementaryInformation(’Interior ’);

31 FixedTempSur = T.mesh.trB(ismember(T.mesh.domBd , FixedTempSur) ,:);

32

33 ConvectSur = T.ComplementaryInformation(’Exterior ’);

34 robin = ismember(T.mesh.domBd , ConvectSur);

35 ConvectSur = T.mesh.trB(ismember(T.mesh.domBd , ConvectSur) ,:);

101

36

37

38 figure

39 hold on

40 axis ’equal’

41 trimesh(FixedTempSur , T.mesh.coord (:,1), T.mesh.coord (:,2), ...

42 T.mesh.coord (:,3),’EdgeColor ’,’k’)

43 trimesh(ConvectSur , T.mesh.coord (:,1), T.mesh.coord (:,2), ...

44 T.mesh.coord (:,3),’EdgeColor ’,’k’)

45

46 %% Geometry Scaling

47 Length = 1000; %mm->m

48 T.mesh.coord = T.mesh.coord/Length;

49 T.mesh.detBk = T.mesh.detBk/Length ^3;

50 T.mesh.trBNormal = T.mesh.trBNormal/Length ^2;

51

52 %%

53 iD = unique(FixedTempSur (:));

54 inD = (1:T.mesh.nNodes)’; inD = setdiff(inD ,iD);

55 Uend = zeros(T.mesh.nNodes , 1);

56

57 % Initial conditions

58 Uend = Uend+T0;

59 % Dirichlet conditions

60 Uend(iD) = TInt;

61

62 disp(’System assembly ’)

63 M = femMassMatrix(T, @(x,y,z) 1+x*0); M = rho*Cp*M;

64 S = femStressMatrix(T); S = k*S;

65 [t,MR] = femRobin(T, robin , gR, ’alpha ’,alpha); t = t(inD);

66 A = M+0.5* tau*(S+MR); AnD = A(inD ,inD);

67 A2 = M -0.5* tau*(S+MR);

68 disp(’done’)

69

70 % Can be used to decrease time computation of the system

71 % [l,d,p] = ldl(AnD);

72 clear M S

73

74 maxDiff = [];

75 checktimes = [1 8 20 40];

76 for tn1 = t0+tau:tau:tf

77 r = A2(inD ,:)*Uend +0.5* tau*(t+t)-A(inD ,iD)*Uend(iD);

78 Uend2 = AnD\r;

79 maxDiff = [maxDiff max(abs(Uend(inD)-Uend2))];

80 Uend(inD) = Uend2;

81 if any(abs(tn1 - checktimes)<1e-14)

82

83 fig = figure;

84 trisurf(T.mesh.trB , T.mesh.coord (:,1)*Length ,...

85 T.mesh.coord (:,2)*Length ,T.mesh.coord (:,3)*Length ,...

86 Uend -273, ’FaceColor ’,’interp ’,’EdgeColor ’,’none’);

87 colormap turbo

88 caxis ([20 300])

89 colorbar

90 axis equal

91 view (-23.5629 ,5.4)

92

93 % saveas(fig ,[’heat_time ’ num2str(round(tn1 ,2)) ’_top ’],’epsc ’)

94

95 fig = figure;

102

96 trisurf(T.mesh.trB , T.mesh.coord (:,1)*Length ,...

97 T.mesh.coord (:,2)*Length ,T.mesh.coord (:,3)*Length ,...

98 Uend -273, ’FaceColor ’,’interp ’,’EdgeColor ’,’none’);

99 colormap turbo

100 caxis ([20 300])

101 colorbar

102 axis equal

103 view(0, 90)

104 ttt = true;

105 % saveas(fig ,[’heat_time ’ num2str(round(tn1 ,2)) ’_pers ’],’epsc ’)

106 end

107 end

108

109 %%

110 loglog(t0+tau:tau:tf , maxDiff , ’r-’, ’linewidth ’ ,0.6)

111 ylabel(’$\Delta T(^\ circ C)$’, ’interpreter ’,’Latex’)

112 xlabel(’t’)

Index
A, 20
BK , 18
FK , 18
NK

ℓ , 8
Pm
h , 7

Aβ,ij, 23
Aβ, 28
AK

β , 28
M c, 24
MK

c , 25
M c,ij, 23
RA

α , 30
Rα, 29
Rα,ij, 23
SK

κ , 26

Sκ,ij, 23
λ, λj, 9
bKf , 29
bf , 29
bf,i, 23
tg, 30
tAg , 30
tn,i, 23
tr,i, 23
vj, 8, 20
vK
i , 7, 20

Pm, 7
φi, 21
φj, 8

Â, 16
K̂, 10
N̂ℓ, 12
λ̂, 11
dofA, 8

dofK, 7

evalFEM3DUh, 71

femAdvectionMatrix, 65

femMassMatrix, 57

femRobin, 68

femSourceTerm, 67

femStressMatrix, 60

iD, 23

importGMSH3D, 48

nNodes, 8

niD, 23

nttrh, 6

103

	Introduction
	Finite Element Method
	The Boundary Value Problem
	Finite elements
	The mesh
	Finite Element Space
	Barycentric Coordinates
	Reference Element
	Arbitrary elements: tetrahedra and faces
	Finite element space revisited

	Finite Element Method
	Variational Formulation
	Discretization
	System Assembly

	Further Applications
	Evolution Problems
	Linear Elasticity

	FEM package
	GMSH
	Mesh File
	Mesh format
	Physical tags
	Entities
	Nodes
	Elements

	Mesh File reading
	Data structure
	Lagrange Basis
	Integration formulas
	Local Matrices
	Assembly of the system of equations
	Mass matrix
	Stiffness Matrix
	Advection Matrix
	Source term
	Robin Boundary condition

	Finite element evaluation

	Numerical examples
	Error analysis
	MSH file reading
	Assembly time
	Convergence analysis

	Loaded Connecting rod
	Heat equation

	Conclusions and future Work
	Bibliography
	Lagrange Basis
	Example codes
	Connecting rod
	Finned cylinder

	Index

