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Abstract
Despite the amount of research on diseasemapping in recent years, the use ofmultivariatemodels for areal spatial data remains
limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number
of areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth
mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller
subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the
entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each
partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region.
We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to
jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal allows for the
analysis of large datasets and yields superior results compared to fitting a single multivariate model. Additionally, it facilitates
statistical inference through local homogeneous models, which may be more appropriate than a global homogeneous model
when dealing with a large number of areas.

Keywords Bayesian inference · High-dimensional data · Scalable models · Spatial epidemiology

1 Introduction

Research on methodology for the spatial (and spatio-
temporal) analysis of areal count data has grown tremen-
dously in the last years, and statistical models have proven
an essential tool for studying the geographic distribution of
data in small areas. The main objective of these techniques is
to smooth standardized mortality (incidence) ratios or crude
rates to discover geographic patterns of the phenomenon
under study. These models and methods have been mainly
applied in epidemiology to analyse the incidence and mor-
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tality of chronic diseases such as cancer, but some recent
research has demonstrated their applicability to the spatial
and spatio-temporal analysis of crimes (see for example Li
et al. 2014), and in particular crimes against women (see for
example Vicente et al. 2018, 2020a). Although research on
single disease analysis has been very fruitful and abundant
since the seminal work of Besag et al. (1991), joint modelling
of multiple responses provides several advantages. Firstly,
it improves smoothing by borrowing strength between dis-
eases. Secondly, and perhaps more importantly, it allows to
establish relationships between different diseases, such as
similar or completely different geographical distributions,
i.e., correlations between spatial patterns. This is crucial, as
these correlations may indicate associations with common
underlying risk factors and certain (usually unknown) con-
nections between the different diseases. The joint analysis
employs multivariate spatial models that can handle both
the spatial correlation within diseases and the correlation
between diseases.

There is a considerable amount of research on Bayesian
multivariate spatial models for count data, most of the pro-
posals relying on Markov chain Monte Carlo (MCMC)
algorithms for estimation and inference. However, their use
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in practice is still limited due to a lack of “ easy-to-use”
implementations of themodels in statistical packages and the
computational burden of most of the proposals that preclude
practitioners from exploiting their advantages over univariate
counterparts. According to MacNab (2010), there are two
approaches to multivariate modelling in disease mapping.
The first one uses shared-componentmodels (seeKnorr-Held
and Best 2001; Held et al. 2005), where pair-wise depen-
dence between diseases is not a testable hypothesis, but it is
assumed. In the second one, pair-wise correlation between
diseases is a testable assumption and the interest is in esti-
mating such correlations. Hereafter in the paper, multivariate
models refer to this second approach. A comprehensive
review of the subject can be found in the work of MacNab
(2018) which discusses the three main lines in the construc-
tion of multivariate proposals based on Gaussian Markov
random fields. Namely, a multivariate conditionals-based
approach (Mardia 1988), a univariate conditionals-based
approach (Sain et al. 2011), and a coregionalization frame-
work (Jin et al. 2007). Regarding the latter,Martinez-Beneito
(2013) derives a general theoretical setting for multivariate
areal models that covers many of the existing proposals in
the literature. However, this procedure is unaffordable for a
moderate to large number of diseases due to the high com-
putational cost of the MCMC algorithms. Botella-Rocamora
et al. (2015) reformulate the Martínez-Beneito framework
and present the so called M-models as a simpler and more
computationally efficient alternative. This approach makes it
possible to increase the number of diseases in themodel at the
expense of the identifiability of certain parameters. Recently,
Vicente et al. (2020b) consider theM-models-based approach
to analyse in space and time different crimes against women
in India. These authors estimate the M-models using inte-
grated nested Laplace approximations (INLA) and numerical
integration for Bayesian inference (see Rue et al. 2009) and
implement the procedure using the ’rgeneric’ construction in
R-INLA (Lindgren and Rue 2015). The result is a “ ready-to-
use” function for a wide audience with limited programming
skills.

Several alternatives to Gaussian Markov random fields
have been also proposed in the disease mapping literature.
A very attractive modelling approach is the use of splines
to smooth risks (Goicoa et al. 2012). Research on multi-
variate spline models for fitting spatio-temporal count data
is not so abundant and focuses on multivariate structures
to deal with the spatial and temporal dependence for one
response measured in several time periods (see for exam-
ple MacNab 2016; Ugarte et al. 2010, 2017). Very recently,
Vicente et al. (2021) propose multivariate P-spline mod-
els to study the spatio-temporal evolution of four crimes
against women. Unfortunately, inference for these multivari-
ate proposals (and also for univariate approaches) become

unfeasible when the number of areas is very large, and the
scalability of the procedures is an issue.

New directions in disease mapping points towards devel-
oping newmethods for Bayesian inference when the number
of small areas is very large (MacNab 2022). Creating com-
putationally efficient methods for large data sets is one of the
greatest challenges in the field of univariate and multivariate
spatial statistics. Several methods for massive geostatistical
data (point-referenced) have been already proposed (see for
exampleCressie and Johannesson2008;Lindgren et al. 2011;
Nychka et al. 2015; Katzfuss 2017; Katzfuss and Guinness
2021, among others). However, in the case of areal (lattice)
count data, research on the scalability of statistical models
is not so abundant. Recently, Orozco-Acosta et al. (2021,
2023) propose a scalable Bayesian modelling approach for
univariate high-dimensional spatial and spatio-temporal dis-
easemapping data. They propose to divide the spatial domain
into D subregions where independent models can be fitted
simultaneously. To avoid the border effect in the risk esti-
mates, k-order neighbours are added to each subregion so
that some areal units will have several risk estimates. Finally,
a unique posterior distribution for these risks is obtained by
either computing the mixture distribution of the estimated
posterior probability density functions or by selecting the
posterior marginal risk estimate corresponding to the origi-
nal domain to which the area belongs. This proposal reduces
computational time and, in contrast to fitting a single model
to the whole domain, it allows different degree of spatial
smoothness over the areas within the different subdomains.

The main objective of this paper is to present a new
approach to fit order-free multivariate spatial disease map-
ping models in domains with a very large number of
small areas avoiding high RAM/CPU usage, and making
it accessible to users with limited computing facilities. In
particular, we combine the Orozco-Acosta et al. (2021,
2023) “ divide-and-conquer” approach with a modification
of the Botella-Rocamora et al. (2015) M-models to avoid
overparametrization. Our approach allows for statistical
inference in the subdivisions of the study domain using local
homogeneous models, which seems more appropriate than a
single global model when the number of small areas is large.
Then, we are able to retrieve the posterior distributions of the
correlations between the spatial patterns of eachdisease in the
whole spatial domain, as well as in each of the subdivisions.
We have implemented the methodology in INLA to reduce
computational burden through our R package bigDM (Adin
et al. 2023), that also implements recent high-dimensional
univariate proposals.
The rest of the article has the following structure. Section2
reviews the M-models to fit multivariate data. In Sect. 3 we
present the new methodology to make the multivariate mod-
els scalable. In Sect. 4, we conduct a simulation study to
compare the performance of this new modelling approach
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with a single multivariate spatial M-model fitted to the whole
domain. Finally, in Sect. 5, we use the new proposal to jointly
analyse lung, colorectal and stomach cancer male mortality
in Spanishmunicipalities. The paper closeswith a discussion.

2 M-models for multivariate disease
mapping

Let us assume that the area of interest is divided into I con-
tiguous small areas and data are available for J diseases. Let
Oi j and Ei j denote the number of observed and expected
cases respectively in the i-th small area (i = 1, . . . , I ) and
for the j-th disease ( j = 1, . . . , J ). Conditional on the rela-
tive risks Ri j , the number of observed cases in the i-th area
and the j-th disease is assumed to follow a Poisson distribu-
tion with mean μi j = Ei j · Ri j , that is,

Oi j |Ri j ∼ Poisson(μi j = Ei j · Ri j ),

logμi j = log Ei j + log Ri j .

Here Ei j is computed using indirect standardization as Ei j =∑
k ni jk ·m jk , where k is the age-group, ni jk is the population

at risk in area i and age-group k for the j-th disease, andm jk

is the overall mortality (or incidence) rate of the j-th disease
in the total area of study for the k-th age group. The log-risk
is modelled as

log Ri j = α j + θi j , (1)

where α j is a disease-specific intercept and θi j is the spa-
tial effect of the i-th area for the j-th disease. Following the
work by Botella-Rocamora et al. (2015), we rearrange the
spatial effects into the matrix � = {θi j : i = 1, . . . , I ; j =
1, . . . , J } to better comprehend the dependence structure.
The main advantage of the multivariate modelling is that
dependence between the spatial patterns of the different dis-
eases can be included in themodel, so that latent associations
between diseases can help to discover potential risk factors
related to the phenomena under study. These unknown con-
nections can be crucial to a better understanding of complex
diseases such as cancer.

The potential association between the spatial patterns of
the different diseases are included in the model considering
the decomposition of � as

� = �M, (2)

where� andM deal with within and between-disease depen-
dencies, respectively. We refer to Eq. (2) as the M-model. In
the following, we briefly describe the two components of the
M-model.

The matrix � is of order I × K and it is composed of
stochastically independent columns that follow a spatially
correlated distribution. Usually, K = J , although J and K
may be different (see Corpas-Burgos et al. 2019, for a dis-
cussion). To deal with spatial dependence, different spatial
priors have been considered in the literature, most of them
based on the well known intrinsic conditional autoregres-
sive (iCAR) prior (Besag 1974). Namely, the proper CAR
(pCAR), a proper version of the iCAR; the Besag et al.
(1991) prior (BYM), which combines iCAR and exchange-
able random effects; the Leroux et al. (1999) prior (LCAR)
that models spatially structured and spatially unstructured
variability through a weighted sum of the iCAR precision
matrix and the identity, or a modified version of the BYM
model denoted as BYM2 (Dean et al. 2001; Riebler et al.
2016). In summary, the columns of � follow multivariate
Normal distributions with mean 0 and precision matrix �

whose expression depends on the spatial prior. In this paper,
we consider the iCAR prior for the columns of �, and hence
the precision matrix is �iCAR = τQ, where Q is the usual
spatial neighbourhood matrix defined as Qil = 1 if the i-th
and the l-th areas are neighbours (share a common border)
and 0 otherwise, Qii = ni , with ni is the number of neigh-
bours of the i-th area, and τ is the precision parameter. We
choose the iCAR prior because in the real case study all the
variability is spatially structured.

On the other hand, M is a K × J nonsingular but arbi-
trary matrix and it is responsible for inducing dependence
between the different columns of �, i.e, for inducing corre-
lation between the spatial patterns of the diseases. In Eq. (2),
the cells ofM act as regression coefficients of the log-relative
risks on the underlying patterns captured in� and are treated
as fixed effects with a Normal prior distribution with mean 0
and a large (and fixed) variance σ 2. Note that assigning this
type of priors to the cells ofM is equivalent to considering a
Wishart prior toM′M, i.e.,M′M ∼ Wishart(J , σ 2IJ ).

The multivariate approach allows the estimation of the
correlation between the spatial patterns of the diseases, an
interesting and useful feature, as a high positive correlation
would support the hypotheses of common risk factors, and
hence connections between diseases. The covariance matrix
between the spatial patterns is obtained asM′M. For further
details see Botella-Rocamora et al. (2015).

For notation purposes and to incorporate the dependencies
between different diseases in the model, we introduce the
vec(·) operator. Let A = (A1, . . . ,AJ ) be an I × J matrix
with I×1 columnsA j , for j = 1, . . . , J . The vec(·) operator
transforms A into an I J × 1 vector by stacking the columns
one under the other, that is, vec(A) = (A′

1, . . . ,A
′
J )

′. Using
this notation, the multivariate Model (1) can be expressed in
matrix form as

logR = (IJ ⊗ 1I ) α + vec (�) , (3)
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where α = (α1, . . . , αJ )
′, R = (R′

1, . . . ,RJ )
′, R j =

(R1 j , . . . , RI j )
′, j = 1, . . . , J , and IJ and 1I are the J × J

identity matrix and a column vector of ones of length I
respectively. Once the between-diseases dependencies are
incorporated into the model, the resulting prior distributions
for vec (�)withGaussian kernel has a precisionmatrix given
by

�vec(�) =
(
M−1 ⊗ II

)
Blockdiag(�1, . . . , �J )

(
M−1 ⊗ II

)′
.

(4)

Recall that this precision matrix accounts for both within
and between-disease dependencies: the�1, . . . ,�J matrices
control the within-diseases spatial structure and the matrix
M deals with the between-diseases variability. Note that if
�1 = . . . = �J = �w, the covariance structure is sep-
arable and can be expressed as �−1

vec(�) = �−1
b ⊗ �−1

w ,

where �−1
b = M′M and �−1

w are the between- and within-
disease covariance matrices, respectively. Note that in our
case �−1

w = �−1
iCAR and the precision parameter τ is set to

1 for identifiability issues. This M-model based framework
includes both separable and non-separable covariance struc-
tures, and can accommodate different spatial dependency
structures with different within-disease covariance matrices.

2.1 Model fitting, identifiability issues and prior
distributions

Traditionally,MCMCtechniques havebeenused forBayesian
model fitting and inference. However, they can be compu-
tationally very demanding. On the other hand, the INLA
method (see Rue et al. 2009) has turned out to be very pop-
ular in recent years. It is designed for latent Gaussian fields
and is based on integrated nested Laplace approximations
and numerical integration. Many models used in practice
are implemented in R-INLA (Lindgren and Rue 2015), and
others can be implemented by means of generic functions
with some extra-programming work. The M-model based
approach is not directly available in R-INLA, but it can be
implemented using the ’rgeneric’ construct (see for example
Vicente et al. 2020b). In this paper, we use INLA for model
fitting and inference.

Spatial models usually present identifiability issues which
are generally overcome using sum-to-zero constraints on the
spatial random effects (see Eberly and Carlin 2000; Goicoa
et al. 2018, for details). In the multivariate setting, these
constraints are considered for all the diseases in the model.
Additionally, the M-models bring about new identifiability
issues. As pointed out by Botella-Rocamora et al. (2015),

any orthogonal transformation of the columns of � and of
the rows of M in Eq. (2) causes an alternative decomposi-
tion of �, and therefore neither � norM are identifiable and
inference on them should be ruled out. However, � and the
covariance matrix M′M are perfectly identifiable, so infer-
ence is confined to those quantities. It is worth noting that the
decomposition of the between-diseases covariance matrix as
�−1

b = M′M avoids dependence on the order in which the
diseases are introduced into themodel, but it leads to an over-
parameterization problem. In the M-model proposal, J × J
parameters are used to estimate the covariance matrix even
though only J × (J + 1)/2 parameters are required. In their
paper, Botella-Rocamora et al. (2015) put independent Nor-
mal priors with mean 0 and large and fixed variance σ 2 on
each entry of the matrix M and they show that this is equiv-
alent to assigning a Wishart prior to the covariance matrix,
i.e.,M′M ∼ Wishart(J , σ 2IJ ).

To avoid the overparameterization of the covariance
matrix we propose to use the Barlett decomposition of
Wishart matrices (see, for example, Peña and Irie 2022).
In more detail, if �−1

b is the J × J between-disease covari-
ance matrix with �−1

b ∼ Wishart(υ,V), then the Bartlett
decomposition of �−1

b is the factorization

�−1
b = LAA

′
L

′

where L is the Cholesky factor of V, and

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c1 0 0 · · · 0
n21 c2 0 · · · 0
n31 n32 c3 · · · 0
...

...
...

. . .
...

nJ1 nJ2 nJ3 · · · cJ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5)

whose diagonal elements are independently distributed as
χ2 random variables and the off-diagonal elements are inde-
pendently distributed as Normal random variables. More
precisely, c2j ∼ χ2

υ− j+1 and n jl ∼ N(0, 1) for j, l =
1, . . . , J with j > l. Using this decomposition, only J ×
(J + 1)/2 hyperparameters (cells of A) are needed to esti-
mate the covariance matrix �−1

b . Note that if V = IJ , then
L = IJ . Finally, to avoid order dependencewith the diseases,
we introducedM into Eq. (4) as the eigen-decomposition of
�−1

b . Chung et al. (2015) consider a family of Wishart den-
sities for the prior of the covariance matrix and recommend
the use of υ = J + 2 degrees of freedom to make the prior
a little bit more informative. In this work we follow this rec-
ommendation. Details on how to implement this in R-INLA
can be found in Appendix A.
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3 Scalable Bayesianmodels for
high-dimensional multivariate disease
mapping

The M-model approach can be computationally intensive
when the number of areas (I ) is very large. Besides, a single
homogeneous model may be questionable when the number
of areas grows. These limitations highlight the need for new
methods. Here, we propose to use a divide and conquer strat-
egy partitioning the spatial domain (D) into D subregions,
so that local multivariate spatial models can be simultane-
ously fitted in the different subregions. In each subregion,
we consider the prior distribution with Gaussian kernel and
precision matrix given in Eq. (4) to deal with within-disease
spatial variation and between-disease correlations.

3.1 Disjoint models

A natural way to think of partitions is to consider subregions
based on administrative subdivisions of the area of interest,
for example provinces, states or counties. Given a partition
of the spatial domain D, each geographic unit belongs to a
single subregion, i.e.D = ∪D

d=1Dd whereDi ∩D j = ∅ for
i �= j . Then, the log-risks of the models in each subregion d
(d = 1, . . . , D) are expressed in matrix form as

logR(d) = (
IJ ⊗ 1Id

)
α(d) + vec

(
�(d)

)
,

vec
(
�(d)

)
∼N

(

0,�
vec

(
�(d)

)

)

,

�
vec

(
�(d)

) =
[(

M(d)
)−1 × IId

]

Blockdiag

(
�

(d)
1 , . . . ,�

(d)
J

) [(
M(d)

)−1 × IId

]′

(6)

where for each subregion d, α(d) =(α
(d)
1 , . . . ,α

(d)
J )′ and α

(d)
j

is a disease-specific intercept, R(d) =
(
R(d)′
1 , · · · ,R(d)′

J

)′
,

and each R(d)
j = (R(d)

1 j , . . . , R(d)
I j )′ is the vector of rela-

tive risks corresponding to disease j within the subregion
d. Finally, IId is the identity matrix of order Id and 1Id is
a column vector of ones of length Id (the number of areas
within partition d), I = ∑D

d=1 Id , and �(d) = {θ(d)
i j : i =

1, . . . , Id ; j = 1, . . . , J } is the matrix of spatial effects in

partition d including bothwithin and between-disease depen-
dence structure. In more detail, this model can be expressed
as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

logR(1)

...

logR(d)

...

logR(D)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= IJ ⊗

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1I1
. . .

1Id
. . .

1ID

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α(1)

...

α(d)

...

α(D)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

vec
(
�(1))

...

vec
(
�(d)

)

...

vec
(
�(D)

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the precision matrix of the multivariate Normal

random effect vector
(
vec�(1)′, . . . , vec�(D)′

)′
is a block-

diagonal matrix of dimension I J × I J whose blocks
correspond to the precision matrices �

vec
(
�(d)

), d =
1, . . . , D. The full domain log-risk is just the union of
the posterior estimates of each subregion, i.e., logR =(
logR(1)′ , · · · , logR(D)′

)′
.

3.2 Models with overlapping partitions

Disjoint partitionsmight suffer fromborder effects as areas in
the boundary of a given partition would not borrow informa-
tion from neigbouring areas from a contiguous subdivision.
Consequently, the risk estimates in those areas may not be
correct. This inconvenience can be solved by considering an
alternative modelling approach in which k-order neighbours
are added to each subregion of the partition, so that border
areas have neighbours from other subregion of the partition.
In this case, the entire spatial regionD is divided into a set of
overlapping subregions and some small areas belong to more
than one subdivision, i.e., D = ∪D

d=1Dd and Di ∩ D j �= ∅

for neighbouring subregions. Similar to the disjoint Model
(6), D submodels will be simultaneously fitted. However,
as

∑D
d=1 Id > I , the final risk R = (R′

1, . . . ,R
′
J )

′ with
R′

j = (R1 j , . . . , RI j )
′, j = 1, . . . , J , is no longer the union

of the posterior estimates obtained for each submodel as areas
located in the borders of the spatial partitionwould havemore
than one estimated posterior distribution.
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Two different strategies can be considered to obtain a
unique posterior estimate of the relative risk for those areas
in more than one subregion. Orozco-Acosta et al. (2021)
propose to calculate the mixture distribution of the esti-
mated posterior probability density functions of the relative
risks in the different subdivisions, with weights propor-
tional to the conditional predictive ordinate (CPO) values
(Pettit 1990). To compute the mixture, suppose that area
i belongs to m(i) subregions of the spatial domain D and
let f (1)

i j (x), · · · , f (m(i))
i j (x) be the posterior estimates of the

probability density functions of the j-th disease in the i-th
area. Then the mixture distribution of Ri j can be written as

fi j (x) =
m(i)∑

k=1

wk f
(k)
i j (x), with wk = CPOk

i j
∑m(i)

k=1
CPOk

i j

where CPOk
i j is the conditional predictive ordinate of area

i and disease j obtained in partition k, so that wk ≥ 0 and∑m(i)
k=1 wk = 1 (see for example Lindsay 1995; Frühwirth-

Schnatter 2006).
More recently, Orozco-Acosta et al. (2023) consider

using the posterior marginal distribution of the relative risk
estimated from its original partition. Based on the results
obtained from a simulation study, they show that this strat-
egy outperforms the use of mixture distributions in terms
of risk estimation accuracy and true positive/negative rates.
In this paper, this is also the default strategy used to obtain
unique posterior distributions for each relative risk Ri j .

3.3 Between-disease correlations and variance
parameters

Besides increasing the effective sampling size and improving
risk smoothing, one of the main advantages of multivariate
disease mapping models is that they take into account corre-
lations between the spatial patterns of the different diseases,
that is, they reveal connections between them. Fitting a single
multivariate model to the region of interest provides corre-
lations between the diseases in the whole study domain thus
revealing overall relationships. In addition, it also provides
the diagonal elements of the between-disease covariance
matrix, hereafter referred to as variance parameters. In the
case of separable covariance structures (the Kronecker prod-
uct of between and within disease covariance matrices) these
parameters control the amount of smoothing within diseases.
By dividing the spatial domain into subregions, we obtain
the posterior distributions of these parameters in each of the
subdivisions andwe retrieve the between disease correlations
and variances for the entire region. Hence, partition models
provide additional information by revealing local connec-
tions between diseases in the subdivisions, which are usually
based on administrative divisions.

To obtain global estimates of the parameters of interest in
the overall study domain from the partition models, we adapt
the consensus Monte Carlo (CMC) algorithm originally pro-
posed by Scott et al. (2016). The idea behind consensus
Monte Carlo is to divide the data into shards (in our case,
the shards corresponds to different subdivisions of the spa-
tial domain), give each shard to aworkermachinewhich does
a full Monte Carlo simulation from a posterior distribution
given its own data, and then combine the posterior simula-
tions from each worker (or submodel) to produce a set of
global draws representing the consensus belief among all the
workers. Here, we briefly describe how to adapt the ideas
behind the CMC algorithm to our case.

Let ψ = (ρ, σ 2)
′
denotes the vector with the parame-

ters of interest where ρ = (ρ12, . . . , ρJ−1,J )
′
contains the

between-disease correlations andσ 2 = (σ 2
1 , . . . , σ 2

J )
′
are the

diagonal elements of the between-disease covariance matrix,
and let ψkd denote the local estimate of the k-th parame-
ter of ψ in each subdomain Dd , d = 1, . . . , D. We first
extract samples of size S from the posterior marginal esti-
mates of ψkd denoted as ψ s

kd for k = 1, . . . , J × (J + 1)/2,
d = 1, . . . , D and s = 1, . . . , S. Then, we combine the
draws using weighted averages

ψ̃ s
k =

D∑

d=1

wdψ
s
kd , for s = 1, . . . , S

where wd are normalized weights inversely proportional to
the posterior marginal variances ofψkd . Finally, we approxi-
mate the posteriormarginal density function of the parameter
ψk from the combined draws ψ̃ s

k .

3.4 Model selection criteria

Two of the most widely used criteria to compare Bayesian
models are the deviance information criterion (DIC)
(Spiegelhalter et al. 2002) and the Watanabe-Akaike infor-
mation criterion (WAIC) (Watanabe 2010). However, with
partition models, it is not straightforward to get these quan-
tities as we fit as many models as subdivisions. Hence, we
need a procedure to estimate these quantities from the scal-
able models described in Sects. 3.1 and 3.2.

Extending the ideas in Orozco-Acosta et al. (2021) to
the multivariate framework, we compute approximate DIC
values by drawing samples from the posterior marginal dis-
tribution of the Poissonmeans. Denoting byCs , s = 1, ..., S,
to the posterior simulations of μi j = Ei j · Ri j (the mean of
the Poisson distribution), approximate values of the mean
deviance D(C) and the deviance of the mean D(C) can be
respectively calculated as

D(C) = 1

S

S∑

s=1

− log
(
p(O|Cs)

) ;
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D(C) = −2 log
(
p(O|C)

)
,

with C = 1

S

S∑

s=1

Cs,

where p(O|·) denotes the likelihood function of a Poisson
distribution. Then, the DIC is obtained as

DIC = 2 D(C) − D(C).

Similarly, approximateWAIC values are computed as (see
Gelman et al. 2014)

WAIC = −2
I∑

i=1

J∑

j=1

log

(
1

S

S∑

s=1

p(Oi j |Cs)

)

+2
I∑

i=1

J∑

j=1

var
[
log

(
p(Oi j |Cs)

)]
.

4 Simulation study

We conduct a simulation study to compare the performance
of the different M-models described in Sect. 2. Specifically,
our interest relies on comparing the fit of a single model to
the whole domain (hereafter referred to as the global model)
and the partition models, in terms of parameter estimates and
relative risk estimation accuracy. The I = 7907 municipal-
ities of continental Spain and J = 3 diseases are used as
the simulation template because this imitates the case study
presented in Sect. 5.

Two different scenarios have been considered to recover
the possible underlying generating process of spatially corre-
lated disease risks. In the first scenario, samples are generated
from a fixed covariance structure based on the spatial neigh-
bourhood graph of the whole area under study, that is, the
global model is used as the generating model. In contrast, in
the second scenario, independent samples for each partition
(Spanish Autonomous Regions, see Fig. 5 in Appendix B)
are generated using the covariance structures of the parti-
tion, that is, the Disjoint model is used as the data generating
mechanism. Further details are given below.

4.1 Data generation

One advantage ofmultivariatemodels is their ability to reveal
relationships between different diseases in terms of correla-
tions between their underlying spatial patterns. To evaluate
howwell these correlation parameters are estimated, we start
by sampling from a multivariate Normal distribution with
precision matrix�vec(�) = �b⊗�iC AR . Here, the elements

of the between-disesease covariance matrix are fixed, that is,

�−1
b =

⎛

⎝
σ1

σ2
σ3

⎞

⎠

⎛

⎝
1 ρ12 ρ13

ρ21 1 ρ23
ρ31 ρ32 1

⎞

⎠

⎛

⎝
σ1

σ2
σ3

⎞

⎠

=
⎛

⎝
σ 2
1 σ12 σ13

σ21 σ 2
2 σ23

σ31 σ32 σ 2
3

⎞

⎠

where σ 2
j are variance parameters, and ρkl = ρlk are

between-disease correlation coefficients. Note that σkl
denotes the covariances between each pair of diseases. Then,
for each sample of vec(�r ), r = 1, . . . , 100 we compute
the relative risks Rr

i j following Eq. (3). Finally, we generate
Oi j counts for area i and disease j using a Poisson distribu-
tion with mean μr

i j = Ei j · Rr
i j , where Ei j are the expected

number of cases of our case study data (lung, colorectal and
stomach cancer mortality in Spanish males).

In Scenario 1, the neighbourhood graph of all the 7907
municipalities is used to define the spatial precision matrix
�iC AR (the global model is used to generate the data).
In addition, we fix the parameters of the between-disease
covariance matrix as σ 2

1 = 0.25, σ 2
2 = 0.16, σ 2

3 = 0.09,
ρ12 = 0.7, ρ13 = 0.5 and ρ23 = 0.1. In Scenario 2,
D = 15 independent samples are generated from multi-
variate Normal distributions with precision matrices equal to
�vec(�d ) = �

(d)
b ⊗ �

(d)
iC AR , where �

(d)
iC AR is the spatial pre-

cision matrix of the areas within subdomain d = 1, . . . , D,
and different between-disease covariance matrices �

(d)
b are

considered en each subdivision ( the disjoint model, k = 0,
is used to generate the data). Here, the variance parameters
are fixed to σ 2

1 = 0.5, σ 2
2 = 0.4 and σ 2

3 = 0.3, while similar
values to the ones estimated with the partition models in the
case study presented in the next section are used as correla-
tion coefficients (see Table 6 inAppendix B).We increase the
variance parameters in Scenario 2 to get stronger smoothing
effects in each subdivision. Note that the variance parameters
are the same in all the subdivisions, but they cannot be con-
sidered as global variance parameters because the covariance
structures, based on the neighbourhood matrices, are differ-
ent. Hence, in this scenario we do not have true parameter
values for the global model.

4.2 Results: Scenario 1

Table 1 compares the true values of model parameters in
Scenario 1 (variance parameters and correlation coefficients)
against average values of posterior mean estimates over
the 100 simulated data sets. In addition, estimated standard
errors, simulated standard errors (derived from the sample
variance of the parameter estimates) and empirical coverages
of the 95% credible intervals are also displayed. Note that
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for the partition models, these posterior marginal distribu-
tions are obtained by using the CMC algorithm described in
Sect. 3.3. In terms of model parameters, multivariate models
give very accurate estimates of the real values, both in terms
of posterior mean and posterior standard deviation estimates
(note that nearly identical values are obtained from estimated
and simulated standard errors). As expected, slightly better
results are obtained when fitting the global model, as this is
the true generating model in Scenario 1. Regarding partition
models, the higher the neighbourhood order, the more sim-
ilar the CMC estimates of the correlation coefficients are to
those of the global model.

Table 2 displays average values of model selection criteria
(posterior mean deviance D(θ), effective number of param-
eters pD , DIC and WAIC) for the global and the partition
models, as well as the accuracy of the relative risk esti-
mates quantified by themean absolute relative bias (MARB),
the mean relative root mean square errors (MRRMSE) and
empirical coverages of the 95% credible intervals for the
risks. Note that the MARB and MMRMSE are defined for
each small area i and disease j as

MARBi j =
∣
∣
∣
∣
∣

1

100

100∑

r=1

R̂(r)
i j − R(r)

i j

R(r)
i j

∣
∣
∣
∣
∣

and

MMRMSEi j =

√
√
√
√
√

1

100

100∑

r=1

(
R̂(r)
i j − R(r)

i j

R(r)
i j

)2

where R(r)
i j and R̂(r)

i j denote the true value and the poste-
rior median estimate of the relative risks for the r -th data
set (r = 1, . . . , 100). Model selection criteria point towards
partition models, though differences are mild. Regarding
MARB, MMRMSE and 95% coverage values, differences
between the global and the partition models are practically
negligible.

4.3 Results: Scenario 2

In contrast to the previous scenario, it should be noted that
in Scenario 2 we cannot compare the global estimates of
the model parameters against the true values of the variance
parameters and between-disease correlations, since different
values have been used to generate the risk surfaces in each
subdomain and we do not have true global values. How-
ever, we can compare the model’s performance in terms of
model selection criteria and risk estimation accuracy (see
Table 3). As expected, the Disjoint model (k = 0) shows the
best performance according to these measures, as this is the
true generating model in Scenario 2. In terms of MARB
and MRRMSE, partition models also outperform the Global
model.

We are also interested in analyzing if the partition mod-
els are able to recover the local between-disease covari-
ance structures of the true generating process. In Table 6
(Appendix B) we compare these values against the average
values of posterior mean estimates of local parameters in
each subdivision over the 100 simulated data sets for the
Disjoint model. For almost every subdivision, very accurate
estimates are obtained for both variance parameters and cor-
relation coefficients. For the latter, the median value of the
empirical coverage of the 95%credible intervals is 0.95 (with
Q1 = 0.93 and Q3 = 0.97). As expected, these estimates get
worse as the neighbourhood order of the models increases,
since the estimated local correlations correspond to enlarged
subdivision rather than the subdivisions themselves. Even so,
the median values of the empirical coverage of the 95% cred-
ible intervals for the between-disease correlations are 0.89
(with Q1 = 0.84 and Q3 = 0.92) and 0.86 (with Q1 = 0.79
and Q3 = 0.90) for 1st-order and 2nd-order neighbourhood
models, respectively. All the results are shown in Tables 7
and 8 in Appendix B.

5 Case study

In this section we jointly analyse mortality data for lung,
colorectal, and stomach cancer in men in the 7907 munici-
palities of mainland Spain (excluding Baleares and Canary
Islands and the autonomous cities of Ceuta and Melilla) dur-
ing the period 2006-2015 using the new proposal. During the
ten years of the study, a total of 162,602 deaths from lung
cancer (corresponding to codes C33-C34 of the International
Classification of Diseases-10), 82,967 from colorectal can-
cer (C17-C21) and 33,170 from stomach cancer (C16) were
registered for male population of mainland Spain, which cor-
respond to global rates of 76.48, 39.02 and 15.60 deaths per
100,000 male inhabitants, respectively.

5.1 Model fitting andmodel selection

We fit the disjoint model (k = 0) and the k-order neigh-
bourhood model for k = 1, 2, 3 in R-INLA using D = 15
subdivisions of the spatial domain. These subdivisions are
also of interest as they correspond to Autonomous Regions
of Spain (NUTS2 level from the European nomenclature of
territorial units for statistics, shown in Fig. 5 in Appendix
B). In these partitions, the highest value of Id (number of
municipalities) is 2245 and corresponds to the Autonomous
Region of Castilla y León, a rather vast territory from central
to northwestern Spain with about 5% of the total Spanish
population. Although this subregion is large, we maintain
this subdivision as it represents the administrative division of
Spain into Autonomous Regions. We also fit the multivari-
ate spatial M-models over the entire spatial domain (global
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Table 1 Average values of
posterior mean, posterior
standard deviation (SD),
simulated standard errors (sim)
and empirical coverage of the
95% credible intervals (EC) for
model parameters based on 100
simulated data sets for Scenario
1

True value Mean SD Sim EC Mean SD Sim EC

Global model Disjoint model

σ 2
1 0.25 0.250 0.011 0.011 0.95 0.240 0.012 0.012 0.83

σ 2
2 0.16 0.160 0.010 0.010 0.95 0.158 0.011 0.011 0.96

σ 2
3 0.09 0.092 0.009 0.010 0.92 0.101 0.010 0.011 0.74

ρ12 0.70 0.700 0.025 0.026 0.95 0.690 0.026 0.029 0.89

ρ13 0.50 0.487 0.044 0.046 0.95 0.452 0.045 0.048 0.80

ρ23 0.10 0.089 0.059 0.057 0.96 0.077 0.057 0.065 0.95

1st-order nb model 2nd-order nb model

σ 2
1 0.25 0.241 0.011 0.012 0.84 0.239 0.010 0.012 0.75

σ 2
2 0.16 0.159 0.010 0.010 0.94 0.155 0.009 0.010 0.89

σ 2
3 0.09 0.100 0.010 0.010 0.79 0.097 0.009 0.010 0.83

ρ12 0.70 0.691 0.025 0.029 0.92 0.695 0.023 0.032 0.82

ρ13 0.50 0.461 0.043 0.051 0.81 0.468 0.040 0.048 0.83

ρ23 0.10 0.079 0.055 0.058 0.91 0.082 0.053 0.060 0.95

Table 2 Average values of
model selection criteria (mean
deviance, effective number of
parameters, DIC and WAIC) and
risk estimation accuracy
(MARB, MRRMSE and
empirical coverage -EC- of the
95% credible intervals) based on
100 simulated data sets for
Scenario 1

Model selection criteria Risk estimation accuracy
D(θ) pD DIC WAIC MARB MRRMSE EC

Global 78521.9 3046.9 81568.8 81504.7 0.024 0.191 0.950

Disjoint (k = 0) 78299.9 3329.3 81629.1 81529.2 0.023 0.196 0.957

1st-order nb (k = 1) 78407.9 3154.7 81562.6 81499.4 0.024 0.193 0.953

2nd-order nb (k = 2) 78454.5 3091.5 81546.0 81496.5 0.024 0.192 0.950

Table 3 Average values of
model selection criteria (mean
deviance, effective number of
parameters, DIC and WAIC) and
risk estimation accuracy
(MARB, MRRMSE and
empirical coverage -EC- of the
95% credible intervals) based on
100 simulated data sets for
Scenario 2

Model selection criteria Risk estimation accuracy
D(θ) pD DIC WAIC MARB MRRMSE EC

Global 78766.9 5385.6 84152.5 83894.7 0.062 0.322 0.947

Disjoint (k = 0) 78505.8 5132.6 83638.4 83451.3 0.051 0.299 0.954

1st-order nb (k = 1) 78420.2 5465.5 83885.7 83650.9 0.055 0.314 0.957

2nd-order nb (k = 2) 78457.1 5460.2 83917.3 83694.3 0.057 0.317 0.955

model), and compare the results with those obtained with the
new proposal.

Previously, univariate models were also fitted to each dis-
ease using a BYM2 spatial prior. The covariance matrix of
this prior copes with both spatial structured variability and
unstructured variability. Results (not shown here to conserve
space) show thatmost of the variability is spatially structured.
Since the computational cost of this prior makes it difficult
its use in a multivariate setting, and most of the variability
is spatially structured, we fit the joint multivariate proposal
given in Eq. (6) by considering an iCAR prior for the spatial
random effects.

For the partitionmodels, we distribute the submodels over
2 machines with four processors Intel Xeon Silver 4108
and 192GB RAM on each machine (Ubuntu 20.04.4 LTS
operative system), using the simplified Laplace approxima-

tion strategy in R-INLA (Lindgren and Rue 2015) (stable
version INLA_22.05.07, R version R−4.1.2) and simultane-
ously running 3 models in parallel on each machine using
the bigDM package (Adin et al. 2023).

Table 4 displays the posterior mean deviance D(θ), the
effective number of parameters pD , the DIC, and the WAIC
for the global and the scalable models together with the
computing time (in minutes). The total time for the scal-
able models is obtained by adding the running time and the
merging time. The running time refers to the elapsed time
for all the submodels fitted with R-INLA, and the merg-
ing time refers to the combination (when necessary) of the
posterior distributions of the risks, the approximation of the
DIC/WAIC values, and the computation of global estimates
of the between-diseases correlation coefficients using the
proposed CMC algorithm. As expected, the computational
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Table 4 Model selection
criteria and computational time,
in minutes, for multivariate
models with iCAR spatial prior
using the simplified Laplace
approximation strategy if INLA

Model Model selection criteria Time (in min)
D(θ) pD DIC WAIC Run Merge Total

k = 0 76779.7 2471.9 79252.6 79204.8 5.4 0.7 6.1

k = 1 76894.6 2327.4 79222.0 79187.3 6.5 1.1 7.6

k = 2 76942.0 2289.4 79231.4 79211.9 7.7 1.1 8.8

k = 3 77007.0 2231.8 79238.8 79220.0 8.2 1.1 9.3

Global 77186.8 2164.2 79351.0 79283.9 33.2 − 33.2

cost raises as the neighbourhood order (k) increases, though
the scalable proposal is faster than the global model for all
values of k. The greatest reduction in time in comparison
with the global model is obtained for k = 0, being the
global model about 5.5 times slower. When the neighbour-
hood order increases, the difference in computing time is less
pronounced. The globalmodel is about 4.3, 3.8, and 3.6 times
slower than the scalable models with k =1, 2, and 3, respec-
tively. Regarding model selection criteria, scalable Bayesian
models outperform the global model. The greater reduction
in DIC and WAIC is obtained for the 1st-order neighbour-
hood model. However, increasing the neighbourhood order
may improve the between-disease correlation estimates.

5.2 Joint analysis of male mortality from three types
of cancer in Spain

In this subsection, the spatial patterns of lung, colorectal,
and stomach cancer mortality risks in men are examined in
the municipalities of continental Spain using the scalable
multivariate proposal presented in Sect. 3.

We begin with a comparison of the estimated risks
obtained with the global model, the disjoint model (k = 0)
and the k-order neighbourhood models (k = 1, 2 and 3).
Figure1 displays dispersion plots of the posterior median
estimates of the relative risks obtained with the partitioned
models versus those obtainedwith the globalmodel. The left,
central and right columns correspond to lung, colorectal and
stomach cancer, respectively. The neighbourhood order in the
partition models are represented in the different rows. The
largest differences are observed between the global and the
disjoint models. This is expected because areas in the border
of a subdivision do not borrow strength from neighbouring
areas located in a contiguous subdivision. As the neighbour-
hood order k increases, the risk estimates are more similar
to the global model. Figure2 displays the spatial patterns of
lung cancer mortality risks (top) and the posterior probabil-
ities of risk exceedance (bottom), P(Ri j > 1|O), obtained
with the global, the disjoint (k = 0) and the partition models
(k = 1, 2, 3). To save space, maps for colorectal and stomach
cancer are provided in Figs. 6 and 7 (Appendix B). Though

Table 5 Descriptive statistics of the estimated between-disease corre-
lations with the global, and k = 0, 1, 2-order neighbourhood models,
using an iCAR prior for spatial random effects

ρ Model Mean SD q.025 q.5 q.975 Mode

ρ1.2 Global 0.70 0.04 0.63 0.70 0.77 0.70

k = 0 0.66 0.04 0.58 0.66 0.73 0.66

k = 1 0.68 0.04 0.60 0.68 0.74 0.68

k = 2 0.71 0.03 0.65 0.71 0.77 0.71

ρ1.3 Global 0.46 0.05 0.36 0.46 0.55 0.46

k = 0 0.55 0.05 0.46 0.55 0.63 0.55

k = 1 0.55 0.04 0.47 0.56 0.63 0.56

k = 2 0.50 0.04 0.42 0.50 0.57 0.50

ρ2.3 Global 0.57 0.05 0.46 0.57 0.67 0.57

k = 0 0.54 0.05 0.43 0.54 0.64 0.54

k = 1 0.56 0.05 0.45 0.56 0.65 0.56

k = 2 0.59 0.04 0.50 0.59 0.68 0.60

differences in risks estimates are observed in the dispersion
plots, it is harder to appreciate them on the maps.

Multivariate models borrow information from nearby
areas and the different diseases. Additionally, they present
other advantages over univariate counterparts, such as the
possibility of estimating correlations between the spatial pat-
terns of the diseases. Moderate to high correlations may
suggest the existence of underlying risk factors affecting
the diseases under study, which in turns implies connec-
tion between them. This information may be crucial to better
understand diseases such as cancer in which known risk fac-
tors only explain a small percentage of the cases. Spatial
patterns may be associated to factors like access to treatment
or life style that might have an impact on mortality.

Posterior distributions of the between-disease correlations
obtained with the disjoint (k = 0) and the partition models (k
= 1, 2) are displayed in Fig. 3 together with correlations for
whole Spain obtained with the CMC algorithm and with the
global model. Here, ρ1.2, ρ1.3, and ρ2.3 denote the correlation
parameters between lung and colorectal, lung and stomach,
and colorectal and stomach cancer, respectively. Summary
statistics (mean, median, mode, standard deviation, 2.5 and
97.5 percentiles) of the between-disease posterior correla-
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Fig. 1 Dispersion plots of the posterior median estimates of relative risks for lung (left column), colorectal (central column) and stomach (right
column) cancer mortality data obtained with the partitioned model (k = 0, 1, 2, 3 from top to bottom) versus the global model

tions are also shown in Table 5. In general, the posterior
distributions estimated with the CMC algorithm for the parti-
tion models are very similar to those obtained with the global
model. Similar to the posterior estimates of the relative risks,
closer values to the global model are observed as the neigh-
bourhood order k increases.

Finally, Fig. 4 displays a map with the posterior medians
and standard deviations of the between-diseases correlations
ρ1,2 (left), ρ1,3 (center), and ρ2,3 (right), for the different

subdivisions (Autonomous Regions) obtained with the 1st-
order neighbourhood partition model. Partition models can
provide the correlations over the whole study domain, but
also the correlations for the different subdivisions. This is an
advantage over the global models as we add information at
different administrative divisions. Moreover, the variability
in the posterior medians of the correlations across the sub-
divisions may indicate a lack of stationarity that the global
model cannot cope with, and hence the advantages of the
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Fig. 2 Maps of posterior
median estimates of mortality
relative risk for lung cancer
(top) and posterior exceedance
probabilities P(Ri j > 1|O)

(bottom) in continental Spain

Relative risk estimates for lung cancer

Global Partition, k=0 Partition, k=1

Partition, k=2 Partition, k=3

1.30 to 2.30
1.20 to 1.30
1.10 to 1.20
1.00 to 1.10
0.91 to 1.00
0.83 to 0.91
0.77 to 0.83
0.26 to 0.77

Posterior exceedence probabilities for lung cancer

Global Partition, k=0 Partition, k=1

Partition, k=2 Partition, k=3

[0.9−1]
[0.8−0.9)
[0.2−0.8)
[0.1−0.2)
[0−0.1)

partition models. When the number of small areas is large,
the use of a global model with one single precision (smooth-
ing) parameter may be questionable while local models add
more flexibility to deal with the spatial heterogeneity across
the map.

6 Discussion

Spatial areal models have a long tradition in epidemiology
to study the geographical pattern of a disease. While ini-
tially focused on modelling a single disease, spatial models
have evolved into a multivariate framework with two notable

objectives: to improve estimates by borrowing strength from
other diseases and neighbouring areas, and to estimate latent
correlations between the spatial patterns of the diseases under
study to address the connections between themand to hypoth-
esize common risk factors. Research on spatial multivariate
models has received considerable attention in recent years,
although their use is not yet widespread in epidemiology
mainly because (i) the implementation of multivariate mod-
els in available software requires advanced computing skills
and (ii) computational issues are accentuated when the num-
ber of small areas is large as computing time may become
prohibitive. Vicente et al. (2020b, 2021) provide an imple-
mentation of multivariate CAR and P-splines in R-INLA that
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Fig. 3 Posterior distributions of the estimated between-disease correlations with the global, and k = 0, 1, 2-order neighbourhood models, using
an iCAR prior for spatial random effects

can be used by a wide audience without advanced computer
skills.

In this paper, we present a new approach to analyse mul-
tivariate areal count data when the number of small areas is
very large. In particular, we combine the methodology pro-
posed by Orozco-Acosta et al. (2021) for high-dimensional
disease mapping with a modification of the multivariate
approach given by Botella-Rocamora et al. (2015) to avoid
overparameterization, obtaining a scalable Bayesian mod-
elling approach to multivariate disease mapping. Our pro-
posal begins with the partitioning of the spatial domain into
subregions with substantially fewer small areas. The mul-
tivariate models can then be fitted simultaneously (using

both parallel or distributed computation strategies) in each
of these regions, reducing computational time and avoiding
memory and storage problems. Dividing the whole spatial
domain into disjoint regions may induce border effects as
the areas in the limits of a given subdivision do not borrow
information from neighbouring areas located in a differ-
ent subregion. To overcome this issue, we consider k-order
neighbourhood models that incorporate neighbouring areas
to those regions located on the partition boundary. Finally,
variance parameters and between-disease correlations for the
whole area are obtained by means of an adaptation of a con-
sensus Monte Carlo algorithm. The correlation coefficients
indicate potential geographic factors related (or not) to the
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different diseases. If the covariance structure is separable,
the variance parameters measure the amount of smoothing
for each disease. In addition to the CMC algorithm, we have
also considered theWeierstrass rejection sampler (WRS)pro-
posed byWang and Dunson (2013) to recover the parameters
of interest for the whole study region (results not shown to
save space). In this algorithm, the posterior of the target
distribution in the whole area is approximated by combin-
ing posterior samples of the subdivisions using rejection
sampling. Though it was originally proposed to combine pos-
terior draws from independent MCMC subset chains, it can
be adapted to other Bayesian estimation techniques such as
INLA through the R package weierstrass (available at
https://github.com/wwrechard/weierstrass). In general, very
similar posterior marginal estimates are obtained with both
algorithms.

One of the key issues with partition models is to choose
the neighbourhood order. Here we use model selection cri-
teria such as DIC and WAIC. Our conclusions are that, in
general, the larger the neighbourhood order, the more sim-
ilar the partition model is to the global model. However,
increasing too much the neighbourhood order, the benefits of
our proposal in terms of computational time vanish. Overall,
first or second order neighbourhood models are appropriate.
From the simulation study, we conclude that even when the
underlying generating process is the Global model, the parti-
tion models are very competitive in terms of risk estimation
accuracy. Moreover, the global between-disease correlation
coefficients are well recovered with the partition models.
If the geographical distribution and correlation structure of
the underlying process varies across the whole map (which
seems very realistic in practice), better results are obtained
with our modelling proposals than with the usual global
model.

Very recently, a new hybrid approximate procedure that
uses the Laplace method with a low-rank variational Bayes
correction has been proposed as part of the R-INLA project
(Van Niekerk and Rue 2021; Van Niekerk et al. 2023). The
latest versions of the R-INLA package allow to run the
models using this new approximation strategy (named as
“compact" mode) resulting in a substantial reduction in com-
putational time. This new approximation method appears to
be very promising. However, further research is necessary to
explore its accuracy in estimating hyperparameters, such as
between-disease correlations.

Moreover, when there is a large number of areas, the
suitability of a global homogeneous model (with a single
precision/smoothing parameter) for the entire study region
may be doubtful. Instead, implementing various local homo-
geneousmodels can provide increased flexibility in capturing
the spatial heterogeneity present across the map.

In conclusion, it can be argued that partition models offer
several advantages over a global model. Firstly, they accel-
erate computations through the classical integrated nested
Laplace approximations and alleviate storage and memory
problems. Secondly, they offer a dual benefit. Even if the
global model is appropriate, we can provide both a global
spatial pattern for the entire region and local patterns for the
subdivisions, which is particularly beneficial for our case.
Lastly, it’s worth noting that as the number of diseases grows,
so does the number of hyperparameters in the covariance
matrix, resulting in a greater computational burden. This
issue warrants further research.

In our case study, we use an administrative division of the
municipalities of continental Spain corresponding to D = 15
Autonomous Regions. This partition is a natural choice as
Autonomous Regions in Spain are responsible for develop-
ing and implementing health policies, and life style may
change from region to region. By utilizing subdivisions,

Fig. 4 Maps of posterior medians of between-disease correlations and
standard deviation (in brackets) for the different subdivisions obtained
with the 1st-order neighbourhoodpartitionmodel. Correlations between
lung and colorectal cancer are displayed on the left (ρ1,2), the central

map displays the correlations between lung and stomach cancer (ρ1,3),
and the map on the right displays the correlation between colorectal and
stomach cancer (ρ2,3)
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we can obtain estimates that reveal associations between
diseases which may be linked to specific policies, differ-
ent lifestyles, or other geographical factors that have a local
impact. This could potentially explain the observed differ-
ences in between-disease correlations across subdivisions.
However, this partition may have some disadvantages. For
instance, the Region of Castilla and León comprises 2245
municipalities, which is still a large number. To address this
issue, we have also employed a finer partition based on 47
provinces rather than Autonomous Regions. Although the
overall results are similar, the partition based onAutonomous
Regions yields better recovery of the global between-disease
correlations.

TheM-models formultivariate diseasemapping described
in this paper are implemented in theRpackagebigDM,which
also includes several scalable spatial and spatio-temporal
Poissonmixedmodels for areal count data in a fully Bayesian
setting using INLA. The package also contains a vignette to
replicate the data analysis described in Sect. 5 using simu-
lated data to preserve the confidentiality of the original data.
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A Appendix

In this Appendix we briefly explain how to implement the
Bartlett decomposition in R-INLA. This requires that the
hyperparameters have support on R. So, we will reparam-

eterise the elements c j described in Eq. (5) as

θ j = log(c j ), j = 1, . . . , J ,

and the log priors for c j are given as the corresponding log
priors for θ j ,∀ j = 1, . . . , J .
For each c2j , ∀ j = 1, . . . , J , we assign a chi-square distribu-
tion with J + 2− j + 1 degrees of freedom, so the log prior
for θ j is

logπ(θ j ) = log(2) + 2 · θ j + log f j
[
exp(2θ j )

]

where f j (·) is the probability density function (pdf) of c2j .
This expression is obtained as follows.

θ j = log(c j ) = 1

2
log

(
c2j

)
= 1

2
log(x j ) ⇒ x j

= g−1(θ j ) = exp(2θ j )

dx j
dθ j

= 2 exp(2θ j ) ⇒
∣
∣
∣
∣
dx j
dθ j

∣
∣
∣
∣ = 2 exp(2θ j )

π(θ j ) = f j
[
g−1(θ j )

] ∣∣
∣
∣
dx j
dθ j

∣
∣
∣
∣ = f j

[
exp(2θ j )

]
2 exp(2θ j )

logπ(θ j ) = log f j
[
exp(2θ j )

] + log(2) + 2 · θ j

Note that non-diagonal elements inA (see Eq. (5)) have sup-
port on R, so there is no need to reparameterize them, i.e.,

θ j = nil , j = J + 1, . . . , J (J + 1)/2.

Finally, let us denote θ =
(θ1, . . . , θJ , θJ+1, . . . , θJ (J+1)/2)

′. Then,

π(θ) =
J (J+1)/2∏

j=1

π(θ j ) =
J∏

j=1

π(θ j ) ×
J (J+1)/2∏

j=J+1

π(θ j ),

and taking logarithms

logπ(θ) =
J∑

j=1

logπ(θ j ) +
J (J+1)/2∑

j=J+1

logπ(θ j )

=
J∑

j=1

{
log(2) + 2 · θ j + log f j

[
exp(2θ j )

]}

+
J (J+1)/2∑

j=J+1

logφ(θ j )

= J log(2) + 2
J∑

j=1

θ j +
J∑

j=1

log f j
[
exp(2θ j )

]

+
J (J+1)/2∑

j=J+1

logφ(θ j )
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where f j (·) are the pdf of the chi-squared distribution with
J + 2 − j + 1 degrees of freedom, j = 1, . . . , J , and φ(·)
is the pdf of the standard Normal distribution.

Code

The R-INLA code to assign log prior distributions to the
hyperparameters of theM-models (elements of theAmatrix)
can be checked in the Mmodel_icar() function of the
bigDM package.

B Appendix

In this Appendix we include additional tables and figures
regarding the simulation study (Sect. 4) and the results of
the joint analysis of mortality data for lung, colorectal and
stomach cancer (case study of Sect. 5).

Figure5 displays the map of the administrative division of
Spain into Autonomous Regions.

Tables 6, 7 and 8 compares the true values of model
parameters (local correlation coefficients in each subdivi-
sion) against average values of posterior mean estimates over
the 100 simulated data sets for Scenario 2.

Figure6 displays the spatial patterns of colorectal can-
cer mortality risks (top) and the posterior probabilities of
risk exceedance (bottom), P(Ri j > 1|O), obtained with
the global and the disjoint models. Similarly, Fig. 7 displays
the spatial patterns of stomach cancer mortality risks (top)
and the posterior probabilities of risk exceedance (bottom),
P(Ri j > 1|O), obtained with the global and the disjoint
models.

Fig. 5 Map of the
administrative division of Spain
into Autonomous Regions
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Table 6 Disjoint model

Parameter Value Mean SD Sim Cov Value Mean SD Sim Cov Value Mean SD Sim Cov

Andalucía Aragón Asturias

α1 −0.20 −0.20 0.01 0.01 0.97 −0.20 −0.21 0.03 0.03 0.91 −0.20 −0.20 0.03 0.04 0.95

α2 −0.10 −0.10 0.02 0.01 0.95 −0.10 −0.10 0.03 0.03 0.98 −0.10 −0.10 0.04 0.04 0.96

α3 0.10 0.10 0.02 0.02 0.97 0.10 0.09 0.05 0.04 0.97 0.10 0.09 0.05 0.05 0.94

σ 2
1 0.50 0.51 0.05 0.04 0.96 0.50 0.53 0.09 0.08 0.93 0.50 0.58 0.15 0.14 0.94

σ 2
2 0.40 0.41 0.04 0.05 0.95 0.40 0.45 0.10 0.09 0.95 0.40 0.49 0.14 0.13 0.94

σ 2
3 0.30 0.32 0.05 0.05 0.93 0.30 0.39 0.12 0.12 0.87 0.30 0.41 0.15 0.11 0.94

ρ12 0.76 0.75 0.04 0.04 0.94 0.58 0.52 0.12 0.11 0.94 0.71 0.64 0.12 0.11 0.95

ρ13 0.52 0.52 0.07 0.08 0.94 0.30 0.24 0.17 0.20 0.90 0.34 0.28 0.20 0.19 0.96

ρ23 0.47 0.46 0.08 0.08 0.96 0.37 0.29 0.19 0.18 0.94 0.51 0.44 0.19 0.18 0.97

Castilla y León Cataluña Comunidad Valenciana

α1 −0.20 −0.20 0.02 0.02 0.96 −0.20 −0.20 0.02 0.02 0.94 −0.20 −0.20 0.02 0.02 0.96

α2 −0.10 −0.11 0.03 0.03 0.93 −0.10 −0.10 0.02 0.02 0.96 −0.10 −0.10 0.02 0.02 0.94

α3 0.10 0.10 0.04 0.03 0.97 0.10 0.10 0.03 0.03 0.93 0.10 0.10 0.03 0.03 0.92

σ 2
1 0.50 0.51 0.06 0.06 0.97 0.50 0.51 0.05 0.05 0.93 0.50 0.51 0.06 0.06 0.92

σ 2
2 0.40 0.42 0.06 0.07 0.92 0.40 0.42 0.05 0.05 0.95 0.40 0.42 0.06 0.06 0.97

σ 2
3 0.30 0.34 0.08 0.08 0.91 0.30 0.31 0.05 0.05 0.95 0.30 0.32 0.06 0.06 0.93

ρ12 0.60 0.58 0.08 0.07 0.97 0.54 0.52 0.06 0.07 0.88 0.72 0.71 0.05 0.05 0.98

ρ13 0.12 0.13 0.13 0.13 0.93 0.34 0.34 0.09 0.09 0.94 0.81 0.79 0.06 0.06 0.96

ρ23 0.56 0.53 0.11 0.11 0.96 0.48 0.46 0.09 0.09 0.96 0.79 0.76 0.07 0.07 0.93

La Rioja Madrid Murcia

α1 −0.20 −0.22 0.06 0.06 0.95 −0.20 −0.20 0.04 0.04 0.97 −0.20 −0.20 0.03 0.03 0.97

α2 −0.10 −0.13 0.08 0.08 0.92 −0.10 −0.11 0.04 0.05 0.94 −0.10 −0.11 0.04 0.04 0.96

α3 0.10 0.07 0.10 0.09 0.97 0.10 0.09 0.06 0.06 0.96 0.10 0.09 0.05 0.05 0.96

σ 2
1 0.50 0.70 0.22 0.16 0.90 0.50 0.55 0.10 0.09 0.96 0.50 0.64 0.18 0.17 0.91

σ 2
2 0.40 0.64 0.25 0.22 0.86 0.40 0.44 0.10 0.09 0.96 0.40 0.53 0.16 0.14 0.90

σ 2
3 0.30 0.66 0.32 0.26 0.84 0.30 0.37 0.10 0.10 0.93 0.30 0.41 0.15 0.13 0.96

ρ12 0.65 0.51 0.21 0.16 0.98 0.66 0.61 0.10 0.11 0.90 0.80 0.74 0.10 0.11 0.94

ρ13 0.26 0.20 0.28 0.22 0.99 0.52 0.50 0.13 0.14 0.94 0.42 0.38 0.20 0.16 0.98

ρ23 0.11 0.07 0.31 0.25 1.00 0.12 0.08 0.17 0.17 0.95 0.49 0.42 0.20 0.20 0.93

Cantabria Castilla - La Mancha

α1 −0.20 −0.20 0.04 0.04 0.96 −0.20 −0.20 0.02 0.02 0.88

α2 −0.10 −0.11 0.05 0.05 0.93 −0.10 −0.10 0.02 0.02 0.96

α3 0.10 0.08 0.07 0.07 0.94 0.10 0.09 0.03 0.03 0.88

σ 2
1 0.50 0.59 0.16 0.14 0.95 0.50 0.50 0.05 0.06 0.91

σ 2
2 0.40 0.51 0.16 0.14 0.93 0.40 0.42 0.06 0.06 0.94

σ 2
3 0.30 0.49 0.19 0.17 0.91 0.30 0.33 0.07 0.07 0.95

ρ12 0.37 0.29 0.19 0.18 0.92 0.60 0.58 0.07 0.08 0.93

ρ13 0.14 0.11 0.23 0.20 0.96 0.71 0.67 0.08 0.07 0.99

ρ23 0.69 0.58 0.19 0.15 0.99 0.38 0.37 0.11 0.11 0.93

Extremadura Galicia

α1 −0.20 −0.20 0.02 0.02 0.96 −0.20 −0.20 0.01 0.02 0.95

α2 −0.10 −0.10 0.03 0.03 0.96 −0.10 −0.10 0.02 0.02 0.96

α3 0.10 0.09 0.04 0.04 0.95 0.10 0.10 0.03 0.03 0.93

σ 2
1 0.50 0.54 0.09 0.07 0.94 0.50 0.52 0.06 0.06 0.96

σ 2
2 0.40 0.44 0.09 0.09 0.95 0.40 0.41 0.06 0.06 0.94

123



104 Page 18 of 24 Statistics and Computing (2023) 33 :104

Table 6 continued

Parameter Value Mean SD Sim Cov Value Mean SD Sim Cov Value Mean SD Sim Cov

σ 2
3 0.30 0.36 0.10 0.10 0.93 0.30 0.32 0.06 0.07 0.89

ρ12 0.30 0.28 0.12 0.11 0.97 0.61 0.61 0.07 0.07 0.93

ρ13 0.27 0.25 0.16 0.15 0.98 0.36 0.34 0.11 0.11 0.93

ρ23 0.24 0.22 0.18 0.17 0.92 0.17 0.16 0.12 0.12 0.96

Navarra País Vasco

α1 −0.20 −0.21 0.04 0.04 0.93 −0.20 −0.20 0.03 0.03 0.94

α2 −0.10 −0.11 0.05 0.05 0.98 −0.10 −0.10 0.03 0.03 0.94

α3 0.10 0.07 0.07 0.06 0.94 0.10 0.09 0.04 0.04 0.98

σ 2
1 0.50 0.57 0.13 0.14 0.89 0.50 0.53 0.09 0.09 0.94

σ 2
2 0.40 0.47 0.13 0.10 0.98 0.40 0.44 0.09 0.09 0.93

σ 2
3 0.30 0.47 0.17 0.15 0.90 0.30 0.36 0.09 0.10 0.92

ρ12 0.73 0.67 0.12 0.10 0.96 0.73 0.69 0.08 0.08 0.92

ρ13 0.44 0.37 0.20 0.16 0.98 0.65 0.61 0.11 0.11 0.96

ρ23 0.65 0.52 0.19 0.19 0.94 0.47 0.42 0.15 0.13 0.94

Average values of posterior mean, posterior standard deviation (SD), simulated standard errors (sim) and empirical coverage of the 95% credible
intervals (Cov) for local estimates model parameters based on 100 simulated data sets for Scenario 2

Table 7 1st-order neighbourhood model

Parameter Value Mean SD Sim Cov Value Mean SD Sim Cov Value Mean SD Sim Cov

Andalucía Aragón Asturias

α1 −0.20 −0.20 0.01 0.02 0.86 −0.20 −0.20 0.03 0.04 0.79 −0.20 −0.19 0.03 0.07 0.67

α2 −0.10 −0.09 0.02 0.02 0.90 −0.10 −0.10 0.03 0.04 0.91 −0.10 −0.09 0.04 0.07 0.70

α3 0.10 0.10 0.02 0.02 0.93 0.10 0.10 0.04 0.04 0.97 0.10 0.10 0.05 0.06 0.93

σ 2
1 0.50 0.57 0.05 0.05 0.59 0.50 0.74 0.10 0.12 0.28 0.50 0.84 0.18 0.26 0.47

σ 2
2 0.40 0.46 0.05 0.06 0.78 0.40 0.60 0.10 0.12 0.49 0.40 0.67 0.17 0.20 0.58

σ 2
3 0.30 0.35 0.05 0.06 0.82 0.30 0.46 0.12 0.14 0.65 0.30 0.52 0.17 0.16 0.80

ρ12 0.76 0.75 0.04 0.04 0.93 0.58 0.59 0.09 0.10 0.89 0.71 0.65 0.11 0.12 0.93

ρ13 0.52 0.52 0.07 0.08 0.93 0.30 0.36 0.14 0.18 0.84 0.34 0.35 0.18 0.18 0.93

ρ23 0.47 0.48 0.08 0.08 0.91 0.37 0.42 0.15 0.15 0.92 0.51 0.45 0.17 0.18 0.93

Castilla y León Cataluña Comunidad Valenciana

α1 −0.20 −0.20 0.02 0.03 0.88 −0.20 −0.20 0.02 0.02 0.93 −0.20 −0.19 0.02 0.02 0.86

α2 −0.10 −0.11 0.03 0.03 0.91 −0.10 −0.10 0.02 0.02 0.94 −0.10 −0.10 0.02 0.03 0.81

α3 0.10 0.10 0.03 0.03 0.96 0.10 0.10 0.03 0.03 0.94 0.10 0.10 0.03 0.03 0.96

σ 2
1 0.50 0.77 0.07 0.11 0.06 0.50 0.56 0.05 0.06 0.78 0.50 0.63 0.07 0.10 0.48

σ 2
2 0.40 0.63 0.07 0.10 0.12 0.40 0.45 0.05 0.06 0.81 0.40 0.52 0.06 0.08 0.53

σ 2
3 0.30 0.48 0.09 0.13 0.46 0.30 0.33 0.05 0.05 0.89 0.30 0.39 0.06 0.08 0.72

ρ12 0.60 0.63 0.06 0.07 0.83 0.54 0.54 0.06 0.07 0.88 0.72 0.71 0.05 0.06 0.88

ρ13 0.12 0.30 0.10 0.13 0.47 0.34 0.34 0.09 0.10 0.93 0.81 0.74 0.06 0.08 0.73

ρ23 0.56 0.53 0.09 0.12 0.90 0.48 0.47 0.09 0.08 0.97 0.79 0.75 0.06 0.06 0.92

La Rioja Madrid Murcia

α1 −0.20 −0.23 0.05 0.08 0.79 −0.20 −0.20 0.03 0.06 0.70 −0.20 −0.22 0.03 0.09 0.53

α2 −0.10 −0.13 0.06 0.10 0.76 −0.10 −0.11 0.04 0.05 0.87 −0.10 −0.12 0.03 0.08 0.58
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Table 7 continued

Parameter Value Mean SD Sim Cov Value Mean SD Sim Cov Value Mean SD Sim Cov

α3 0.10 0.08 0.08 0.10 0.84 0.10 0.09 0.05 0.06 0.93 0.10 0.09 0.05 0.08 0.71

σ 2
1 0.50 1.12 0.24 0.29 0.19 0.50 0.87 0.13 0.19 0.16 0.50 1.06 0.23 0.25 0.14

σ 2
2 0.40 0.90 0.24 0.33 0.36 0.40 0.67 0.12 0.16 0.37 0.40 0.86 0.20 0.26 0.29

σ 2
3 0.30 0.81 0.29 0.33 0.48 0.30 0.51 0.12 0.16 0.53 0.30 0.65 0.19 0.23 0.45

ρ12 0.65 0.61 0.13 0.16 0.92 0.66 0.66 0.08 0.11 0.88 0.80 0.73 0.08 0.11 0.86

ρ13 0.26 0.39 0.19 0.20 0.81 0.52 0.49 0.12 0.15 0.90 0.42 0.45 0.15 0.18 0.85

ρ23 0.11 0.27 0.21 0.26 0.83 0.12 0.26 0.14 0.18 0.82 0.49 0.54 0.14 0.16 0.90

Cantabria Castilla - La Mancha

α1 −0.20 −0.19 0.04 0.07 0.78 −0.20 −0.21 0.02 0.02 0.87

α2 −0.10 −0.08 0.05 0.07 0.83 −0.10 −0.11 0.02 0.02 0.93

α3 0.10 0.09 0.06 0.07 0.90 0.10 0.09 0.03 0.03 0.90

σ 2
1 0.50 0.90 0.20 0.32 0.46 0.50 0.70 0.06 0.09 0.13

σ 2
2 0.40 0.75 0.20 0.26 0.51 0.40 0.55 0.06 0.09 0.29

σ 2
3 0.30 0.62 0.21 0.25 0.65 0.30 0.42 0.07 0.09 0.52

ρ12 0.37 0.43 0.15 0.18 0.87 0.60 0.60 0.06 0.08 0.86

ρ13 0.14 0.27 0.20 0.21 0.83 0.71 0.62 0.08 0.09 0.74

ρ23 0.69 0.62 0.16 0.15 0.97 0.38 0.39 0.10 0.13 0.84

Extremadura Galicia

α1 −0.20 −0.19 0.02 0.04 0.77 −0.20 −0.20 0.02 0.03 0.75

α2 −0.10 −0.09 0.03 0.04 0.78 −0.10 −0.10 0.02 0.03 0.86

α3 0.10 0.09 0.04 0.05 0.92 0.10 0.10 0.03 0.03 0.91

σ 2
1 0.50 0.71 0.10 0.11 0.41 0.50 0.58 0.07 0.08 0.81

σ 2
2 0.40 0.57 0.10 0.11 0.51 0.40 0.45 0.06 0.07 0.84

σ 2
3 0.30 0.41 0.11 0.11 0.83 0.30 0.33 0.07 0.08 0.87

ρ12 0.30 0.40 0.10 0.11 0.80 0.61 0.63 0.06 0.07 0.89

ρ13 0.27 0.32 0.14 0.15 0.93 0.36 0.36 0.10 0.11 0.94

ρ23 0.24 0.29 0.16 0.17 0.90 0.17 0.19 0.12 0.12 0.93

Navarra País Vasco

α1 −0.20 −0.21 0.04 0.05 0.84 −0.20 −0.20 0.03 0.04 0.84

α2 −0.10 −0.11 0.04 0.06 0.83 −0.10 −0.10 0.03 0.04 0.88

α3 0.10 0.08 0.06 0.06 0.93 0.10 0.10 0.04 0.05 0.89

σ 2
1 0.50 0.85 0.15 0.20 0.29 0.50 0.83 0.12 0.22 0.27

σ 2
2 0.40 0.64 0.14 0.17 0.52 0.40 0.64 0.11 0.17 0.47

σ 2
3 0.30 0.56 0.17 0.19 0.62 0.30 0.50 0.12 0.15 0.56

ρ12 0.73 0.71 0.09 0.10 0.90 0.73 0.71 0.07 0.10 0.83

ρ13 0.44 0.46 0.15 0.17 0.89 0.65 0.63 0.10 0.13 0.88

ρ23 0.65 0.50 0.15 0.19 0.81 0.47 0.47 0.13 0.15 0.90

Average values of posterior mean, posterior standard deviation (SD), simulated standard errors (sim) and empirical coverage of the 95% credible
intervals (Cov) for local estimates model parameters based on 100 simulated data sets for Scenario 2
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Table 8 2nd-order neighbourhood model

Parameter Value Mean SD Sim Cov Value Mean SD Sim Cov Value Mean SD Sim Cov

Andalucía Aragón Asturias

α1 −0.20 −0.20 0.01 0.03 0.63 −0.20 −0.19 0.02 0.06 0.52 −0.20 −0.19 0.03 0.10 0.52

α2 −0.10 −0.09 0.01 0.03 0.71 −0.10 −0.09 0.03 0.05 0.68 −0.10 −0.09 0.04 0.09 0.58

α3 0.10 0.10 0.02 0.03 0.79 0.10 0.10 0.04 0.04 0.88 0.10 0.11 0.05 0.09 0.70

σ 2
1 0.50 0.57 0.05 0.05 0.63 0.50 0.72 0.08 0.11 0.24 0.50 0.80 0.16 0.23 0.49

σ 2
2 0.40 0.46 0.05 0.06 0.78 0.40 0.58 0.09 0.11 0.43 0.40 0.64 0.15 0.18 0.59

σ 2
3 0.30 0.35 0.05 0.06 0.81 0.30 0.45 0.10 0.13 0.60 0.30 0.50 0.15 0.14 0.75

ρ12 0.76 0.74 0.04 0.04 0.94 0.58 0.60 0.08 0.09 0.88 0.71 0.63 0.10 0.12 0.91

ρ13 0.52 0.49 0.07 0.07 0.91 0.30 0.37 0.12 0.15 0.83 0.34 0.35 0.16 0.17 0.92

ρ23 0.47 0.47 0.07 0.08 0.90 0.37 0.44 0.13 0.13 0.86 0.51 0.45 0.16 0.17 0.92

Castilla y León Cataluña Comunidad Valenciana

α1 −0.20 −0.20 0.02 0.03 0.75 −0.20 −0.20 0.02 0.02 0.83 −0.20 −0.19 0.02 0.04 0.71

α2 −0.10 −0.10 0.02 0.03 0.78 −0.10 −0.10 0.02 0.02 0.88 −0.10 −0.09 0.02 0.04 0.70

α3 0.10 0.10 0.03 0.04 0.88 0.10 0.10 0.03 0.03 0.91 0.10 0.10 0.03 0.03 0.86

σ 2
1 0.50 0.74 0.06 0.09 0.03 0.50 0.56 0.05 0.06 0.76 0.50 0.63 0.06 0.10 0.47

σ 2
2 0.40 0.60 0.06 0.09 0.13 0.40 0.45 0.05 0.06 0.81 0.40 0.52 0.06 0.08 0.49

σ 2
3 0.30 0.46 0.07 0.11 0.40 0.30 0.34 0.05 0.05 0.88 0.30 0.39 0.06 0.08 0.67

ρ12 0.60 0.63 0.05 0.07 0.79 0.54 0.54 0.06 0.07 0.90 0.72 0.71 0.05 0.06 0.87

ρ13 0.12 0.35 0.08 0.12 0.29 0.34 0.35 0.09 0.10 0.91 0.81 0.69 0.06 0.08 0.48

ρ23 0.56 0.50 0.08 0.11 0.85 0.48 0.47 0.08 0.08 0.97 0.79 0.72 0.06 0.07 0.81

La Rioja Madrid Murcia

α1 −0.20 −0.23 0.04 0.10 0.60 −0.20 −0.21 0.03 0.09 0.53 −0.20 −0.24 0.02 0.17 0.21

α2 −0.10 −0.12 0.05 0.11 0.55 −0.10 −0.11 0.04 0.07 0.72 −0.10 −0.12 0.03 0.15 0.34

α3 0.10 0.07 0.07 0.11 0.75 0.10 0.09 0.05 0.07 0.79 0.10 0.08 0.04 0.13 0.39

σ 2
1 0.50 1.11 0.20 0.27 0.08 0.50 0.81 0.11 0.15 0.17 0.50 0.85 0.15 0.18 0.25

σ 2
2 0.40 0.89 0.20 0.27 0.26 0.40 0.64 0.10 0.14 0.36 0.40 0.70 0.14 0.18 0.36

σ 2
3 0.30 0.82 0.25 0.33 0.28 0.30 0.50 0.11 0.14 0.53 0.30 0.55 0.14 0.18 0.49

ρ12 0.65 0.62 0.11 0.15 0.86 0.66 0.63 0.07 0.10 0.88 0.80 0.73 0.07 0.10 0.78

ρ13 0.26 0.42 0.16 0.19 0.78 0.52 0.45 0.11 0.14 0.81 0.42 0.49 0.12 0.14 0.85

ρ23 0.11 0.32 0.18 0.22 0.75 0.12 0.28 0.13 0.16 0.71 0.49 0.56 0.12 0.14 0.85

Cantabria Castilla - La Mancha

α1 −0.20 −0.19 0.04 0.09 0.60 −0.20 −0.20 0.02 0.02 0.80

α2 −0.10 −0.08 0.04 0.09 0.64 −0.10 −0.11 0.02 0.02 0.89

α3 0.10 0.10 0.06 0.09 0.79 0.10 0.10 0.02 0.03 0.93

σ 2
1 0.50 0.86 0.17 0.27 0.48 0.50 0.71 0.05 0.08 0.06

σ 2
2 0.40 0.72 0.17 0.23 0.40 0.40 0.57 0.06 0.09 0.21

σ 2
3 0.30 0.57 0.18 0.19 0.65 0.30 0.44 0.07 0.08 0.36

ρ12 0.37 0.48 0.13 0.16 0.80 0.60 0.59 0.05 0.07 0.86

ρ13 0.14 0.34 0.17 0.19 0.75 0.71 0.57 0.07 0.09 0.48

ρ23 0.69 0.59 0.15 0.15 0.94 0.38 0.40 0.09 0.13 0.71

Extremadura Galicia

α1 −0.20 −0.19 0.02 0.07 0.39 −0.20 −0.20 0.02 0.05 0.46

α2 −0.10 −0.09 0.03 0.07 0.54 −0.10 −0.10 0.02 0.05 0.55

α3 0.10 0.10 0.03 0.06 0.74 0.10 0.09 0.03 0.05 0.74

σ 2
1 0.50 0.70 0.09 0.11 0.33 0.50 0.58 0.07 0.08 0.76
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Table 8 continued

Parameter Value Mean SD Sim Cov Value Mean SD Sim Cov Value Mean SD Sim Cov

σ 2
2 0.40 0.57 0.09 0.11 0.49 0.40 0.46 0.06 0.07 0.82

σ 2
3 0.30 0.42 0.10 0.10 0.81 0.30 0.34 0.06 0.08 0.91

ρ12 0.30 0.43 0.09 0.11 0.66 0.61 0.63 0.06 0.07 0.88

ρ13 0.27 0.33 0.13 0.15 0.89 0.36 0.37 0.10 0.11 0.92

ρ23 0.24 0.33 0.14 0.16 0.85 0.17 0.20 0.11 0.12 0.90

Navarra País Vasco

α1 −0.20 −0.21 0.03 0.07 0.64 −0.20 −0.20 0.03 0.06 0.64

α2 −0.10 −0.11 0.04 0.07 0.72 −0.10 −0.11 0.03 0.06 0.65

α3 0.10 0.09 0.05 0.07 0.80 0.10 0.10 0.04 0.06 0.78

σ 2
1 0.50 0.80 0.12 0.16 0.21 0.50 0.82 0.11 0.20 0.25

σ 2
2 0.40 0.60 0.11 0.14 0.51 0.40 0.64 0.11 0.17 0.40

σ 2
3 0.30 0.52 0.13 0.15 0.56 0.30 0.50 0.11 0.15 0.54

ρ12 0.73 0.71 0.08 0.09 0.90 0.73 0.70 0.07 0.10 0.86

ρ13 0.44 0.48 0.13 0.15 0.88 0.65 0.61 0.10 0.13 0.87

ρ23 0.65 0.46 0.14 0.17 0.72 0.47 0.46 0.12 0.15 0.89

Average values of posterior mean, posterior standard deviation (SD), simulated standard errors (sim) and empirical coverage of the 95% credible
intervals (Cov) for local estimates model parameters based on 100 simulated data sets for Scenario 2
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Fig. 6 Maps of posterior
median estimates of mortality
relative risk for colorectal cancer
(top) and posterior exceedance
probabilities P(Ri j > 1|O)

(bottom) in continental Spain
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Fig. 7 Maps of posterior
median estimates of mortality
relative risk for stomach cancer
(top) and posterior exceedance
probabilities P(Ri j > 1|O)

(bottom) in continental Spain
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