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Abstract. This work deals with the efficient numerical solution of non-
linear transient flow problems posed on two-dimensional porous media of
general geometry. We first consider a spatial semidiscretization of such
problems by using a cell-centered finite difference scheme on a logically
rectangular grid. The resulting nonlinear stiff initial-value problems are
then integrated in time by means of a fractional step method, combined
with a decomposition of the flow domain into a set of overlapping sub-
domains and a linearization procedure which involves suitable Taylor
expansions. The proposed algorithm reduces the original problem to the
solution of several linear systems per time step. Moreover, each one of
such systems can be directly decomposed into a set of uncoupled linear
subsystems which can be solved in parallel. A numerical example illus-
trates the unconditionally convergent behaviour of the method in the
last section of the paper.
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Implicit Method; Logically Rectangular Grid; Nonlinear Parabolic Prob-
lem; Support-Operator Method.

1 Introduction

Darcian water flow through non-swelling isothermal soils has been shown to
obey Richards’ equation [5, 2]. A simplified version of such equation, together
with suitable initial and boundary conditions, gives rise to nonlinear parabolic
initial-boundary value problems of the following form: Find ψ : Ω × [0, T ] → R
such that



∂ψ(x, t)
∂t

= div(K(ψ)gradψ(x, t)) + g(ψ) + f(x, t), (x, t) ∈ Ω × (0, T ],

ψ(x, 0) = ψ0(x), x ∈ Ω,

ψ(x, t) = ψD(x, t), (x, t) ∈ ∂Ω × (0, T ],
(1)
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where ψ(x, t) denotes the pressure head, K(ψ) is a symmetric positive-definite
tensor of the form

K(ψ) =
(

K11(ψ) K12(ψ)
K12(ψ) K22(ψ)

)
,

which represents nonlinear hydraulic conductivity, g(ψ) is a smooth nonlinear
function which may describe, for instance, root water uptake in soil profiles
(cf. [10]) and f(x, t) is a source/sink term. The flow domain is assumed to be
a bounded open set Ω ⊆ R2 with boundary ∂Ω, where we have considered
Dirichlet boundary conditions ψD(x, t).

This paper is devoted to the design of an efficient numerical algorithm for
solving problems of type (1). The construction of such scheme is carried out
by using a two-stage discretization process (space/time), described in sections
2 and 3. The last section includes a numerical experiment which illustrates the
main advantages of the proposed method.

2 Spatial Semidiscretization

The semidiscrete scheme related to (1) is obtained by using a finite difference
spatial discretization based on the support-operator method. Such technique,
initially developed in [6] and subsequently discussed in [7], provides a method-
ology for constructing discrete analogs of invariant first-order differential opera-
tors which appear in (1) (i.e. divergence and gradient). The standard support-
operator method was designed for that case in which the self-adjoint operator
div(K(x)gradψ) is linear. However, the nonlinear nature of the conductivity
tensor K(ψ) involved in Richards’ equation makes it necessary to combine the
original technique with a bivariate interpolation method. This section describes
the general basis of the discretization scheme, introducing the specifics of our
proposal which permit to solve problem (1).

Let us first discretize Ω by means of a logically rectangular grid Ωh, where h
denotes the spatial mesh size. The structure of such grid is indexed as follows: if
Nx and Ny are positive integers, then the (i, j)-node is given by the coordinates
(x̃i,j , ỹi,j), for i ∈ {1, 2, . . . , Nx} and j ∈ {1, 2, . . . , Ny}. Moreover, the quadran-
gle defined by the nodes (i, j), (i + 1, j), (i, j + 1) and (i + 1, j + 1) is called
the (i, j)-cell and its center is given by the coordinates (xi,j , yi,j), which can be
obtained as

xi,j = 0.25 (x̃i,j + x̃i+1,j + x̃i,j+1 + x̃i+1,j+1),
yi,j = 0.25 (ỹi,j + ỹi+1,j + ỹi,j+1 + ỹi+1,j+1),

for i ∈ {1, 2, . . . , Nx − 1} and j ∈ {1, 2, . . . , Ny − 1}.
Within this framework, the support-operator method considers cell-centered

approximations for scalar functions ψ(x, t), g(ψ) and f(x, t) denoted by ψh(t),
gh(ψh) and fh(t), respectively. On the other hand, vector functions w(x, t) ≡
(wx(x, t), wy(x, t)) are nodally discretized by means of w̃h(t) ≡ (w̃x

h(t), w̃y
h(t)).

As described in [9], it is natural to use the divergence as the first-order prime
operator for this approximation scheme. Based on the invariant definition of the
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divergence, we can derive a discrete analog divh of div such that

divh : Ṽh × Ṽh → Vh

ṽh ↪→ divh ṽh,

where ṽh ≡ (ṽx
h, ṽy

h). Both Ṽh and Vh are finite-dimensional spaces of discrete
functions defined on the nodes and the cell-centers of Ωh, respectively. Hence,
the expression of the discrete divergence acting on a semidiscrete vector w̃h(t)
has the following form

(divh w̃h(t))i,j =
1

2σi,j
(((w̃x

h)i+1,j+1 − (w̃x
h)i,j)(ỹi,j+1 − ỹi+1,j)

−((w̃x
h)i,j+1 − (w̃x

h)i+1,j)(ỹi+1,j+1 − ỹi,j)

−((w̃y
h)i+1,j+1 − (w̃y

h)i,j)(x̃i,j+1 − x̃i+1,j)

−((w̃y
h)i,j+1 − (w̃y

h)i+1,j)(x̃i+1,j+1 − x̃i,j)),

(2)

for i ∈ {1, 2, . . . , Nx− 1} and j ∈ {1, 2, . . . , Ny − 1}, where σi,j is the area of the
(i, j)-cell and (w̃z

h)i,j denotes the ((i − 1)(Ny − 1) + j)-th component of w̃z
h(t)

which approximates wz(xi,j , yi,j , t) for z = x, y.
Considering a discrete version of Gauss’ theorem, together with equation (2),

we shall construct the derived operator grãdh as the discrete analog of grad as
follows

grãdh : Vh → Ṽh × Ṽh

uh ↪→ grãdh uh.

The components of the discrete gradient acting on the semidiscrete function
ψh(t) can be obtained as

(grãdx
h ψh(t))i,j =

1
2ηi,j

((ỹi,j+1 − ỹi+1,j) (ψh)i,j + (ỹi−1,j − ỹi,j+1) (ψh)i−1,j

+(ỹi+1,j − ỹi,j−1) (ψh)i,j−1 + (ỹi,j−1 − ỹi−1,j) (ψh)i−1,j−1),

(grãdy
h ψh(t))i,j =

1
2ηi,j

((x̃i,j+1 − x̃i+1,j) (ψh)i,j + (x̃i−1,j − x̃i,j+1) (ψh)i−1,j

+(x̃i+1,j − x̃i,j−1) (ψh)i,j−1 + (x̃i,j−1 − x̃i−1,j) (ψh)i−1,j−1),

(3)
for the internal values i ∈ {2, . . . , Nx − 1} and j ∈ {2, . . . , Ny − 1}, where ηi,j =
0.25 (σi,j +σi−1,j +σi,j−1+σi−1,j−1) and (ψh)i,j denotes the ((i−1)(Ny−1)+j)-
th component of ψh(t) which approximates ψ(xi,j , yi,j , t). It is easy to see that
the previous equations can be extended to the boundaries if we introduce the
following fictitious nodes

x̃i,0 = x̃i,1, ỹi,0 = ỹi,1, x̃i,Ny+1 = x̃i,Ny , ỹi,Ny+1 = ỹi,Ny ,

x̃0,j = x̃1,j , ỹ0,j = ỹ1,j , x̃Nx+1,j = x̃Nx,j , ỹNx+1,j = ỹNx,j ,

for i ∈ {1, 2, . . . , Nx} and j ∈ {1, 2, . . . , Ny}, as well as the evaluations of the
Dirichlet boundary condition ψD(x, t) at the centers of the boundary segments,
i.e.

(ψh)0,j = ψD(x̂1,j , ŷ1,j , t), (ψh)Nx,j = ψD(x̂Nx,j , ŷNx,j , t),
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where x̂1,j = 0.5 (x̃1,j + x̃1,j+1), ŷ1,j = 0.5 (ỹ1,j + ỹ1,j+1), x̂Nx,j = 0.5 (x̃Nx,j +
x̃Nx,j+1) and ŷNx,j = 0.5 (ỹNx,j + ỹNx,j+1), for j ∈ {1, 2, . . . , Ny − 1}, and

(ψh)i,0 = ψD(x̂i,1, ŷi,1, t), (ψh)i,Ny = ψD(x̂i,Ny , ŷi,Ny , t),

where x̂i,1 = 0.5 (x̃i,1 + x̃i+1,1), ŷi,1 = 0.5 (ỹi,1 + ỹi+1,1), x̂i,Ny = 0.5 (x̃i,Ny +
x̃i+1,Ny

) and ŷi,Ny
= 0.5 (ỹi,Ny

+ ỹi+1,Ny
), for i ∈ {1, 2, . . . , Nx − 1}.

Let us next proceed to explain the spatial discretization for tensor K(ψ). In
the linear case studied in [9] (i.e. when K ≡ K(x) does not depend on ψ), the
discrete equations (3) together with the nodal evaluations of the components of
K, denoted by (K̃11

h )i,j , (K̃12
h )i,j and (K̃22

h )i,j , lead us to

(K̃h grãdh ψh(t))i,j =


 (K̃11

h )i,j (grãdx
h ψh(t))i,j + (K̃12

h )i,j (grãdy
h ψh(t))i,j

(K̃12
h )i,j (grãdx

h ψh(t))i,j + (K̃22
h )i,j (grãdy

h ψh(t))i,j


 .

(4)
Now, using (2)-(4), it is straightforward to obtain the discrete linear opera-
tor divh(K̃h grãdh). In this case, the local stencil for (divh(K̃h grãdh ψh))i,j

involves the cell-centered approximations (ψh)i−1,j−1, (ψh)i,j−1, (ψh)i+1,j−1,
(ψh)i−1,j , (ψh)i,j , (ψh)i+1,j , (ψh)i−1,j+1, (ψh)i,j+1 and (ψh)i+1,j+1, as well as
the evaluations of the components of K at the nodes (i, j), (i + 1, j), (i, j + 1)
and (i + 1, j + 1).

In the nonlinear case, the nodal discretization of K(ψ)gradψ is similar to
the one given by (4). However, as the conductiviy tensor depends on the un-
known ψ, its discrete analog will involve approximations of such unknown at
the grid nodes. Let us denote these approximations by ψ̃h. Now, combining
such discretization with equations (2) and (3), we shall obtain an approxima-
tion for div(K(ψ)gradψ). The local stencil for (divh(K̃h(ψ̃h)grãdh ψh))i,j

involves, as in the linear case, the cell-centered approximations (ψh)i−1,j−1,
(ψh)i,j−1, (ψh)i+1,j−1, (ψh)i−1,j , (ψh)i,j , (ψh)i+1,j , (ψh)i−1,j+1, (ψh)i,j+1 and
(ψh)i+1,j+1; moreover, it includes the nodal approximations given by (ψ̃h)i,j ,
(ψ̃h)i+1,j , (ψ̃h)i,j+1 and (ψ̃h)i+1,j+1. Such values will be obtained by means of a
bivariate interpolation method as linear combinations of the nine values of ψh(t)
at the cell centers, i.e.

(ψ̃h)i,j =
1∑

k,`=−1

ci,j
k,` (ψh)i+k,j+`, (ψ̃h)i+1,j =

1∑

k,`=−1

ci+1,j
k,` (ψh)i+k,j+`,

(ψ̃h)i,j+1 =
1∑

k,`=−1

ci,j+1
k,` (ψh)i+k,j+`, (ψ̃h)i+1,j+1 =

1∑

k,`=−1

ci+1,j+1
k,` (ψh)i+k,j+`.

Figure 1 shows the structure of the local nine-cell stencil corresponding to
(divh(K̃h(ψh)grãdh ψh))i,j .

Using this discretization for the diffusion term, we can approach the original
problem by solving a nonlinear stiff initial-value problem of the form: Find ψh :
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(ψh)i−1,j−1 (ψh)i,j−1
(ψh)i+1,j−1

(ψh)i−1,j (ψh)i,j (ψh)i+1,j

(ψh)i−1,j+1 (ψh)i,j+1 (ψh)i+1,j+1

(i, j)

(i+ 1, j)

(i, j+ 1)

(i+ 1, j+ 1)

Fig. 1. Nine-cell stencil for (divh(K̃h(ψh)greadh ψh))i,j .

[0, T ] → Vh such that




dψh(t)
dt

= divh(K̃h(ψh)grãdh ψh(t)) + gh(ψh) + fh(t), t ∈ (0, T ],

ψh(0) = rh(ψ0) = ψ0h,

(5)

where rh denotes the restriction to the cell centers of Ωh.

3 Time Integration

Let us consider Ω decomposed into the union of m overlapping subdomains,
where each one of them consists of a certain number of disjoint connected com-
ponents, i.e.

Ω =
m⋃

i=1

Ωi, where Ωi =
mi⋃

j=1

Ωij such that Ωij ∩ Ωik = ∅ if j 6= k.

Next, we define a smooth partition of unity consisting of m functions {ρi(x)}m
i=1,

where each function ρi : Ω → [0, 1] is defined as follows

ρi(x) =





0, if x ∈ Ω \Ωi,

hi(x), if x ∈
m⋃

j 6=i
j=1

(Ωi ∩Ωj),

1, if x ∈ Ωi \
m⋃

j 6=i
j=1

(Ωi ∩Ωj),
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for 0 ≤ hi(x) ≤ 1 and
m∑

i=1

hi(x) = 1 ∀ x ∈
m⋃

j 6=i
j=1

(Ωi ∩Ωj).

By using this partition of unity, we shall define the following splittings for the
nonlinear discrete operator Ah(·) ≡ divh(K̃h(·)grãdh ·) and the semidiscrete
function fh(t) (cf. [3])

Ah(·) =
m∑

i=1

Ai,h(·), fh(t) =
m∑

i=1

fi,h(t). (6)

Here, we denote Ai,h(·) ≡ divh(K̃i,h(·)grãdh ·), considering K̃i,h(ψh)grãdh ψh

as the discretization of Ki(x, ψ)gradψ, where Ki(x, ψ) ≡ ρi(x)K(ψ). On the
other hand, fi,h(t) ≡ rh(ρi(x) f(x, t)).

Considering the splittings given by (6), the variant of the fractional implicit
Euler method with m internal stages introduced in [1] reduces the nonlinear stiff
problem (5) to the following set of nonlinear systems (one per internal stage)





ψh,0 = ψ0h,

ψk
h,n = ψh,n + τ

k∑

`=1

(
A`,h(ψ`

h,n) + f`,h(tn+1)
)

+ τ gh(ψh,n),

for k ∈ {1, 2, . . . , m},
ψh,n+1 = ψm

h,n,

for n ∈ {0, 1, . . . , NT },

(7)

where NT ≡ [T/τ ] − 1. The discrete solution ψh,n+1 approximates ψh(tn+1),
where tn+1 = (n + 1) τ and τ denotes the constant time step. The choice of
the fractional implicit Euler scheme is motivated by the fact that this method
is stable even when combined with an operator splitting which considers an
arbitrary number of terms that do not necessarily commute (cf. [4]). This is the
case for the discrete operators Ai,h(·) involved in (6). Note that (7) also entails
an explicit treatment of the nonlinear discrete function gh(ψh,n).

In order to linearize (7), we approximate A`,h(ψ`
h,n) by the two first terms

of its Taylor expansion around ψh,n, i.e.

A`,h(ψ`
h,n) ≈ A`,h(ψh,n) +

dA`,h(ψh)
dψh

∣∣∣∣
ψh=ψh,n

(ψ`
h,n − ψh,n). (8)

If we denote by (ψh,n)i,j the ((i − 1)(Ny − 1) + j)-th component of ψh,n, for
i ∈ {1, 2, . . . , Nx − 1} and j ∈ {1, 2, . . . , Ny − 1}, then (A`,h(ψh,n))i,j de-
pends nonlinearly on nine unknowns: (ψh,n)i−1,j−1, (ψh,n)i,j−1, (ψh,n)i+1,j−1,
(ψh,n)i−1,j , (ψh,n)i,j , (ψh,n)i+1,j , (ψh,n)i−1,j+1, (ψh,n)i,j+1 and (ψh,n)i+1,j+1.
Therefore, the ((i− 1)(Ny − 1) + j)-th row of the Jacobian matrix J`,h(ψh,n) ≡
dA`,h(ψh)/dψh|ψh=ψh,n

will contain nine non-zero elements representing the
derivatives of (A`,h(ψh,n))i,j with respect to each one of the previous unknowns.
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Inserting (8) into (7), we obtain the totally discrete scheme for problem (1)




ψ̌h,0 = ψ0h,

(
I− τ Jk,h(ψ̌h,n)

)
ψ̌k

h,n = ψ̌h,n + τ

k−1∑

`=1

(
A`,h(ψ̌h,n) + J`,h(ψ̌h,n)(ψ̌`

h,n − ψ̌h,n)

+f`,h(tn+1)) + τ
(
Ak,h(ψ̌h,n)− Jk,h(ψ̌h,n) ψ̌h,n + fk,h(tn+1)

)
+ τgh(ψ̌h,n),

for k ∈ {1, 2, . . . , m},
ψ̌h,n+1 = ψ̌m

h,n,

for n ∈ {0, 1, . . . , NT },
(9)

where ψ̌h,n+1 is an approximation of ψh(tn+1) which preserves the same order
of accuracy as ψh,n+1. Note that the domain decomposition splitting chosen
for Ah(·) makes each internal stage consist of a linear system which involves
the unknowns lying just on one of the subdomains {Ωi}m

i=1. Moreover, since
each subdomain Ωi comprises mi disjoint connected components, this system
can be immediately decomposed into mi uncoupled subsystems which allow a
straightforward parallelization. For those points lying outside subdomain Ωi,
we have that Ji,h(ψ̌h,n) ≡ 0 (remember that ρi(x) = 0 if x ∈ Ω \ Ωi) and
so, in this case, the solution of the i-th internal stage in (9) simply requires an
explicit evaluation of the right-hand side. As a difference with respect to classical
domain decomposition methods, artificial boundary conditions are not required
on each subdomain and, hence, no Schwarz iterative procedures are needed in the
computation. Finally, the uncoupled linear subsystems arising at each internal
stage are solved by the Gauss-Seidel method.

In the case when K(ψ) is a diagonal tensor and Ω is a rectangular domain
discretized by means of a rectangular grid Ωh, we can derive efficient algorithms
for the solution of (1) by combining a finite difference spatial discretization
with the time integration procedure described in this section. In such a case,
we have two options for decomposing operator Ah(·): the domain decomposition
splitting explained before or a classical alternating direction splitting (cf. [1]). In
the latter type, we obtain an essentially one-dimensional linear system at each
internal stage which is tridiagonal and can be easily decomposed into several
subsystems whose solution may be parallelized.

4 Numerical Experiment

In this section, we test the behaviour of the numerical algorithm on a set of
pseudo-random logically rectangular grids. A similar test is shown in [8] for a
classical implicit Euler scheme, combined with the support-operator technique,
in the solution of linear parabolic problems.

Let us consider an equation of type (1) posed on Ω × (0, T ] ≡ {x = (x, y) ∈
R2 : 0 < x < 1, 0 < y < 1} × (0, 0.01]. The hydraulic conductivity K(ψ)
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Fig. 2. Pseudo-random logically rectangular grids described in the numerical experi-
ment.

is a full nonlinear tensor defined as K(ψ) = Q(θ)D(ψ) Q(θ)T , where Q(θ) is
a 2 × 2 rotation matrix with angle θ = π/4 and D(ψ) is a 2 × 2 diagonal
matrix whose diagonal entries are 1 + ψ2 and 1 + 8ψ2. The nonlinear function
is chosen to be g(ψ) = 1/(1 + ψ3), whereas the source/sink term f(x, y, t) and
both initial and Dirichlet boundary conditions are defined in such a way that
ψ(x, y, t) = e−2π2t sin(πx) sin(πy) is the exact solution of the problem.

The spatial semidiscretization is based on the finite difference method de-
scribed in section 2. The flow domain Ω is first discretized by means of a
pseudo-random logically rectangular grid Ωh ≡ {(xi,j , yi,j)}N

i,j=1 with coordi-
nates xi,j = (i− 1)h− 0.25 h + 0.5 hRx and yi,j = (j − 1)h− 0.25 h + 0.5 hRy,
where h = 1/(N −1) and Rx, Ry are random numbers generated on the interval
(0, 1). Figure 2(a) shows an example of such type of grids for N = 17. In order to
study the asymptotic behaviour of the error, we successively refine the original
pseudo-random grid by using the following procedure: starting from a given grid,
we add the lines which connect, on each cell, the centers of the opposite sides.
Figures 2(b) and 2(c) show the first two refinements for the grid displayed on
Figure 2(a).

Let us now consider a decomposition of Ω into m = 4 overlapping subdomains
{Ωi}m

i=1, each of which consists of mi = 4 disjoint connected components, for
i ∈ {1, 2, 3, 4}. In particular, if we denote I1 ≡

(
0, 1

4 + d
] ∪ [

1
2 − d, 3

4 + d
]

and
I2 ≡

[
1
4 − d, 1

2 + d
] ∪ [

3
4 − d, 1

)
, the four subdomains are given by Ω1 ≡ I1 ×

I1, Ω2 ≡ I2 × I1, Ω3 ≡ I1 × I2 and Ω4 ≡ I2 × I2. Note that the width of the
overlapping regions is 2d, where d is chosen to be 1/16. Next, we define a smooth
partition of unity consisting of four functions {ρi(x)}4i=1 which are related to the
previous domain decomposition. For that purpose, we start by introducing

h(x, x0, d) = exp


d exp(1/d) log(2)

exp
(

−1
x−x0+d

)

x− x0 − d


 ,
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τ τ0 = 10−3 τ0/2 τ0/4 τ0/8 τ0/16 τ0/32

EN,τ 3.703 E-2 2.577 E-2 1.613 E-2 9.416 E-3 5.246 E-3 2.827 E-3

pN,τ 0.5230 0.6759 0.7766 0.8439 0.8919 −

Table 1. Global errors and numerical orders of convergence for N = 129.

N 17 33 65 129 257

EN,τ 5.312 E-3 1.922 E-3 4.693 E-4 1.167 E-4 2.893 E-5

pN,τ 1.4667 2.0340 2.0077 2.0122 −

Table 2. Global errors and numerical orders of convergence for τ = 10−7.

which is subsequently used to define the functions

i1(x) =





1, if x ∈ [
0, 1

4 − d
] ∪ [

1
2 + d, 3

4 − d
]
,

0, if x ∈ [
1
4 + d, 1

2 − d
] ∪ [

3
4 + d, 1

]
,

h(x, α, d), if x ∈ [α− d, α + d] with α = 1
4 , 3

4 ,

1− h(x, 1
2 , d), if x ∈ [

1
2 − d, 1

2 + d
]

and i2(x) = 1−i1(x). Finally, if we consider suitable products of i1(x) and i2(x),
we can construct the following non-negative C∞-functions: ρ1(x, y) = i1(x) i1(y),
ρ2(x, y) = i2(x) i1(y), ρ3(x, y) = i1(x) i2(y) and ρ4(x, y) = i2(x) i2(y).

In order to obtain the totally discrete scheme (9), we use the fractional step
method given by (7), with four internal stages (m = 4), in combination with the
linearization procedure described in (8). The solution of our numerical scheme
provides vectors ψh,n ∈ R(N−1)×(N−1), for n = 1, 2, . . . , NT + 1, whose compo-
nents are approximations to the exact solution ψ(x, tn) at the cell centers of
Ωh. Due to the domain decomposition splitting considered for Ah(·), the linear
system obtained at each internal stage reduces to a set of four smaller uncou-
pled subsystems which can be easily solved in parallel. Therefore, the number
of unknowns involved in the computation will decrease from (N − 1)× (N − 1)
to a number between n1 × n1 and n2 × n2, where n1 = (N − 1)(1/4 + d) and
n2 = (N − 1)(1/4 + 2d). From a practical point of view, as the amount of avail-
able processors gets increased, each subdomain can be decomposed into a greater
number of disjoint components in order to reduce the actual execution time.

Finally, we include two tables which contain the global errors, EN,τ (upper
row), and numerical orders of convergence, pN,τ (lower row), obtained for differ-
ent values of N and τ when using the maximum norm in time and the L2-norm
in space, i.e. ‖ · ‖L∞(0,T ;L2(Ω)). The method shows unconditional convergence of
first order in time (see Table 1) and second order in space (see Table 2).
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