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Abstract: The simultaneous existence of mechanical erosion and electrochemical corrosion is a
common scenario for engineering alloys used in marine environments, such as pump impellers and
valves. Nickel–aluminium–bronzes (NABs) are widely used alloys in these environments due to
their combination of high corrosion resistance and effective mechanical properties. However, NAB
alloys are increasingly cast with reduced nickel content due to its high price and low availability.
In this study, we examined the tribocorrosion behaviour of two nickel–aluminium bronzes (C95500
and C95400) with different nickel contents (4.8% and 1.0%, respectively) by means of a pin-on-disk
device combined with in situ electrochemistry under 1 M NaCl solution. We conducted tests for pure
wear in distilled water, pure corrosion using in situ electrochemistry under 1 M NaCl solution, and a
combination of wear and corrosion, called tribocorrosion, to understand the overall synergism that
exists between the two. We analysed our results using gravimetric as well as volumetric analysis;
in addition, we defined the friction coefficient to compare the effect of open-circuit potential (OCP).
We also applied the Tafel method and compared corrosion rates for the different scenarios. We
employed confocal microscopy to delimitate the impact of the surface topography of pure wear
and its synergistic effect with corrosion, and used an optical microscope to study the materials’
microstructures as cast conditions. We also utilised XRD in the Bragg–Brentano configuration to
determine the chemical composition of corrosion products. From the experiments conducted, we
concluded that an important synergistic effect existed between the wear and corrosion of both NABs,
which was associated with corrosion-induced wear. We found NAB C95400 to be more susceptible to
erosion under both conditions compared with NAB C95500 due to the chemical composition and
lubricant effect of corrosion products formed during the tribocorrosion tests, which were supported
by the enriched Ni corrosion products, particularly the presence of nickel-rich copper chloride,
3Cu3(CuNi)(OH)6CuCl2, in the C95500 alloy. We concluded that, because it increased the nickel
content, the NAB alloy offered better wear and corrosion behaviour in sea water conditions due to its
protective film nature.

Keywords: corrosion; wear; tribocorrosion; nickel–aluminium–bronze (NAB); kappa phases; lubri-
cant effect; marine environment

1. Introduction

The term tribology describes the branch of science and technology that studies interact-
ing surfaces in relative motion, which includes the study of friction, wear, lubrication, and
cavitation. Tribocorrosion involves the tribological interactions between the mechanically
induced interactions with electrochemical processes, causing the materials to corrode at
substantially higher rates than those experienced under static or quiescent conditions,
enhancing wear processes due to corrosion [1]. Numerous studies on the tribocorrosion
behaviour of metallic materials related to biomedical applications, such as Co-Cr and
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titanium alloy, have been published over the last 20 years [2–9]. In Jiang et al.’s [10] tribo-
corrosion modelling proposal for marine alloys, the microstructure, presence of multiple
wear mechanisms, localised corrosion, and complex film formation are the key factors
to understand this phenomenon, as confirmed by Landolt [11] regarding the role of the
passive layer. Huttunen-Saarivirta et al. [12] studied the effect of the absence and presence
of tribological contact to determine the tribological behaviour of a leaded tin bronze, con-
cluding that the material losses increased considerably with increases in potential, mainly
due to the contribution by wear-induced corrosion to the total material losses. Recently, the
tribocorrosion behaviour of a Cu–Ni–Zn alloy in a deep-sea environment was analysed
by an in situ electrochemical method, showing that the hydrostatic pressure and electro-
chemical conditions influence wear morphology and tribocorrosion volume; in addition,
the tribocorrosion phenomenon changes from adhesive to abrasive and delamination wear
with increasing pressure [13]. Thus, it is necessary to pay attention to all industrial activities
wherein tribocorrosion could appear as a phenomenon that decreases the service life of
components. Nickel–aluminium–bronze (NAB) alloys are used in the manufacture of
different components for marine propulsion systems, such as ship propellers, thrusters, etc.,
and are also widely used for many internal seawater handling systems as heat-exchanger
manifolds, valves, and pipework fittings due to their superior mechanical properties and
complex microstructures, which have been attributed for their good corrosion resistance
properties. Although there are numerous studies on the corrosion behaviour of NAB in
marine environments [14–19], there has been little attention paid to the combined effects
of friction and corrosion on this alloy. Basumatary et al. reported that NAB alloys are
susceptible to a selective phase attack of the α-κ phase interfaces in the microstructure
in corrosive environments [20]; furthermore, Song et al. also showed severe phase corro-
sion [21]. Song et al. [21] and Schüsller et al. [19] showed that corrosion-inducing ions,
which are present in seawater, such as chlorides and sulphates, promote the destruction of
the passivation film, leading to high corrosion rates [22]. The properties of NAB are also
affected by the appearance of porous copper sulphide in the corrosion film (Song et al. [21]
and Schüsller et al. [19]).

Zhang et al. [23] found that NAB alloys’ loss of material and friction coefficient
during tribocorrosion tests increased with applied load (50–150 N), with the loss primarily
attributed to pure mechanical and corrosion-induced wear. In a study carried out in high-
pH seawater (10.2), they also found that NAB alloys’ susceptibility and corrosion rate
increased, resulting in accelerated corrosion-induced wear [24]. Furthermore, they also
studied the effect of chloride concentration [25] on the tribocorrosion behaviour of NAB
C95800 alloy, concluding that increasing the chloride concentration increased the corrosivity;
in addition, it had a good lubricating effect because it alleviated the surface deterioration.
Zhang et al. [26] also observed that the relative contribution of corrosion–wear synergism to
the total mass loss was greater in 3.5% NaCl solution than in seawater for NAB alloys after
tests using a pin-on-disc tribometer integrated to an electrochemical workstation. Corrosion
potential is a key factor that can determine whether there is a low or high synergistic effect.
In this regard, Huttunen-Saarivirta [27] highlighted that increasing the corrosion potential
with respect to the open-circuit potential (OCP) considerably increased the wear caused by
the synergistic effect of NAB alloy’s corrosion and friction. Recently, Li et al. [28] used NAB
to compare the tribological behaviours of Cu-based metal–glass materials (BMG) by sliding
in a 3.5 wt% NaCl solution, observing that Cu-based BMG offers better static-corrosion
resistance but worse tribocorrosion resistance compared with conventional NAB.
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The most significative tribocorrosion studies regarding NAB are linked to the effects
of electrolytes, electrochemical conditions, and load, while little attention has been paid to
the influence of the percentage of NAB’s critical chemical alloy elements on this synergistic
phenomenon. Yang et al. [29] found that the influence of nickel content (4.5–10%) balanced
the pure corrosion behaviour. They pointed out that increasing the nickel content improved
the corrosion resistance due to the incorporation of nickel atoms in the formation of the
passive layer; however, the effect of nickel content on the tribocorrosion behaviour of NAB
has not yet been analysed. Our work aims to compare the tribocorrosion behaviour of two
NAB alloys (C95500 and C95400) in as-cast condition, with different nickel contents (4.8%
and 1.0%, respectively), to assess the role of nickel in tribocorrosion by means of pin-on-disk
tests using a force of 40 N in a NaCl (1 M) solution, calculating the total material loss rate
(T), mechanical wear rate (W0), and corrosion rate with and without combined effects.

2. Materials and Methods
2.1. Materials

The nickel–aluminium–bronzes (C95500 and C95400) were supplied by a company
in as-cast condition. Table 1 shows nickel content is higher in the C95500 alloy (4.8%)
compared with the C95400 alloy (1.0%). We measured density in a precision balance
applying the Archimedes method; the values were slightly higher for the C95500 alloy. We
characterised both alloys by optical microscopy fitted with an image analysis software.

Table 1. Chemical composition and density of NAB C95400 and C95500 alloys.

Al Fe Ni Mn Cu Density (g/cm3)

C95500 10.0 4.7 4.8 0.4 Balance 7.55 ± 0.02
C95400 10.1 4.1 1.0 0.8 Balance 7.45 ± 0.02

2.2. Tribocorrosion Test and Wear Determination

We ground samples of both alloys using 180-, 800-, and 1500-grit SiC sandpapers
(surface finish Ra = 0.40 µm). We performed pin-on-disk tests in NaCl (1 M) solution using
Microtest MT series equipment (Microtest S.A.) with 6 mm alumina balls as counterparts,
each of which had a surface maximum roughness of Ramax = 0.050 µm and hardness of
around 1650 HV. We carried out tests applying 40 N of load to the ball (Hertzian contact
stress of 1.9 GPa in the beginning of the test), with 100 rpm and 8 mm track radius. We
repeated tests two times to ensure repeatability. Figure 1 shows the components used to
perform the tribocorrosion test.

For the calculation of total material loss rate (T) and the mechanical wear rate (W0), we
evaluated the corresponding wear tracks using a confocal smart microscope (Sensofar), and
we measured the volume loss straight from the confocal measurements with Sensoview.
We performed this measurement in three different zones of the wear tracks, and then
extrapolated the obtained average value for the entire wear track using Equation (1). Then,
we calculated the wear coefficient value using the equation described in ASTM G99 [30].

V loss confocal
(
m3)

wear track length (m)
× 2 × Π × r (m) = V loss(m3) (1)
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Figure 1. Diagram showing configuration of equipment for tribocorrosion tests.

We performed the assessment of the tribocorrosion behaviour according to the ASTM
G119 standard [31], which allowed the quantification of the contributions of wear and
corrosion and their synergism to the material degradation by the calculation of the total
material loss, T, which is composed of the contribution from pure mechanical wear (W),
active dissolution by pure corrosion (C), and the interaction between the two degradation
processes called synergy (S), following

T = W0 + C + S (2)

The synergy may be twofold: mechanical wear may influence corrosion (∆CW) and,
conversely, corrosion may contribute to mechanical wear (∆WC), leading to: S = ∆CW + ∆WC.

The synergy component term, ∆CW, may be defined as: ∆CW = CW − C0, where CW
represents the electrochemical corrosion rate during the corrosive wear. The other term,
∆WC, may be calculated by: ∆WC = T − WC − CW, where WC is the wear volume in the
presence of corrosion and W0 is the wear volume in the absence of corrosion, i.e., pure
mechanical wear.

We conducted all electrochemical measurements at room temperature with the help of
an Autolab potentiostat instrument with a conventional three-electrode system (Figure 1).

First, we carried out open-circuit potential (OCP) measurements for 60 min to achieve
stabilization, after which we performed potentiodynamic measurements, sweeping from
−500 mV OCP to 500 mV vs. OCP at a rate of 0.5 mV s−1. Thus, the anodic and cathodic
polarisation stage had a duration of 16 min. We measured total mass loss (T) and mechanical
wear (W0) values directly from the weight difference prior to and after the test. In addition,
to evaluate these two parameters, we employed the wear coefficient from the volume loss,
as well as wear track length (Figure 2). To determine the static and dynamic corrosion rate,
we carried out the analysis by using the Tafel extrapolation method to obtain the corrosion
rate; furthermore, we calculated the penetration rate by applying Faraday’s law (Figure 2).
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Figure 2. Flow chart showing experimentation performed in this research.

We obtained corrosion products by scraping the surface of the tribocorrosion samples
with the help of a stainless steel spatula. The C95400 alloy produced enough sample to
carry out an XRD experiment in Bragg–Brentano configuration between 10◦ to 120◦ and
0.02◦ and 5 s per step, using a chromium source with a wavelength of 0.22897 nm. However,
the C95400 alloy, did not produce that much of the corrosion product, so the time per step
had to be increased to 20 s while keeping the other parameters the same to obtain enough
signal and to be able to identify the peaks.

3. Results and Analysis
3.1. Microstructure and Microhardness Characterization

Figure 3 shows that both alloys are composed of the main phases: α, β, and intermetal-
lic compounds called kappa.
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The higher nickel content leads to a higher amount of α phases and intermetallic com-
pounds in the C95500 alloy compared with the C95400 alloy (Table 2). The microhardness
of the C95500 alloy is also slightly higher than that of C95400, which is related to the higher
intermetallic compounds content.

Table 2. Microstructural image analysis quantification of C95500 and C95400 alloys.

Alpha Phase (%) Beta Phase (%) Intermetallic
Compounds (%) Microhardness (HV0.1)

C95500 70.5 24.4 5.1 160 ± 8.2
C95400 53.8 43.0 3.2 145 ± 6.2

3.2. Tribocorrosion Test

We performed combined corrosion and wear tests to obtain information about the
tribocorrosion behaviour of the samples. We also carried out potentiodynamic polarization
tests in combination with pin-on-disk tests (Figure 2). To do so, first, we monitored the
open-circuit potential (OCP) to achieve a stable value. Then, we applied potentiodynamic
polarization to the samples. Finally, we monitored OCP again.

The values of the friction coefficients (COFs) over time (Figure 4) are higher for the
C95500 alloy (0.4 ± 0.1) compared with the C95400 alloy (0.3 ± 0.1). This fact is associated
with the higher hardness (HV = 160 ± 8.2) of the C95500 alloy compared with C95400
(HV = 145 ± 6.2). The evolution is similar in both alloys. We observed a slight initial
increase in the cathodic zone, which progressively decreased. The anodic zone showed a
relatively stable, low COF value, which is associated with the development of a layer of
corrosion products on the metal surface. On the other hand, we observed the variation in
the OCP value without polarization (Figure 5). In the same way, as in the previous case,
we first recorded the OCP to ensure a stable value; after, we performed the pin-on-disk
test. Finally, we again recorded the OCP value without rubbing to show the stabilization of
its value.
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Figure 4. Evolution of coefficient of friction (COF) values with time for C95400 and C95500 alloys.

Both alloys show a similar trend. First, there is a first stabilization stage; then, we
observed COF fluctuations during cathodic polarization because no corrosion products
formed on the surface samples. After, in the anodic polarization zone, we observed a
decrease in COF for both samples, which could be linked to oxides formation. After the
anodic polarization step, the coefficient of friction (COF) undergoes a considerable increase
to values close to 0.5 for the C95500 alloy and 0.3 for the C95500 alloy. This increase may
be associated with the fact that after anodic polarization no new corrosion products are
formed; therefore, these products’ lubricating effects no longer remain.
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Figure 5 shows the evolution of the OCP value over time while the samples are
subjected to sliding contact without polarization. The OCP values before wear are slightly
higher (E = −0.20 mV) for the C95500 alloy compared with C95400 (E = −0.24 mV). When
sliding starts, the decrease in the OCP value is very low, which indicates that a stable
passive layer has not been formed as it occurs in the stainless steels. We observed opposite
trends in the OCP value’s evolution with time during the load application. The OCP value
of alloy C95500 shows a trend towards more cathodic potentials. Although this trend was
not as significant as that found by Tan et al. [32,33], it suggested that the formation of
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corrosion–friction products has some inhibitory effect on the oxygen-reduction reaction.
In contrast, the C95400 alloy shows an evolution towards more positive potentials, which
are associated with different corrosion–friction products. When the load is removed, the
potentials return to the initial values.

3.3. Synergic Study of Corrosion and Friction

Figure 6 shows the results of the static corrosion and tribocorrosion tests. A plateau is
evident in the cathodic zone, which is associated with the reduction reactions of dissolved
oxygen. No formation of corrosion products has been noted during this period. During
anodic polarization, we found no passive layer formation, with a constant increase in the
current density that is accelerated by the load effect.

We identified a linear relationship between current density and potential in the prox-
imity of the corrosion potential. We measured the anodic and cathodic slopes and ob-
tained the current densities for the static corrosion and tribocorrosion tests by the Tafel
extrapolation method. The corrosion rates obtained from the Tafel analysis showed remark-
able differences between static and dynamic corrosion behaviour. When the conditions
are static, the corrosion rates are low for both alloys (C0 = 0.02 mmy−1 for alloy B95400
and C0 = 0.08 mmy−1 for alloy B95500). However, when the conditions are corrosive–
friction, the corrosion rate significantly increases (C0 = 1.05 mmy−1 for alloy B95400 and
C0 = 1.05 mmy−1 for alloy B95500).
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Figure 6. Polarization curves of static corrosion and tribocorrosion of C95400 and C95400 alloys.

Table 3 summarizes that the values for pure mechanical wear (W0) and static corrosion
loss are low (C0). Consequently, most of the total loss (T) is due to the synergy between
corrosion and friction (S). The major contribution is corrosion-induced wear for both alloys.
(∆Wc). These measurements agree with those obtained by Zhang et al. and Huttunnen
([14,17]) for similar alloys.

Table 3. Summary of various material loss components for C95500 and C95400 alloys.

T
(mm.y−1)

W0
(mm.y−1)

Co
(mm.y−1)

Cw
(mm.y−1) S ∆Cw

(mm.y−1)
∆Wc

(mm.y−1)

C95500 143 0.08 0.02 1.05 142.9 1.0 141.9
C95400 163 0.13 0.05 1.35 162.8 1.4 161.4
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While these alloys do not form stable passive layers under anodic polarization, the
corrosion products that are formed help to protect the alloys and prevent an excessive cor-
rosion rate. However, the loading effect tends to remove the corrosion products; therefore,
corrosion is not slowed down.

3.4. Wear Evaluation

Figure 7 shows some 3D representations of the wear tracks obtained by confocal
microscopy for both materials after rubbing in cathodic polarization (Figure 7a,c) and in
tribocorrosion conditions (Figure 7b,d). When we performed wear tests in NaCl solution
with cathodic polarization effect, both materials presented longitudinal scratches along
the wear track, which are related to pure abrasive wear effect. On the other hand, wear
tracks obtained after tribocorrosion tests presented smoother surfaces, which may be due
to corrosion products developed in situ during the tests because of their nature.
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polarization, and (d) C95400 in tribocorrosion conditions.

Figure 8 shows that the wear track size after the mechanical wear test is small for
both alloys, with a maximum depth of 6.5 µm and 6.9 µm for alloys C95400 and C95500,
respectively, which considerably increased for both alloys after the tribocorrosion test.
For the C95500 alloy, we measured a maximum depth of 51 µm, while for C95400, it
was 76 µm. Therefore, the synergistic effect is more remarkable for NAB C95400 than
for NAB C95500. In both cases, wear track dimensions and volume loss due to the com-
bined effect of corrosion and wear (T) are considerably higher than the pure mechan-
ical wear (W0) (Figure 9). The higher volume of material loss in the combined wear
and corrosion test with respect to pure mechanical wear tests is reflected in a higher
wear rate. The differences are also greater for C95400, as the wear rate increases from
2.9 × 10−6 (mm3/Nm) to 1.40 × 10−5 (mm3/Nm), while the value for C95500 merely in-
creases from 3.0 × 10−6 (mm3/Nm) to 7.0 × 10−6 (mm3/Nm). These values are consistent
with the measurements on the wear track.
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3.5. Corrosion–Friction Products Characterization by XRD

Figure 10 shows a diffractogram of corrosion products after the tribocorrosion test.
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Mainly, aluminium oxide (Al2O3) and an oxyhydrochloride of iron and aluminium
(Al,Fe) ClO formed in both alloys during the tests; nevertheless, a major compound of nickel-
rich copper chloride, 3Cu3(CuNi)(OH)6CuCl2, was only observed in the C95500 alloy.

4. Conclusions

We performed a novel study on the influence of nickel content on the tribocorrosion
behaviour of NAB C95500 and C95400 in 1 M NaCl. We observed a synergistic effect
between corrosion and wear in both alloys, mainly due to wear-induced corrosion.

The higher nickel content in the C95500 alloy (Ni: 4.8%) led to better wear-induced
corrosion behaviour than the C95400 alloy (Ni: 1.0%). These findings are associated
with the formation of corrosion–friction products of a different nature, mainly due to the
formation of nickel oxyhydroxides in the C95500 alloy, which causes slightly more desirable
tribocorrosion behaviour compared with the C95400 alloy.

More research is needed to better understand the role of microstructures (especially the
nature and morphology of kappa intermetallic compounds) in the tribocorrosion behaviour
of NABs.
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