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ABSTRACT 
This study aims to implement, analyze, and compare the effectiveness of a 

novel technique known as Perturbation-Based Oversampling (POS). This technique 
is designed to address class imbalance in machine learning by augmenting the 
minority class instances by strategically perturbing features using a 
hyperparameter ’p’. Two additional variations, namely POS 1.0 and POS 2.0, have 
been proposed as extensions of the original POS approach. Detailed experiments 
have been conducted across diverse datasets, presenting a comprehensive 
performance evaluation in terms of precision when compared to a selection of 
established methods designed to tackle unbalanced classification challenges. 

Key words: classification, imbalanced problems, oversampling, features, 
imbalanced ratio, perturbation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

 

Index 
 

1. INTRODUCTION .......................................................................................................................... 5 

2. PRELIMINARIES ......................................................................................................................... 7 

2.1. Classification Problems .................................................................................................... 7 

2.1.1. Classifiers ...................................................................................................................... 7 

2.1.2. Model Validation Methodologies ......................................................................... 8 

2.1.3. Model Evaluation Metrics .....................................................................................10 

2.2. Imbalanced Classification Problems .........................................................................15 

2.2.1. Algorithm- level approaches ...............................................................................16 

2.2.2. Data-level approaches ...........................................................................................17 

2.3. Development environment ...........................................................................................22 

3. PERTURBATION-BASED OVERSAMPLING .....................................................................23 

3.1. Functioning of the Perturbation-Based Oversampling (POS) Technique .......23 

3.2. POS 1.0. .....................................................................................................................................25 

3.3. POS 2.0. .....................................................................................................................................26 

3.4. Hyperparameter ‘p’ ..............................................................................................................28 

4. EXPERIMENTAL STUDY AND IMPLEMENTATION OF THE METHODS ..............30 

4.1. Experimental Framework .............................................................................................30 

4.2. Datasets ................................................................................................................................31 

4.3. KNN Classifier - Phase 1: Study of hyperparameter ‘p’......................................32 

4.3.1. POS ................................................................................................................................33 

4.3.2. POS 1.0 .........................................................................................................................38 

4.3.3. POS 2.0 .........................................................................................................................41 

4.4. KNN Classifier - Phase 2: Method Comparative Analysis .................................45 

4.4.1. Geometric Mean Comparison ..................................................................................45 

4.4.2. F1- Score Comparison.................................................................................................46 

4.4.3. AUC Comparison ...........................................................................................................47 

4.4.4. AUCPR Comparison .....................................................................................................47 

4.5. CART Classifier - Phase 1: Study of hyperparameter ‘p’....................................49 

4.5.1. Fixed number of instances  for POS, POS 1.0 and POS 2.0 .......................49 

4.5.2. Fixed IR for POS, POS 1.0 and POS 2.0 .............................................................49 

4.5.3. Examining the influence of the number of minority class instances for 
POS 49 



 

4 

 

4.5.4. Optimal ‘p’ value for POS ......................................................................................50 

4.5.5. Examining the influence of the number of minority class instances for 
POS 1.0 51 

4.5.6. Optimal ‘p’ value for POS 1.0 ...............................................................................52 

4.5.7. Examining the influence of the number of minority class instances for 
POS 2.0 53 

4.5.8. Optimal ‘p’ value for POS 2.0 ...............................................................................54 

4.6. CART Classifier - Phase 2: Method Comparative Analysis ...............................55 

4.6.1. Geometric Mean Comparison ..............................................................................56 

4.6.2. F1 – Score Comparison ..........................................................................................56 

4.6.3. AUC Comparison ......................................................................................................57 

4.6.4. AUCPR Comparison ................................................................................................58 

5. Conclusion ...................................................................................................................................60 

6. References: ......................................................................................................................................62 

APPENDIX .............................................................................................................................................65 

 



 

5 

 

1. INTRODUCTION 
In today’s fast-paced world, where technology keeps evolving at an incredible 

rate, machine learning has become a catalyst for innovation. The impressive ability 
of algorithms to learn from data and progressively enhance their performance, has 
powered all sorts of applications in different fields. Within this arena, supervised 
learning stands out as a fundamental concept. 

Supervised learning, a subset of machine learning, holds high importance in 
understanding how machines can learn to make informed decisions. A canonical 
supervised learning problem is classification, whose goal is to enable algorithms to 
classify input data into different groups based on their inherent traits. This involves 
training the algorithm on a labeled dataset, where the outcomes are already known, 
serving as the ground truth for model training. This process allows algorithm to 
discover patterns and connections. 

The process involves selecting an appropriate classification algorithm, training 
the model on training data and evaluating it on test data. In the training stage the 
adjustment of the model’s parameters is important since it enables it to capture 
patterns and relationships between features and labels. After training the model, it 
is evaluated measuring its performance on test data in terms of accuracy and other 
metrics. This approach is crucial in applications that require accurate categorization 
of data into predefined classes, such as medical diagnoses and text analysis. 

Regarding the dataset’s characteristics, the importance cannot be overstated. 
The characteristics of the dataset highly influence the model’s capacity to 
comprehend and generalize patterns. That is why when the dataset presents certain 
anomalies within the training data, addressing these challenges becomes 
indispensable for ensuring accurate and reliable machine learning outcomes. In the 
context of this specific work, we address situations where input set of data lacks a 
balanced distribution of classes. Specifically, when dealing with a classification 
problem, there are many more instances of same classes than others and standard 
classifiers get overwhelmed by the large classes and ignore the small ones. This is 
known as class imbalance problem [1]. 

One of the most common real-world scenarios involving imbalanced data is in 
fraud detection [2]. In credit card transactions, the chances of having fraudulent 
transactions are meagre, compared to legitimate transactions. It leads to the 
imbalanced proportions of labels in the dataset. This creates an imbalance between 
the positive class (fraudulent transactions) and the negative class (legitimate 
transactions. The model will have no problem identifying a legitimate transaction 
but will have trouble identifying a fraudulent one since the model treats the minority 
class as noise or outliers. While the majority class may dominate in terms of 
instances, it is often the minority class that holds vital information or represents 
critical scenarios. In the case of fraud detection, correctly identifying fraudulent 
transactions can save financial institutions and individuals from significant losses.  
It becomes evident that that it is vital to obtain a balanced prediction performance 
that accurately captures the details and importance of the underrepresented class. 
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In recent years, various techniques have been proposed to combat this challenge, 
which can be grouped into two types: algorithm-level and data-level approaches [3]. 
Algorithm-level approaches handle class imbalanced data by changing the 
mechanism of existing classifiers, while data-level approaches manipulate the data 
distribution to rebalance the number of instances between two classes [4]. In this 
case, we will focus on data-level approaches. One common approach involves 
resampling the dataset to balance the class distribution. Oversampling the minority 
class or undersampling the majority class are techniques that artificially adjust the 
proportions of instances, allowing the model to give equal importance to both 
classes during training.  

Recent research findings show the effectiveness of generating instances that 
follow similar distributions as the minority class [5] or spread along the embedded 
probability density [6] for improving the predictive performance. However, these 
methodologies necessitate the fitting of density functions or employing manifold 
learning techniques to transform the input space into an induced manifold. These 
approaches are computationally intensive and might find challenges when dealing 
with small amount of minority instances in an imbalanced classification problem.  

In this context, a new approach emerges from researchers at the Department of 
Electrical and Computer Engineering, University of Alberta, Canada, aiming to 
design a straightforward yet effective oversampling technique based on 
perturbations. The Perturbation-based Oversampling (POS) method balances 
datasets by generating new instances by perturbing the existing ones. This new 
technique introduces a new aspect: the incorporation of a hyperparameter 'p' to 
regulate the perturbation's variance. This innovation provides a level of flexibility 
that allows the algorithm to accommodate data with varying characteristics. 

The aim of this study is to investigate and confirm the effectiveness of this new 
proposal in terms of achieving strong performance and solving the issue of 
imbalanced datasets. Moreover, we will compare the results obtained using the POS 
technique to those achieved by other established models from the literature and 
current advanced methods. In addition, new approaches to this method will be 
proposed since certain ambiguities and shortcomings in the method’s description 
were identified analyzing this study. Therefore, we have chosen to reinterpret and 
modify specific elements based on individual judgment. 
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2. PRELIMINARIES 

2.1. Classification Problems 

2.1.1. Classifiers 

A supervised classification problem is about building a model that can 
effectively classify the input data that has been provided based on its specific 
features.  The dataset utilized for training this model consists of input instances 
paired with corresponding known outputs, forming the training dataset. Once the 
classifier is trained on this dataset, its performance is assessed on a new and unseen 
dataset known as test dataset. This new dataset is made up of unfamiliar input 
instances with known classes. Achieving accurate classification is not about 
achieving high accuracy on the training data, the model must generalize well to this 
new unseen data. 

Classifiers are algorithms or models that learn from labeled training data to 
make predictions or decisions about the class labels of new, unseen data points. 
There are various types of classifiers, each with its own strengths, weaknesses, and 
suitable use cases.  

2.1.1.1. K-Nearest Neighbors (KNN) 

KNN is a simple yet effective machine learning algorithm that classifies data 
points based on the majority class of their k-nearest neighbors in the feature space. 
It's a lazy learning algorithm that doesn't explicitly build a model during training. 

During the training phase, KNN stores the feature vectors and corresponding 
class labels of the training dataset. No explicit model is built during this phase; the 
algorithm simply memorizes the training data. 

In the prediction phase, when a new data point needs to be classified, KNN 
identifies the 'k' nearest neighbors of the new point in the feature space. The value 
of 'k' is a hyperparameter that you need to specify. It's the number of neighbors used 
to determine the class label of the new point. The distance metric is used to calculate 
the distance between data points in the feature space. The class label of the new 
point is then determined by the majority class among its 'k' nearest neighbors. In 
other words, the class label with the highest frequency among these neighbors is 
chosen. 

KNN is a simple to understand and implement algorithm, however, the 
algorithm is sensitive to scaling of features.  

Scaling data is an important preprocessing step to ensure that all features 
contribute equally to the model's performance. Scaling helps bring the features to a 
similar scale, preventing some features from dominating others due to their larger 
magnitudes. In this study Min-Max Scaling (Normalization) has been used. This 
type of scaling transforms features to a range between 0 and 1. 
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2.1.1.2. Decision Trees 

Decision trees are a popular machine learning approach for both 
classification and regression tasks. They create a tree-like model where internal 
nodes represent feature tests, branches correspond to test outcomes, and leaf nodes 
signify predicted labels or values. The algorithm learns to make decisions by 
recursively partitioning the dataset based on features, aiming to maximize the 
purity of subsets for classification tasks or minimize the variance for regression 
tasks. This makes decision trees easy to visualize and understand, allowing for 
transparent insights into the decision-making process. 

One notable decision tree algorithm is CART (Classification and Regression 
Trees). This type of tree employs builds binary trees where each internal node 
represents a feature test, the branches correspond to the outcomes of that test 
(typically a binary decision), and the leaf nodes contain the predicted class labels for 
classification or values for regression. What sets CART apart is its ability to 
automatically determine the best feature and threshold for splitting the data at each 
node. It uses impurity measures like the Gini index or mean squared error to assess 
the quality of these splits. CART's flexibility and simplicity make it a powerful tool 
for various machine learning applications. 

CART is particularly well-suited for classification problems, where it strives 
to partition the data in a way that maximizes the purity of each resulting subset. The 
purity measure is typically the Gini impurity, which quantifies the likelihood of 
misclassifying a randomly chosen sample from the subset. By iteratively partitioning 
the data based on the best feature and threshold, CART constructs a tree that 
optimizes the classification accuracy. 

2.1.2. Model Validation Methodologies 

The concept of generalization is highly important in classification. Overfitting 
occurs when the model adjusts perfectly to the training data, getting overly complex, 
capturing noise, but fails to predict accurately unknown data. On the contrary, 
underfitting is given when a model is too simplistic to capture the patterns and 
performs poorly on both training and new data. The aim is to find the balance 
between these extremes to obtain robust and accurate classification results. This 
pursuit of balance is where model validation methodologies play a pivotal role. 

Before implementing a model in real-world applications, it is essential to 
ensure their reliability and performance. Model validation methodologies are 
techniques used to assess how a trained model might perform on new data.  They 
provide a way to validate whether a model’s predictions generalize accurately 
beyond the data it was trained on. Ideally, a substantial dataset for training the 
model should be complemented by a separate and big dataset for evaluating its 
performance. However, this is usually not the case, and the datasets size is limited. 
The following techniques are used to obtain the training and validation (test) sets. 
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2.1.2.1. Hold-out 

Hold-out validation involves splitting the dataset into two parts: a training 
and a validation set. The model is trained on the training set and evaluated on the 
validation set. A common split ratio usually is 70-30 or 80-20 between training and 
validation sets. Moreover, to maintain data consistency, the proportion between 
classes must remain constant, therefore, stratification is applied.  

Stratification is a technique that ensures that the distribution of the classes 
in the obtained sets is similar to the distribution of the classes in the original set. 

2.1.2.2. Leave-one-out 

Leave-one-out is a technique where each data point is used as the test set 
while the remaining data is used for training. The process is repeated until it has 
used every point in the dataset as test instance. This technique can be 
computationally expensive for larger datasets. 

2.1.2.3.  K-Fold Cross Validation 

This study employs the K-fold cross validation, which consists of dividing the 
dataset into k fold or sets. The model is trained using k-1 sets of data and the 
remaining set is used for validation. This process is repeated k times using a 
different fold as validation each time. For the study we have chosen k = 5, a common 
value in this type of validation. The obtained k sets must have similar size. Although 
the k sets have been derived from the same original dataset, each of the datasets 
should be distinct, with no data in common. In other words, each instance from the 
original dataset must only be part of one set.  The k partitions are randomly 
generated in each iteration. To maintain data consistency, stratification is applied 
the maintain the proportion between classes constants. 

Figure 1 shows graphically the process of 5-fold cross validation. 

 

Figure 1: Diagram representing the 5- fold cross validation technique. 
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As shown in the diagram illustrating the 5-fold cross-validation technique 
(Figure 1), following the model's training using the training dataset, we assess the 
model's performance on the test dataset. This evaluation is done using the 
evaluation metrics, which are further explained in section 2.1.2. The overall model 
evaluation is given by the average evaluation outcomes from each of the k partitions. 

Using this technique, we ensure that the outcomes achieved are unliked to 
the data used to train the model, obtaining in this way a classifier capable of 
generalizing to new data. 

2.1.3. Model Evaluation Metrics 

As stated before, once a model is trained it must be evaluated on a new 
unfamiliar dataset. The model’s performance is evaluated using evaluation metrics. 
These tools assess the performance allowing us to understand how well the model’s 
predictions align with the actual outcomes. Metrics provide a standardized way to 
compare different models, validate their suitability for real-world scenarios, and 
identify areas that may need improvement. 

Depending on the task and nature of the data, there are various types of 
model evaluation metrics. Each metric is designed to capture different aspects of the 
model’s performance. 

Accuracy, precision, recall, and F1 score are widely employed for 
classification tasks.  ROC (Receiver Operating Characteristic) curves and AUC (Area 
Under the Curve) are usually better when analyzing binary classifiers’ performance. 
Additionally, AUCPR (Area Under the Precision-Recall Curve) is particularly useful 
for imbalanced datasets.  

Given a confusion matrix (Table 1), which is a tabulation of actual and 
predicted class labels, we can obtain different metrics for the evaluation of the 
classifier. 

 Prediction 

Positive Negative 

     
Real 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

     Table 1: Confusion matrix 

• True Positive (TP): The instances where the model correctly predicted 
the positive class when the actual class was positive. 
 



 

11 

 

• True Negative (TN): The instances where the model correctly predicted 
the negative class when the actual class was negative. 

 
• False Positive (FP): The instances where the model incorrectly 

predicted the positive class when the actual class was negative. 
 
• False Negative (FN):  The instances where the model predicted 

incorrectly the negative class when the actual class was positive. 

The confusion matrix provides a more comprehensive view of a model’s 

performance. From these numbers, various performance metrics can be calculated 

such as the Accuracy, False Positive Rate, True Negative Rate, Precision and Recall.  

2.1.3.1.  Accuracy 

 Accuracy (Formula 1) is one of the most basic and commonly used evaluation 
metrics in classification tasks. It measures the proportion of correctly classified 
instances out of the total instances in a dataset. 

 𝒂𝒄𝒄 =  
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔
=  

𝑻𝑷 + 𝑻𝑵

𝑻𝑷+𝑭𝑷+𝑭𝑵+𝑻𝑵
   

Formula 1: Accuracy 

 This metric assumes the homogeneous distribution of the classes in the 
dataset. Due to this, despite its simplicity and popularity, it may not be the most 
suitable metric for imbalance datasets. In our case, where we are dealing with 
imbalanced data, accuracy can be misleading. The model might achieve a high 
accuracy by correctly predicting the majority class but fail to accurately predict the 
minority class, which is the class of greater interest. 

 Going back to the fraud detection example, where most transactions are 
legitimate, a model that labels all transactions as legitimate would still obtain high 
accuracy due to the skewed class distribution. However, it would completely fail to 
detect fraudulent transactions. 

 Due to this vulnerability to imbalanced datasets, accuracy is not the best 
option. It is important to consider additional evaluation metrics that consider the 
characteristics of imbalanced data.  

2.1.3.2.  False Positive Rate (FPR) 

 FPR is a metric that measures the proportion of actual negative instances that 
are incorrectly classified as positive by the model (Formula 2). It is useful when we 
want to focus on minimizing the misclassification of negative instances. 

𝑭𝑷𝑹 =  
𝑭𝑷

𝑭𝑷 + 𝑻𝑵
 

       Formula 2: False Positive Rate 
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 Since FPR primarily focuses on negatives, it might not adequately address the 
challenges posed by the positive (minority) class, which in this case the primary 
concern. 

2.1.3.3. True Negative Rate (TNR) 

 TNR measures the proportion of actual negative instances that are correctly 
classified as negative by the model (Formula 3). TNR is useful for scenarios where 
correctly identifying negative instances is crucial and false negatives are costly.  

𝑻𝑵𝑹 =  
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

        Formula 3: True Negative Rate 

Like FPR, TNR predominantly focuses on the performance of the negative class. In 
cases with imbalanced datasets and a strong emphasis on accurately classifying the 
positive minority class, it doesn't provide a global evaluation. 

In fraud detection or similar applications of imbalanced problems, the main 
concern is correctly identifying fraudulent cases (positive class) to prevent financial 
losses. Metrics like Precision, Recall, F1 Score and GM, which specifically consider 
the positive class, are more appropriate for evaluating model performance in such 
imbalanced scenarios. These metrics help balance the trade-off between correctly 
identifying positive instances and minimizing false positives, making them more 
suitable for our case. 

2.1.3.4. Precision 

 Precision measures the proportion of correctly predicted positive instances 
(TP) out of all instances that the model predicted as positive (TP, FP), (Formula4). 
With this metric, we analyze the positive or minority class, which holds significant 
information despite being underrepresented. It is a very useful metric when the cost 
of false positives is high, as it indicates the accuracy of positive predictions relative 
to the total predicted positives. 

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

Formula 4: Precision 

 In fraud detection, high precision indicates that the model’s positive 

predictions are reliable and less prone to false alarms. 

2.1.3.5. Recall 

 Recall or True Positive Rate measures the proportion of correctly predicted 
positive instances (TP) out of all actual positive instances (TP, FN), (Formula 5).  It 
is important when the cost of false negatives is high, as it assesses the model’s 
ability to identify all instances of the positive class. 
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𝒓𝒆𝒄𝒂𝒍𝒍 = 𝑻𝑷𝑹 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

     Formula 5: Recall 

      

In the example about fraud detection, recall suggests that the model is 

effective at capturing a significant portion of actual positive instances, which is 

crucial in scenarios where the negative class dominates the dataset. 

After analyzing these metrics, it becomes evident that in scenarios with 

imbalanced datasets, a need for more balanced evaluation metrics arises. Two 

metrics that address this concern are the Geometric Mean (GM) and the F1 Score. 

2.1.3.6. F1 – Score 

 The F1 Score is a single score that combines precision and recall. It balances 
both metrics. It is well-suited for imbalanced datasets where the minority class is 
vital. It captures the nuances of the positive class while taking false positives and 
false negatives into account. 

𝑭𝟏 = 𝟐 ∗ 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

    Formula 6: F1-Score 

2.1.3.7. Geometric Mean (GM) 

 The Geometric mean is a metric that provides a balanced assessment since it 
considers both positive and negative classes’ performance (Formula 7). It is a more 
balanced indicator of overall model performance, particularly in scenarios with 
imbalanced datasets. This is crucial because imbalanced datasets often have a 
majority class that dominates, leading to high accuracy but poor performance on the 
minority class. GM considers both classes and aims to provide a reliable assessment 
that considers true positives and true negatives. 

    

𝑮𝑴 = √𝑹𝒆𝒄𝒂𝒍𝒍 ∗ 𝑻𝑵𝑹 

Formula 7: Geometric Mean 

 

Both GM and F1 Score address the need for more balanced evaluation metrics 
in imbalanced scenarios. They offer a comprehensive view of model performance, 
considering the challenges posed by skewed class distributions. In applications like 
fraud detection, where correctly identifying the minority class is crucial, these 
metrics provide a more accurate assessment of the model's effectiveness and help 
strike a balance between different aspects of performance. 
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2.1.3.8. Area Under the Curve (AUC) 

 AUC is a metric used to assess the performance of binary classifiers by 
measuring the area under the Receiver Operating Characteristic (ROC) curve. AUC 
provides a score that summarizes the curve and can be used to compare classifiers. 
The higher the AUC, the better the model's performance at distinguishing between 
the positive and negative classes. 

A ROC curve is a graph that shows how well a classification model performs. 
The ROC curve plots the True Positive Rate - Recall (how often the model correctly 
identifies positive cases) against the False Positive Rate (how often it mistakenly 
identifies negative cases as positive) at various thresholds. It helps us see how the 
model makes decisions at different levels of certainty. By looking at this graph, we 
can understand how good the model is and choose the threshold that gives us the 
right balance between correct and incorrect predictions. (Figure 2) 

 

Figure 2: AUC-ROC curve [7] 

In imbalanced datasets, where one class dominates the other, AUC is valuable 
because it assesses a model's ability to differentiate between the classes. A high AUC 
suggests that the model can effectively distinguish between positive and negative 
instances, even when they are imbalanced. When AUC=1, we have a perfect classifier 
that correctly distinguishes between all positive and negative class points. If AUC =0, 
the classifier would predict all negatives as positives and all positives as negatives. 
It is particularly useful in applications like medical diagnosis, where correctly 
identifying rare diseases is critical. 

2.1.3.9. Area Under the Precision-Recall Curve (AUCPR) 

AUCPR is a metric used to evaluate binary classifiers by measuring the area 
under the Precision-Recall curve. 

A precision-recall curve (or PR Curve) plots precision (y-axis) against recall 
(x-axis) for different probability thresholds, focusing on the positive class's 
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performance. AUCPR quantifies the classifier’s ability to balance precision and recall 
(Figure 3, b). 

The Precision-Recall AUC is just like the ROC AUC. It summarizes the curve 
with a range of threshold values as a single score. It provides insights into how well 
a model can make precise positive predictions while capturing as many true 
positives as possible. A high AUCPR indicates that the model maintains high 
Precision even when Recall is important. As with AUC, the perfect classifier is given 
when AUCPR = 1. 

 

 

Figure 3:AUC and AUCPR comparison [8] 

Comparing both AUC and AUCPR (Figure 3), the first graph, a , represents a 
ROC curve with the recall (true positive rate) score on the y axis and the fallout (false 
positive rate) score on the x axis. The second graph, b, is a Precision-Recall curve, 
with the precision score on the y axis and the recall score on the x axis.  In both 
graphs the gray area is the Area Under the Curve respectively (AUC and AUCPR). 

In imbalanced scenarios, AUC and AUCPR offer a more nuanced assessment 
of a model's ability to correctly classify instances, particularly when the distribution 
of classes is uneven. While AUC focuses on overall classification performance, 
AUCPR is especially relevant when the positive class is underrepresented, ensuring 
that the model maintains precision in critical applications. 

2.2. Imbalanced Classification Problems 

An imbalanced classification problem is given when the distribution of 
classes in the training dataset is highly skewed, meaning that one class has 
significantly more examples than the other. This imbalance can be challenging for 
many classification algorithms, as they tend to perform poorly when one class is 
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heavily outnumbered by the other. The underrepresented class is called the 
minority class while the more prevalent is the majority class. 

To quantify this imbalance in the number of instances of a dataset, the 
Imbalanced Ratio (IR) [9] is usually used. The IR is calculated by dividing the 
number of instances in the majority class by the number of instances in the minority 
class (Formula 8). 

 

𝑰𝑹 =
𝑵º 𝒐𝒇 𝑴𝒂𝒋𝒐𝒓𝒊𝒕𝒚 𝑪𝒍𝒂𝒔𝒔 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔

𝑵º 𝒐𝒇 𝑴𝒊𝒏𝒐𝒓𝒊𝒕𝒚 𝑪𝒍𝒂𝒔𝒔 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔
 

Formula 8: Imbalanced Ratio 

The imbalanced ratio provides insight into the severity of the class imbalance 
in the dataset. It's an important parameter to consider because it helps in 
understanding the relative prevalence of different classes. A higher imbalanced ratio 
indicates a more severe class imbalance, which can impact the performance of 
machine learning algorithms. 

Imbalanced classification poses several challenges. Firstly, there is bias 
towards the majority class. Most of the machine learning algorithms, aim to 
maximize overall accuracy, which obtains high value in performance, but it does not 
reflect the reality since it predicts the majority class accurately while ignores the 
minority class almost completely. This is a severe problem since the minority class 
represents crucial instances.  

Moreover, the ability of the model to generalize is compromised. The model 
fails to generalize effectively to new, unseen data, particularly for the minority class. 
As a result of this, it fails to classify instances from the minority class. 

Additionally, instances from the minority class are often overlapped by those 
from the majority class. This overlap makes it challenging for the classifier, often 
treating them as outliers or noise. 

Furthermore, in certain scenarios, minority classes exist as small, disjointed 
clusters, which adds an extra layer of complexity to the challenge of accurately 
classifying these instances. 

However there exist various ways to solve the imbalanced classification 
problem, broadly classified into two categories: algorithm-level [4] and data-level 
[3] approaches. 

2.2.1. Algorithm- level approaches 

Algorithm-level approaches are designed to tackle class imbalance by 
modifying the inner workings of existing classifiers. These methods involve 
adjusting the algorithms' internal mechanisms to ensure they can better 
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accommodate imbalanced data. However, such approaches tend to be specific to the 
classifier being used, and their effectiveness often hinges on expert knowledge of 
the task and classifier at hand. To improve performance, careful fine-tuning of 
hyperparameters is usually required.  

Cost-sensitive learning is a method that modifies the learning algorithm to 
assign different misclassification costs to different classes. This makes the classifier 
pay more attention to the minority class. 

In addition to this, ensemble learning techniques are often combined with 
AdaBoost [10], Random Forest [11] or XGBoost [12] methods to enhance the overall 
performance. They can handle class imbalances by combining multiple models but 
face high computational costs. 

2.2.2. Data-level approaches 

Data-level approaches focus on manipulating the data distribution to achieve 
a better balance between the instances of the two classes. These techniques aim to 
balance the representation of the minority and majority classes, thereby improving 
the performance of classifiers on the minority class. In this work we will focus on 
data-level approaches. There are two primary types of data-level approaches: 
undersampling and oversampling. 

2.2.2.1. Undersampling 

Undersampling techniques focus on reducing the number of instances in the 
majority class to match the number of instances in the minority class. These 
techniques can help prevent the classifier from being biased towards the majority 
class and may lead to an improvement in the generalization of the model. However, 
can lead to loss of information and potential underfitting due to the reduced training 
data. 

2.2.2.1.1. Random Under-Sampling (RUS) [13] 

Random Under Sampling is a non-heuristic method that randomly deletes as 
many instances as needed from the majority class until the distribution of the classes 
is balanced (Figure 4). 

 

     Figure 4. Random Under Sampling – RUS [14]  
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 RUS is a very simple method to implement, with a very reduced 
computational cost. As it is a random method, it discards noise instances, but it can 
also potentially discard valuable information, leading to reduced representational 
capacity. However, it is a commonly used method since it is computationally fast 
simple to implement and can obtain good results. 

2.2.2.1.2. Tomek Links (TL) [15] 

 Tomek Links is a technique used to identify pairs of instances where one 
instance belongs to the minority class and the other to the majority class. These pairs 
are known as Tomek links. In order to be consider as a Tomek Link, instances are 
each other's nearest neighbors. After identifying the Tomek Links, the technique 
eliminates the instance of the majority class (Figure 5).  The idea of TL is that when 
instances from distinct classes are close to each other, they might be interpreted as 
ambiguous or noisy and could negatively impact the classifier’s performance. 

 The goal is to improve the separation between the classes’ decision 
boundaries.  One of the benefits of TL is that the concept is straightforward and does 
not require the generation of synthetic data or resampling. 

 

Figure 5: Tomek Links Technique - TL [16] 

 However, TL can be overly aggressive and can remove correctly classified 
instances that are merely close to the other class.  

2.2.2.1.3. Condensed Nearest Neighbor (CNN) [17] 

 Condensed Nearest Neighbor is a technique that reduces the majority class 
instances while retaining the essential information needed to classify the minority 
class accurately.  

CNN initially creates an empty subset in which introduces the first instance 
from the majority class and all instances from the minority class. Through an 
iterative process, CNN examines majority class instances to determine if they can be 
correctly classified using the existing subset. Misclassified instances are 
progressively added with the nearest neighbor algorithm, and the process continues 
until additional majority class instances cannot be integrated without inducing 
misclassification. This ensures that instances that are crucial for accurate 
classification are preserved. 
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However, CNN faces computational complexity due to iterative processes, 
potential bias towards instances closer to the minority class, and a risk of overfitting 
if not carefully managed during application. Additionality if the dataset presents 
noisy data, it doesn’t eliminate it, it retains it. 

2.2.2.1.4. One-Sided Selection (OSS) [18] 

 OSS combines elements of TL and CNN to improve classifier performance by 
selecting a subset of majority class instances that are both informative and 
representative. 

• CNN removes examples from the negative class that are far from the 
decision boundary. This helps to retain instances that contribute to the 
decision boundary. 

• Tomek links remove examples from the negative class that are considered 
as noise or examples on the boundary. (Figure 6) 

 

Figure 6: One-Sided Selection – OSS [19] 

One-Sided Selection effectively addresses class imbalance by achieving a 
balanced dataset while preserving the quality of closely related majority class 
instances to the minority class. This improves model generalization.  

Moreover, the use of Tomek Links eliminates noisy instances from the 
majority class, augmenting data quality. By retaining informative majority class 
instances that contribute to the decision boundary, OSS can lead to more accurate 
classification in regions where the classes overlap. 

Despite its advantages, OSS may still discard some majority class instances, 
potentially resulting in a slight loss of information. In addition, this technique is 
computationally intensive. Careful parameter tuning is essential to ensure optimal 
performance and balance between overfitting and underfitting. 

2.2.2.1.5. Neighborhood Cleaning Rule (NCL)[20] 

NCL focuses into identifying and removing noisy instances from the majority 
class while preserving the informative ones. NCL starts by selecting instances from 
the majority class based on their similarity to instances from the minority class. 
These selected instances from the majority class are evaluated for their closeness to 
the minority class instances. Instances that are near the minority class and classified 
incorrectly are considered noisy and removed. 
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After identifying the instances from the majority class that are close to the 
minority class and have been misclassified, NCL takes an additional step. It focuses 
on the minority class instances that are wrongly classified by the K-nearest 
neighbors (KNN) algorithm. 

In the context of NCL, this step becomes crucial. NCL examines the 
misclassified minority class instances and identifies which instances from the 
majority class are responsible for these misclassifications. These influential majority 
class instances are known as the "neighbors" in the NCL acronym. NCL then 
proceeds to eliminate these neighbors. 

This method significantly reduces noise in the dataset by removing majority 
class instances that are misclassified. However, the performance of NCL can be 
influenced by the choice of parameters, such as the threshold for identifying noisy 
instances and the similarity measure used. 

2.2.2.2. Oversampling 

Oversampling artificially increases the number of instances in the minority 
class, creating a more balanced class distribution and mitigating the biases 
introduced by class imbalance. These instances are normally generated by 
duplication, replication, or synthetic generation methods. It offers benefits in terms 
of improved classifier performance but requires careful consideration to avoid 
potential pitfalls like overfitting and increased complexity. 

2.2.2.2.1. Random Over Sampling – ROS [13] 

 The Random Over Sampling method randomly selects instances from the 
minority class and duplicates them until the desired balance is achieved. This helps 
prevent the classifier from being overly biased toward the majority class and can 
lead to improved classification results on the minority class. 

 As seen on the graph (Figure 7), the ROS method duplicates the existing 
instances until the number of instances in the minority class is the same as the 
number of instances in the majority class. The duplicated instances on the graph are 
represented with a higher intensity of blue.  
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Figure 7: Random Over Sampling - ROS [21] 

 This method is an easy and fast solution to balance the class distribution, but 
it can lead to overfitting, where the classifier becomes too focused on duplicated 
instances. Additionally, the duplication of instances might lead to data redundancy, 
where the model could rely heavily on the same information, reducing the model's 
adaptability. 

2.2.2.2.2. Synthetic Minority Over-Sampling – SMOTE [22] 

 SMOTE generates new synthetic instances that lie in the space between 
existing minority class instances. This technique helps increase the representation 
of the minority class while introducing diversity into the dataset, thereby enhancing 
the classifier's ability to generalize. 

 SMOTE selects a minority class instance and identifies its k nearest neighbors 
within the minority class instances. For each selected instance, SMOTE creates new 
instances by selecting one of its k nearest neighbors and generating a synthetic 
instance along the “space” connecting them. The synthetic instance's features are 
generated by interpolating between the features of the selected instance and its 
neighbor (Figure 8). 

 

Figure 8: Synthetic Minority Over-Sampling- SMOTE technique [23] 
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SMOTE introduces diversity to the dataset, reducing the model’s tendency to 
memorize the training data resulting in a reduction of the chances of overfitting. 

However, potential drawbacks include the risk of introducing noise through these 
new instances, sensitivity to the choice of the parameter k (number of nearest 
neighbors), and the potential impact on the decision boundary, which could amplify 
noise or outliers in overlapping class regions. Careful parameter tuning and noise 
management are important considerations when applying SMOTE.  

2.3. Development environment 

Python 3.8, a version of Python 3, has been employed for the development of 
this work. This high-level programming language is known for its simplicity and 
readability. Python 3 has an extensive ecosystem of useful libraries, particularly in 
the domains of machine learning and addressing imbalanced classification problem. 

 Scikit-learn (sklearn) is a versatile machine learning library that offers tools 
for classification, regression, clustering, and more. In this project, it has been utilized 
for tasks ranging from learning algorithms (k-nearest neighbors, decision trees) to 
evaluating and selecting models (cross-validation and metrics), performing data 
preprocessing using the preprocessing module, and evaluating using the metrics 
module. 

 Imbalanced-learn is a specialized library within scikit-learn specifically 
designed to tackle imbalanced classification problems, offering a diverse range of 
techniques for resampling datasets. The imports that have been used in the project 
encompass techniques for calculating metrics such as geometric mean scores, which 
evaluate the overall performance of models in imbalanced classification scenarios. 
Additionally, the imblearn.pipeline module has been employed to construct data 
processing pipelines integrated with model training, streamlining the workflow 
through preprocessing steps. Moreover, techniques from imblearn.under_sampling 
and imblearn.over_sampling modules have been used to address class imbalance. 

NumPy is a fundamental library for numerical computations in Python. It 
provides support for large, multi-dimensional arrays and matrices, along with a 
wide range of mathematical functions to operate on these arrays.  

Pandas is another essential library for data manipulation and analysis. It 
offers data structures like DataFrames that allow to organize, clean, and preprocess 
the data efficiently.  

Matplotlib is a popular data visualization library in Python. It allows to 
create various types of plots, charts, and graphs to visualize your data and results. It 
has been essential to create visualizations that helped understand the distribution 
of classes and performance metrics. 
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3.  PERTURBATION-BASED OVERSAMPLING  
In the context of addressing imbalanced classification challenges, a range of 

techniques have emerged to counter this issue as stated before (section 2.2). This 
study focuses on data-level techniques, particularly in a new approach of 
oversampling. 

Recent research shows the effectiveness of generating instances that align with 
the minority class distribution [5] or disperse through embedded probability 
density [6] to enhance predictive performance. However, these methods require 
density function fitting or manifold learning techniques, leading to computational 
intensity. 

This study investigates the novel approach within this framework, introduced 
by researchers affiliated with the Department of Electrical and Computer 
Engineering at the University of Alberta, Canada. Their approach, detailed in the 
paper titled "Perturbation-based oversampling technique for imbalanced 
classification problems," aims to introduce an innovative oversampling technique. 
This method is designed to generate new instances like the original minority 
instances, dispersing them throughout the feature space to mitigate overfitting. 

 Notably, it avoids the necessity to identify k-nearest neighbors for efficient 
execution. The proposed technique, known as Perturbation-Based Oversampling 
(POS), accomplishes this by generating novel instances from existing minority 
instances. This rebalances the dataset by perturbing each feature of the minority 
instances, with the extent of perturbation controlled by a hyperparameter 'p'. 

The objective of this study is to explore and validate the efficacy of this novel 
proposition in terms of delivering robust performance and resolving imbalanced 
dataset challenges. Furthermore, a comparative analysis will be conducted between 
the outcomes obtained through the utilization of the POS technique and the results 
by established models from existing methodologies mentioned before (section 
2.2.2).  

Through the analysis of this paper, certain ambiguities were identified along 
with shortcomings in the method’s description. Therefore, we have chosen to 
reinterpret and modify specific elements based on individual judgment. 

3.1. Functioning of the Perturbation-Based Oversampling 

(POS) Technique 

As stated before, the POS technique operates by generating additional 
instances from the existing minority instances, thus obtaining dataset rebalancing 
through controlled perturbations. 
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POS generates a new instance by perturbing the feature of a random instance 
from the minority class. 

The jth feature of a new instance z within a d-dimensional space Rd is 
determined using the following equation: 

𝒛𝒋 =  𝒙𝒋 + 𝝀𝒋 

Formula 8: Equation that obtains a new instance z. 

Where zj represents the jth feature of the new instance, 𝒙𝒋 corresponds to the jth 

feature of a reference or seed instance, and 𝝀𝒋 indicates a specific perturbation 

applied to that feature. The variables x and 𝝀𝒋 belong to the d-dimensional space Rd, 

and d signifies the total number of features involved. It is assumed that the 
perturbation is independent of the seed instance, and the features within the 
perturbation are mutually independent. The variable 𝝀𝒋 follows a normal 

distribution N (0, 1/mp) where “m” represents the number of minority instances and 
"p" is the hyperparameter that controls the variance of the perturbation. This 
hyperparameter “p” must be correctly fitted and has to verify p > 0. 

  

 

 

Figure 9: Explanation diagram of how the POS method obtains each new instance. This is repeated until the dataset 
is balanced. 

As it can be seen on the diagram (Figure 9), a random sample is obtained from 
the majority class, x, and a perturbation to the jth feature of this sample is applied, 
resulting in an alteration of that feature, zj. In this way a new instance z is obtained 
and is introduced into the set of minority class instances. This process is repeated 
until the dataset is balanced, and the amount of minority class instances and 
majority class instances is the same.  

The pseudocode of the algorithm for the implementation of the Perturbation-
Based Oversampling method is as follows (Figure 10): 
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Figure 10: Perturbation-Based Oversampling (POS) Algorithm in which generates z using Formula 8 

The provided algorithm lacks clarity regarding the selection of feature "j" and 
whether the process is intended for each individual feature of the instance. To 
address this ambiguity, a decision has been made to introduce multiple versions of 
the algorithm, aimed at refining, and improving its initial proposal. This step has 
been taken to ensure a more comprehensive understanding of the technique and to 
explore potential enhancements in terms of feature selection and perturbation 
strategies. By offering alternative versions of the algorithm, the aim is to provide 
greater clarity and specificity in the perturbation process, thereby contributing to a 
more robust and effective oversampling technique. 

3.2. POS 1.0. 

The Perturbation Based Oversampling 1.0 (POS 1.0) method is an 
oversampling technique designed to address class imbalance in datasets. Its 
approach involves generating new instances for the minority class by applying 
perturbations to the features of existing instances.  

 The key difference between POS 1.0 and the original POS lies in how the new 
instance is calculated. In POS 1.0, the perturbation is applied to all features of the 
instance, as the algorithm does not explicitly mention how the specific feature to be 
perturbed is chosen. Therefore, POS 1.0 employs a broader methodology, uniformly 
perturbing all features within each generated instance. It is important to note that 
the same perturbation is applied uniformly across all features. This perturbation is 
derived from a normal distribution with parameters N(0, 1/mp), where "m" 
represents the number of minority instances and "p" controls the variance of the 
perturbation. 
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Figure 11:  Explanation diagram of how the POS 1.0 method obtains each new instance. This is repeated until the 
dataset is balanced. 

As it can be seen on the diagram (Figure 11), the procedure of the POS 1.0 
method is different from the original Perturbation-Based Oversampling method. In 
this case, a unique perturbation obtained using a normal distribution is applied to 
each one of the features of the randomly selected instance from the minority class. 
Then the resulting instance is annexed to the minority class set. This process is 
repeated q times (until the number of instances in both classes is the same). 

In summary, POS 1.0 revolves around generating new instances for the 
minority class by applying perturbations to all features, distinguishing it from the 
original POS in the manner of calculating the new instance. 

3.3. POS 2.0. 

In the case of POS 2.0, the key distinction lies in the method used to calculate 
the newly generated instance. In contrast to the original POS approach, POS 2.0 
employs a more sophisticated strategy. In POS 2.0, an array of perturbations is 
created, each corresponding to a specific feature in the instance. These 
perturbations are obtained from a normal distribution N(0, 1/mp), with varying 
values for each feature.  

 

Figure 12:  Explanation diagram of how the POS 2.0 method obtains each new instance. This is repeated until the 
dataset is balanced. 
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This means that a different perturbation value is applied to each feature, 
capturing the diverse characteristics of the dataset. Essentially, POS 2.0 introduces 
individualized perturbations to each feature, allowing for a more nuanced 
adjustment of the newly generated instances. This enhanced approach provides 
greater flexibility in the generation process, potentially leading to improved 
performance when addressing imbalanced classification problems. 

In the plots presented below (Figure 13), the operational mechanisms of each 
method become evident. The original dataset displays an imbalance between the 
positive class (depicted in red) and the negative class (depicted in blue). All 
variations of the methods address this imbalance by perturbing the existing 
minority class instances, each employing a distinct approach as previously 
explained. POS 1.0 and POS 2.0 introduce a higher level of perturbation compared 
to the original POS, as discussed in sections 3.2 and 3.3 since these variants apply 
perturbation to all features within an instance, while the original POS method 
perturbs only a subset of features. Importantly, these methods ensure that the 
generated new instances still belong to the minority class, despite the introduction 
of diversity. 

 

 

Figure 13: Comparison between the Original Imbalanced Dataset, POS, POS 1.0, and POS 2.0 
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3.4. Hyperparameter ‘p’ 

The hyperparameter "p" in Perturbation-based Oversampling (POS) plays a 
significant role in controlling the magnitude of perturbation applied to generate new 
instances for the minority class. In the POS method, the diversity is introduced into 
the minority class by creating synthetic instances through perturbation. 
Perturbation is the process of adding small variations or noise to existing instances 
to create new, similar instances. The hyperparameter "p" determines the extent of 
this perturbation, influencing the level of diversity and similarity between the 
original and generated instances. 

In POS, when generating a new instance, the perturbation is calculated by 
adding a value sampled from a normal distribution with mean 0 and a standard 
deviation determined by the formula "1/mp ", where "m" represents the number of 
minority instances and “p” > 0.  The value of "p" directly affects the spread of the 
distribution, which in turn impacts the degree of perturbation added to each feature. 

Choosing the right value for "p" is crucial because it strikes a balance between 
creating diverse instances and maintaining the representativeness of the minority 
class. If "p" is too large, the perturbation will be minimal, leading to instances that 
are very similar to the originals and potentially resulting in overfitting. On the other 
hand, if "p" is too small, the perturbation will be significant, introducing too much 
diversity and potentially generating instances that are too dissimilar from the 
original distribution, which might lead to misclassification. 

 

Figure 14: Comparison of the results obtained with a low and a high value for "p". 

 

 As shown in the plot (Figure 14) it becomes evident that a lower value of “p” 
(e.g., p = 0.1) leads to a notable increase in dataset diversity due to the higher 
magnitude of perturbation applied to instances. On the contrary, employing a higher 
value for “p” (e.g., p = 1.5) results in the opposite outcome. 
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The relationship between "m" and "p" influences the balance between 
introducing diversity to the synthetic instances and maintaining proximity to the 
original data distribution. When "p" is large and "m" is small, then "1/mp" tends 
towards zero, the magnitude of perturbation is reduced, meaning that the 
introduced variation in the features of instances becomes very small. This can be 
beneficial in situations where the number of instances in the minority class is small, 
and a more cautious generation of new instances is desired to prevent them from 
straying too far from the original data. 

As "p" increases, the magnitude of perturbation applied to instances will 
decrease, providing flexibility to handle class imbalance problems with varying 
amounts of minority instances. 

In practical terms, selecting an appropriate value for "p" requires 
experimentation and domain knowledge. A higher value of "p" might be suitable 
when the dataset has a clear class boundary and only slight variations are needed. A 
lower value of "p" might be chosen when the class distribution is highly imbalanced, 
and greater diversity is required to better represent the minority class. 

Ultimately, the choice of "p" in POS should be guided by a balance between 
the need to introduce diversity and the goal of maintaining a representative 
minority class distribution. Proper tuning of "p" can significantly impact the 
effectiveness of POS in addressing class imbalance while avoiding overfitting or 
introducing excessive noise. 
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4. EXPERIMENTAL STUDY AND 
IMPLEMENTATION OF THE METHODS 

4.1. Experimental Framework 

The performance of each method is evaluated using the 5-fold cross- 
validation method as stated before (sec. 2.1.2.3). For each dataset, the evaluation 
metrics are computed by taking the average of their values over multiple runs. This 
is achieved using the Python library scikit-learn, which provides a method called 
model_selection.StratifiedKFold(). It applies stratification to ensure data consistency.  

In this context, the method employs 5-fold cross-validation, which means the 
dataset is divided into 5 subsets or folds. Moreover, the shuffle parameter is set to 
True, introducing randomness in the data splitting process. The parameter 
random_state is set to 42, ensuring reproducibility by using a fixed random seed for 
the shuffling. 

The initial datasets are treated in order to be used. As mentioned in section 
2.1.1.1, the dataset is scaled using Normalization to avoid some features from 
dominating others due to their large magnitudes.  Python library scikit-learn offers 
a convenient tool called preprocessing.MinMaxScaler(). 

To conduct a consistent comparison under the same conditions for all 
models, common parameters and aspects are set. 

• Classifiers: Two kinds of classifiers are used. All the experiments are 
conducted for each classifier to verify if the behavior is stable. The main 
classifiers used is KNN classifier with its default parameters. This 
classifier is obtained from  sklearn.neighbors. KNeighborsClassifier(). 
Then, the experiments are conducted again but using the CART decision 
tree, obtained from sklearn.tree.DecisionTreeClassifier(). 
 

• Evaluation Metrics: The model is evaluated using four metrics. The main 
metric used is the Geometric Mean obtained from the Python library 
imblearn as imblearn.metrics.geometric_mean_score(). Also, the F1 
score, AUC and AUCPR metrics are used. Obtained as: 
imblearn.metrics.f1_score(), imblearn.metrics.roc_auc_score ()  and 
imblearn.metrics.average_precision_score() respectively. 

 
• Number of neighbors: The number of neighbors to be considered when 

making prediction (k_neighbors) is fixed to 5, the default value. 

To implement the POS methods and the versions proposed POS 1.0 and POS 
2.0, the implementations of a similar algorithms was analyzed. Precisely , ROS and 
SMOTE obtained from a GitHub repository: https://github.com/scikit-learn-
contrib/imbalanced-

https://github.com/scikit-learn-contrib/imbalanced-learn/blob/9f8830e/imblearn/over_sampling/_random_over_sampler.py
https://github.com/scikit-learn-contrib/imbalanced-learn/blob/9f8830e/imblearn/over_sampling/_random_over_sampler.py
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learn/blob/9f8830e/imblearn/over_sampling/_random_over_sampler.py and 
https://github.com/scikit-learn-contrib/imbalanced-
learn/tree/9f8830e/imblearn/over_sampling/_smote 

By examining these oversampling methos and their Python implementations, 
a similar structure has been adopted to simplify and ensure their proper 
functionality, facilitating a seamless comparison. 

4.2. Datasets 

In order to conduct various experiments involving all implemented models 
and pre-existing models to test their performance and analyze and compare their 
results, a set of 28 datasets has been employed. 

The datasets have been sourced from a repository named KEEL-dataset 
(Knowledge Extraction Evolutionary Learning), which serves as a comprehensive 
collection of datasets widely used in the machine learning community. The selected 
datasets exhibit evident class imbalance, encompassing diverse range of Imbalanced 
Ratios (IR), and instance counts. The datasets consist of real or integer values. 

The table below (Table 2) provides an overview of all the datasets along with 
their respective characteristics. The table is organized from datasets with fewer to 
more instances of the minority class: 

Dataset IR Nº instances Nº features 

Nº minority 
class 

instances 

glass-0-4_vs-5 9.22 92 9 9 

glass-0-6_vs_5 10.00 108 9 9 

shuttle-6_vs_2-3 22.00 230 9 10 

glass4 15.47 214 9 13 

glass2 11.59 214 9 17 

glass-0-1-5_vs_2 9.12 172 9 17 

poker-8_vs_6 85.88 1477 10 17 

ecoli-0-3-4_vs_5 9.00 200 7 20 

ecoli-0-6-7_vs_3-5 9.09 222 7 22 

ecoli-0-1_vs_2-3-5 9.17 244 7 24 

ecoli-0-3-4-7_vs_5-6 9.28 257 7 25 

poker-8-9_vs_6 58.40 1485 10 25 

winequality-white-3-
9_vs_5 58.28 1482 11 25 

glass6 6.38 214 9 29 

new-thyroid1 5.14 215 5 35 

yeast6 41.40 1484 8 35 

yeast5 32.73 1484 8 44 

yeast-2_vs_4 9.08 514 8 51 

https://github.com/scikit-learn-contrib/imbalanced-learn/blob/9f8830e/imblearn/over_sampling/_random_over_sampler.py
https://github.com/scikit-learn-contrib/imbalanced-learn/tree/9f8830e/imblearn/over_sampling/_smote
https://github.com/scikit-learn-contrib/imbalanced-learn/tree/9f8830e/imblearn/over_sampling/_smote
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yeast4 28.10 5484 8 51 

winequality-red-4 29.17 1599 11 53 

glass-0-1-2-3_vs_4-5-6 3.20 214 9 55 

glass0 2.00 214 9 70 

glass1 1.82 214 9 76 

yeast-0-2-5-7-9_vs_3-6-8 9.14 1004 8 99 

yeast-0-2-5-6_vs_3-7-8-9 9.14 1004 8 99 

yeast3 8.10 1484 8 163 

yeast1 2.46 1484 8 429 

page-blocks0 8.79 5472 10 559 
Table 2: List of datasets and their characteristics used for the testing of the models. 

This study is structured into two distinct phases, each addressing critical 
aspects of the analysis. The initial phase centers around an in-depth exploration of 
the hyperparameter 'p' and its consequential impact on two key factors: the 
population of instances within the minority class and the Imbalanced Ratio (IR). This 
comprehensive investigation aims to shed light on how varying values of 'p' interact 
with the dataset, affecting the distribution of classes and influencing the overall 
balance and performance. 

Subsequently, the second phase revolves around a comparative assessment 
of the newly introduced methods in contrast to well-established existing techniques. 
Once studied the hyperparameter ‘p’ and the values it should have in different 
scenarios to obtain optimal performance, a comparative analysis is conducted. The 
study seeks to elucidate the method's strengths, weaknesses, and unique attributes, 
while also evaluating its overall effectiveness within the context of imbalanced 
classification problems. Through this multifaceted exploration, a comprehensive 
understanding of the method's performance and its distinct contributions to the 
field of imbalanced learning is expected to emerge. 

4.3. KNN Classifier - Phase 1: Study of hyperparameter ‘p’  

As stated in section 3.4, an optimal "p" value maintains this equilibrium: if 
too high, instances closely mimic originals, risking overfitting; if too low, instances 
may deviate excessively, causing misclassification.  

The relationship between "p" and the minority instances count "m" could 
guide the perturbation magnitude. A higher "p" is preferred for imbalanced datasets, 
maintaining proximity to the original data, while a lower "p" is chosen when a 
clearer class boundary exists.  

Additionally, the imbalance ratio could influence the choice of "p" as it guides 
the balance between generating diverse synthetic instances and maintaining 
proximity to the original data distribution. A higher IR indicates a more severe class 
imbalance, necessitating a careful selection of “p" to ensure that generated instances 
effectively bridge the gap between the minority and majority classes. The choice of 
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"p" directly influences POS's effectiveness in combating class imbalance while 
preserving data representation. 

To verify these statements, a series of experiments have been conducted 
using a subset of datasets that adhere to the desired characteristics for each 
experiment. For these experiments, a grid search has been performed, classifying 
with the KNN classifier, testing various values of the hyperparameter "p" (ranging 
from 0.1 to 1 in increments of 0.1, and including values 1.5, 2, 3, 4, and 5) for each of 
the methods—POS, POS 1.0, and POS 2.0. These experiments have been conducted 
for the original POS method and its variants POS 1.0 and POS 2.0. The goal was to 
assess their performance using geometric mean as evaluation metric on the selected 
datasets. 

4.3.1. POS 

In the initial experiment, datasets with a fixed and low number of instances 
were chosen. This selection aimed to examine the impact of Imbalanced Ratios (IR), 
which varied from low to high values, and to discern any discernible patterns that 
might guide the optimal choice of "p." By observing the interaction between IR and 
the selection of "p," the objective was to identify an appropriate "p" value that aligns 
with specific IR scenarios. 

4.3.1.1. Low fixed number of instances for POS method  

In this experiment, a subset of 9 datasets was chosen from the original 
collection, each containing approximately 200 instances. At first glance to the table 
(Table 3) it appears that the values of "p" should be high, but without any direct 
relationship to IR. 
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Table 3: Performance results for low number of instances (200 instances) and varied values for IR. Classifier: KNN, 
Evaluation metric: GM, Method: POS, ordered from lowest to highest value of IR 

To ensure a clear observation of the influence of the Imbalanced Ratio (IR) 
without the interference of other factors such as number of instances, the same 
experiment was conducted using datasets with a fixed but higher number of 
instances. 

4.3.1.2.  High fixed number of instances for POS method 

By conducting the same experiment with datasets of high but fixed number 
of instances, the specific effect of the Imbalanced Ratio (IR) on the hyperparameter 
"p" can be isolated and evaluated. By keeping the number of instances constant, any 
variation in the results can be directly attributed to differences in the values of "p" 
and their interactions with the IR. This provides a clearer and more precise 
perspective on how the relationship between IR and "p" impacts the performance of 
the POS methods in addressing class imbalance problems. 

In this experiment, another subset of 9 datasets was chosen from the original 
collection, in this case, containing instances in a range between 1482 and 1599 
instances. 

 

Table 4: Performance results for ‘p’, for high number of instances  (1500 instances) and varied values for IR. 
Classifier: KNN, Evaluation metric: GM, Method: POS, arranged in ascending order of IR. 

Analyzing this new table of results (Table 4), if there were a direct 
dependency on the Imbalanced Ratio (IR), both the previous and this experiment 
should yield similar results. However, it's evident that the obtained results are quite 
different. In this new experiment, the optimal values for "p" are lower, contrary to 
the previous experiment where they were considerably high. This suggests that the 
influence might not primarily stem from the IR but from another factor, such as 
number of instances. 
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The observation that the results differ between the two experiments suggests 
that the relationship between the "p" value and the IR might not be as 
straightforward as initially thought. Instead of solely depending on the IR, other 
factors, such as data number of instances, could be influencing the optimal choice of 
"p."  

Following this observation, a decision was made to conduct an experiment in 
which the Imbalanced Ratio (IR) was kept constant, while datasets with varying 
number of intances were selected.  

4.3.1.3.  Fixed IR for POS method 

 To carry out this experiment, a subset of 10 datasets with a consistent 
imbalanced ratio of approximately 9 was chosen. 

Table 5: Performance results for the different values of 'p' setting IR fixed at an average value of 9 and varying the 
number of instances . Classifier: KNN, Evaluation metric: GM, Method: POS, ordered from lowest to highest value of 
number of instances  

Upon examining this chart, a discernible pattern becomes evident. Datasets 
with fewer instances exhibit higher optimal values for "p," while as the number of 
instances increases, the optimal "p" values tend to decrease. However, upon closer 
examination of the chart, it becomes apparent that the number of instances in the 
minority class is also arranged in ascending order along with the number of 
instances. Therefore, this observed pattern could potentially be attributed to the 
number of instances itself, or it might be influenced by the number of instances in 
the minority class (m). Further investigation is needed to determine the underlying 
cause of this pattern. 
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4.3.1.4.  Examining the influence of the number of minority class instances 

To investigate the impact of "m," the datasets and their corresponding 
performances were arranged in ascending order based on the number of minority 
instances.  

 

Table 6: Performance results for the different values of 'p’. Classifier: KNN, Evaluation metric: GM, Method: POS, 
arranged in ascending order of 'm' 

The table (Table 6) presents the first 9 datasets with the smallest minority 
class instances. A distinct trend becomes evident: as the number of instances in the 
minority class grows, the optimal "p" value that yields the highest performance 
diminishes. This observation reinforces the original assumption that the parameter 
"m" significantly influences the outcome. It can be observed that datasets with fewer 
than 13 instances in the minority class tend to exhibit "p" values greater than 1. On 
the other hand, datasets with slightly higher "m" values tend to have much smaller 
"p" values. This suggests that for datasets with a limited number of instances in the 
minority class (less than 13), higher values of "p" are preferred. Conversely, when 
datasets have a slightly higher count of minority instances, optimal "p" values 
become considerably smaller. In other words, the parameter "p" appears to adapt 
according to the scale of the minority instances, indicating its responsiveness to the 
characteristics of the dataset. 

When the dataset has a higher number of instances in the minority class, 
these instances are likely to be more representative and, therefore, closer to the 
original data distribution. In this scenario, applying a smaller perturbation to the 
generated instances can be beneficial to maintain similarity with the original 
instances and preserve the minority class's representativeness. 
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Conversely, when the dataset has fewer instances in the minority class, there 
may be less diversity and representativeness within that class. Applying a larger 
perturbation to the generated instances can help introduce more variability and 
diversity in the synthetic instances, which could be advantageous for enhancing 
model generalization and addressing the lack of representativeness in the minority 
class. 

Given that only a small number of datasets out of the 28 exhibit a minority 
class instance count of less than 13, a pragmatic approach is taken to address this 
scenario. For these datasets with relatively small minority class sizes, it is chosen to 
empirically set the value of the hyperparameter 'p' to 5. This decision stems from 
the understanding that datasets with an insufficient number of minority class 
instances might benefit from a higher 'p' value, enabling the generation of more 
diverse synthetic instances and helping to mitigate the challenge of limited 
representation. 

However, for datasets where the number of minority class instances exceeds 
this threshold, a more comprehensive analysis is undertaken. 

4.3.1.5. Optimal ‘p’ value for POS 

 The goal is to discern the optimal value of 'p' that would lead to superior 
results in terms of classification performance and addressing class imbalance. This 
analysis involves systematically experimenting with different 'p' values across the 
diverse range of datasets with higher number of minority class instances. By doing 
so, the study aims to capture the intricate interplay between 'p,' the underlying data 
distribution. 

 Upon examining this new table (Table 7), a distinct trend emerges: the 
optimal "p" values that lead to superior performance across datasets predominantly 
fall below 1, particularly under the threshold of 0.7. Although there are exceptions 

Table 7: Performance results for the different values of 'p’. Classifier: KNN, Evaluation metric: GM, Method: POS, 
arranged in ascending order of 'm' for datasets with more than m = 20 
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like the "new-thyroid1" dataset, the consensus aligns with this pattern. Delving 
deeper into the analysis, it becomes apparent that the average performance scores 
for various "p" values tend to exhibit a positive correlation with values below 0.7 (it 
can be observed in green in the last column.) Notably, the "p" value of 0.3 emerges 
as a standout choice, consistently delivering the most favorable outcomes across a 
diverse array of datasets. 

Given these findings, we will establish a specific approach for selecting the 
"p" value based on the characteristics of the datasets. For datasets with a larger 
number of minority class instances "m", using smaller values of "p" leads to a higher 
magnitude of perturbation. In practical terms, this means that the synthetic 
instances created through oversampling will undergo more substantial alterations, 
effectively introducing a greater level of diversity into the dataset. This is beneficial 
for cases where there is a larger pool of minority instances to work with. The 
additional diversity introduced by higher perturbation can help prevent overfitting 
and improve generalization by creating synthetic instances that capture a wider 
range of potential instances. In these cases, we will set the "p" value to 0.3. 

On the other hand, for datasets with a smaller number of minority instances, 
opting for higher values of "p" is more appropriate, as previously mentioned, we will 
fix the "p" value at 5. This approach aligns with the goal of minimizing perturbation 
while maintaining data fidelity for instances that are already scarce. In this scenario, 
a higher "p" results in a lower perturbation magnitude. This approach is suitable 
because there may be limited representativeness in the minority class due to the 
smaller number of instances. By applying a more conservative level of perturbation, 
the synthetic instances can be generated with caution, ensuring that they remain 
more aligned with the original data distribution. This helps prevent the generation 
of instances that are too dissimilar to the existing minority instances and thus 
maintains a coherent and representative class distribution. 

In summary, tailoring the "p" value to the specific dataset characteristics 
acknowledges the nuanced interplay between data quantity, class imbalance, and 
the need for diversity. This strategic adaptation seeks to optimize the performance 
of the Perturbation-based Oversampling (POS) method across the entire spectrum 
of datasets. 

4.3.2. POS 1.0 

The entirety of these investigations and experiments has been meticulously 
undertaken again to verify if the observations hold in the context of POS 1.0 version. 

4.3.2.1.  Fixed number of instances for POS 1.0 method 

Regarding the experiments carried out to examine the relationship between 
the imbalance ratio (IR) and the ‘p’ values, varying fixed number of instances, 
consistent observations with the POS method were obtained. Tables showing these 
results are found in the Appendix.  As it happens with the original POS method, the 
relation is not given with the IR, but is given with the number of instances in the 
minority class. 
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4.3.2.2.  Fixed IR for POS 1.0 method 

 

Table 8: Performance results for the different values of 'p' setting IR fixed at an average value of 9 and varying the 
number of instances. Classifier: KNN, Evaluation metric: GM, Method: POS 1.0, arranged in ascending order of 
number of instances  

Much like the trend observed in the POS method, it can be noticed on the table 
(Table 8) a trend where the "p" value decreases as the number of instances 
increases. However, there is a slight difference between the two cases. In the 
previous method, the "p" value gradually decreases until reaching a minimum of 0.1. 
In contrast, in this scenario, the minimum "p" value observed is 0.3, suggesting a less 
pronounced reduction. This discrepancy warrants further investigation and 
analysis to better understand the underlying dynamics. 

4.3.2.3.  Examining the influence of the number of minority class instances for POS 
1.0 

Firstly, similar to the previous studies, we conducted an analysis on datasets 
with the fewest minority instances. The provided table (Table 9) illustrates 
consistent observations. Just as before, datasets with a smaller number of minority 
instances, denoted as 'm', exhibit improved performance with higher values of the 
hyperparameter 'p'. Nevertheless, in this scenario, the decline in the 'p' value is more 
gradual. In the earlier experiment involving the POS method, datasets with 'm' equal 
to or less than 13 demonstrated a preference for 'p' values greater than 1. However, 
in this experiment, even datasets with 17 instances in the minority class exhibit a 
preference for 'p' values below 1. 

Despite this, the decision made in the POS method that datasets with 'm' less 
than or equal to 13 should have a 'p' value set to 5 will be maintained. This threshold 
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will be not altered to 17 in this case, as datasets with 17 instances in the minority 
class show a preference for 'p' values near 1, rather than 5. 

 

Table 9: Performance results for the different values of 'p’. Classifier: KNN, Evaluation metric: GM, Method: POS 1.0, 
arranged in ascending order of 'm' 

4.3.2.4. Optimal ‘p’ value for POS 1.0 

 As analyzed briefly in section 4.3.2.2. and 4.3.2.3, at first glance the decline in 
the 'p' value is more gradual and the minimum "p" value observed is 0.3, suggesting 
a less pronounced reduction. To analyze this, the same experiment as in section 
4.3.1.5 was conducted but for the POS 1.0 method. 

Table 10: Performance results for the different values of 'p’. Classifier: KNN, Evaluation metric: GM, Method: POS 
1.0, arranged in ascending order of 'm' for datasets with more than m = 20 
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As evident from the table (Table 10), the optimal 'p' values for the POS 1.0 
method are not as low as those observed with the POS method. These optimal 'p' 
values fall within a central range, typically between 1 and 0.5, as indicated by the 
prominently green-shaded area in the 'MEAN' column. Among these values, the 
specific 'p' value of 0.7 consistently stands out as the one that yields the highest 
average performance across all the datasets. 

This pattern aligns with the logic that the POS 1.0 method introduces 
perturbations not only to individual features but to the entire instances, resulting in 
a more extensive perturbation overall. Consequently, a much lower 'p' value is not 
necessary to achieve a higher degree of perturbation. Instead, the moderate 'p' 
values inherently yield a significant level of perturbation due to the comprehensive 
nature of the method's perturbation mechanism. 

Taking into consideration all of these studies and analyses, a general rule is 
established for determining the hyperparameter value in POS 1.0. Specifically, for 
datasets with a notably small number of instances in the minority class, the optimal 
value of 'p' is set at 5, representing higher values. Conversely, for datasets featuring 
a larger number of instances in the minority class, the value of 0.7 is designated as 
the preferred choice for 'p'. 

This approach accounts for the observed behavior and patterns across 
various experiments, wherein datasets with differing characteristics demonstrated 
distinct preferences for 'p' values. By tailoring the choice of 'p' based on the 
characteristics of the dataset, this rule aims to strike an optimal balance between 
introducing diversity through perturbation and maintaining the fidelity of the 
minority class distribution. This empirically derived strategy is poised to enhance 
the performance of the POS 1.0 method across a diverse array of imbalanced 
datasets. 

4.3.3. POS 2.0 

Once again, identical experiments have been meticulously conducted, 
mirroring those carried out for both the POS method and POS 1.0. The aim of these 
replications is to confirm the consistency of the findings across all versions. By 
subjecting the new approach, POS 2.0, to the same experimental studies, we aim to 
establish its robustness and ascertain whether the insights gained from the earlier 
versions hold true in this new context as well. This rigorous approach ensures that 
any conclusions drawn about the behavior of 'p' in relation to dataset characteristics 
are not merely coincidental but rather grounded in the inherent nature of the 
approach itself. 

4.3.3.1. Fixed number of instances for POS 2.0 method 

Just as observed previously, no distinct patterns emerge when examining the 
relationship between IR and the optimal 'p' values. As the results are similar, the 
tables can be found in the Appendix. This consistent lack of clear correlation 
strongly suggests that the phenomenon is not a matter of chance but rather a 
recurring characteristic that spans across all three versions of the POS method. This 
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repetition reinforces the concept that the interaction between 'p,' IR, and other 
variables is inherently complex and not easily explained by straightforward 
relationships. 

4.3.3.2.  Fixed IR for POS 2.0 method 

We conducted experiments with POS 2.0 using a selection of datasets characterized 
by a consistent IR of approximately 9. The results (Table 11) were arranged in 
ascending order of number of instances, following the methodology employed in the 
previous POS versions. Remarkably, the outcomes for POS 2.0 closely mirror those 
of POS 1.0. The behavior of the hyperparameter 'p' is quite similar, featuring a 
gradual descent. Interestingly, in this instance, the lowest optimal 'p' value is even 
greater than that of POS 1.0 (p = 0.3) at 0.4, signifying a more gradual decrease in 'p' 
values. 

 

Table 11: Performance results for the different values of 'p' setting IR fixed at an average value of 9 and varying the 
number of instances. Classifier: KNN, Evaluation metric: GM, Method: POS 2.0, arranged in ascending order of 
number of instances  

4.3.3.3.   Examining the influence of the number of minority class instances for POS 
2.0  

 Following the same approach as in the previous methods, we organized the 
initial datasets with the lowest number of minority instances (m) in ascending 
order. 

Observing the results presented in Table 12, a pattern analogous to that of 
the POS 1.0 method emerges. For the datasets with 17 or fewer instances in the 
minority class, the optimal 'p' value is greater than 1, beyond which the optimal 'p' 
value experiences a substantial decline. The first datasets, with the least number of 
minority class instances, exhibit an almost identical pattern to that of the POS 
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method, making it apparent that retaining value of 5 for ‘p’  is warranted, as with 
POS. 

 

Table 12: Performance results for the different values of 'p’. Classifier: KNN, Evaluation metric: GM, Method: POS 
2.0, arranged in ascending order of 'm' 

4.3.3.4.   Optimal ‘p’ value for POS 2.0 

The final phase of the analysis concerning the optimal ‘p’ values is to study 
those datasets with higher number of minority instances, following the same 
approach applied to the preceding methodologies. 

During this phase, as depicted in Table 13, the performance closely parallels 
that of the POS 1.0 method. Within this context, peak performance is attained with 
'p' values ranging from 1.5 to 0.7, as visibly indicated by the green-highlighted range 
in the 'MEAN' column, with the optimal value being 0.9. Furthermore, it's evident 
that performance experiences a notable decline when 'p' values fall below 0.5. This 
underscores the criticality of in-depth analysis regarding the selection of 'p' values 
for each respective method. 



 

44 

 

 Upon comprehensive evaluation and analysis of the datasets, we have 
obtained the optimal 'p' values for each method in the context of varying dataset 
characteristics. Notably, the optimal 'p' values exhibit a consistent trend across the 
methods for datasets with differing numbers of minority class instances. However, 
the precise values differ among the methods due to their unique mechanisms and 
approaches (Table 14). 

 Low ‘m’ High ‘m’ 

POS 5 0.3 

POS 1.0 5 0.7 

POS 2.0 5 0.9 

Table 14: optimal 'p' values for each method 

This distinct selection of 'p' values for each method highlights the necessity 
of careful evaluation and customization, even when working with similar 
oversampling techniques. 

Once the optimal values for the proper tunning of hyperparameter ‘p’ have 
been found a comprehensive comparison of the three methods POS, POS 1.0 and POS 
2.0 is carried out. For each method, we assign the corresponding optimized 'p' value 
and compare our approach against established oversampling and undersampling 
techniques such as Random Under-Sampling (RUS), Clustered Nearest Neighbors 
(CNN), One-Sided Selection (OSS), Tomek Links (TL), Neighbor Cleaning Rule (NCR), 
Random Over-Sampling (ROS), and Synthetic Minority Over-Sampling Technique 

Table 13: Performance results for the different values of 'p’. Classifier: KNN, Evaluation metric: GM, Method: POS 
2.0, arranged in ascending order of 'm' for datasets with more than m = 20 
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(SMOTE). The intent behind this comparison is to demonstrate the superiority of 
our methodology. 

4.4.  KNN Classifier - Phase 2: Method Comparative Analysis 

To substantiate the claim that the POS methods or his variations have a better 
performance, we employ diverse evaluation metrics, ensuring a thorough 
assessment of stability and performance across various scenarios.  

Four comparisons have been conducted, one for each evaluation metric. The 
metrics employed are the Geometric Mean (GM), F1 score, Area Under the Receiver 
Operating Characteristic Curve (AUC), and Area Under the Precision-Recall Curve 
(AUCPR). The datasets with number of instances in the minority class exceeding 20 
has been evaluated. The performance for each method has been obtained and 
assessed across all datasets. Performance for each dataset and method is an average 
of the performance achieved across the 5-fold validation. 

By utilizing this spectrum of evaluation measures, we ensure a 
comprehensive evaluation that verifies the effectiveness of the method in all 
situations. 

4.4.1. Geometric Mean Comparison 

 

Table 15: Performance result table for the different undersampling and oversampling methods. Classifier: KNN, 
Evaluation metric: GM 
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As evident from the performance results table of the methods (Table 15), it is 
apparent that the methods examined in this study, POS, POS 1.0, and POS 2.0, exhibit 
strong performance. In most cases, they achieve the best results, although methods 
such as SMOTE, ROS and RUS (despite the random nature of these last two) also 
demonstrate impressive performance. In this context, the method displaying the 
highest performance is one of the novel approaches implemented in this study, POS 
2.0, obtaining an average result across datasets of 0.81987.  Although following it 
closely is the method SMOTE with a performance of 0.81974. The next two best 
methods in performance are the last two methods studied in this study: POS 1.0 
with a performance of 0.81910 and POS with a performance of 0.81816. This 
showcases their remarkable performance when the appropriate value of ‘p’ is 
selected. 

4.4.2. F1- Score Comparison 

 

Table 16: Performance result table for the different undersampling and oversampling methods. Classifier: KNN, 
Evaluation metric: F1- Score 

In this case, it is also clearly observable in Table 16 that with this performance 
metric, even though lower performance values are generally obtained (averaging 
around 0.6), the methods POS, POS 1.0, and POS 2.0 once again exhibit remarkably 
high performance, yielding superior results in most instances. In this scenario, the 
leading method is POS 1.0, boasting an average of 0.66197, followed by POS with 
0.64962, NCR with 0.64602, and OSS with 0.64582. These results once again 
underscore that one of our newly introduced methods in this study, specifically POS 
1.0, stands out as the top performer, followed closely by the POS method 
investigated within the scope of this study. 
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4.4.3. AUC Comparison 

 

Table 17: Performance result table for the different undersampling and oversampling methods. Classifier: KNN, 
Evaluation metric: AUC 

Once again, in the table (Table 17) can be seen that the POS, POS 1.0, and POS 
2.0 methods demonstrate a good performance. In this case, the best-performing 
method was the original version of the POS method with 0.84511, followed by 
SMOTE and ROS (both oversampling methods) with 0.84315 and 0.84343, 
respectively. Notably, one of the new proposals from this study, POS 1.0, also 
achieved competitive performance with a score of 0.83735. However, it's worth 
mentioning that POS 2.0 isn't far behind, with only a slight difference of 0.00009 in 
performance, reaching a score of 0.83726. 

4.4.4. AUCPR Comparison 

  In this last table (Table 18), the trend is once again noticeable: for a 
significant number of datasets, the methods POS, POS 1.0, and POS 2.0 consistently 
exhibit the best performance. When considering the average performance values, it 
becomes evident that the POS 1.0 method stands out as the strongest performer, 
boasting a performance score of 0.54115. Following closely behind, the OSS method 
achieves a competitive performance with a score of 0.53878, while the TL method 
also demonstrates respectable performance with a score of 0.52175. 
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Table 18: Performance result table for the different undersampling and oversampling methods. Classifier: KNN, 
Evaluation metric: AUCPR 

Taking a comprehensive view of all the provided tables and considering the 
performance across various evaluation metrics, a clear pattern emerges. Among all 
the existing methods, none exhibit the remarkable level of consistency in their 
results as observed with the POS, POS 1.0, and POS 2.0 methods. Invariably, one 
among these three methods consistently claims the top spot in terms of 
performance, while the remaining methods often secure positions among the 
highest performers. Specifically, the POS 1.0 method consistently yields high 
performance results, regardless of the evaluation metric employed. In most cases, it 
ranks as the top-performing method, and in the remaining instances, it is not far 
from achieving that status. 

Furthermore, it's essential to highlight that the efficacy of the original POS 
method isn't simply maintained; rather, the new approaches proposed in this study, 
POS 1.0 and POS 2.0, have demonstrated a compelling tendency to surpass in various 
situation the performance of the original POS method across the some of the 
evaluation metrics (Table 15 and Table 18). This lends further belief to the notion 
that these refined variations carry the potential to elevate the performance of the 
overall approach.  

We can draw the conclusion that the initial hypothesis holds true with the 
KNN classifier, and the methods demonstrate exceptional performance. 
Nonetheless, it remains uncertain whether they would exhibit similar excellence 
when employed with different types of classifiers, such as Decision Trees. 
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4.5. CART Classifier - Phase 1: Study of hyperparameter ‘p’  

To verify the stability of the methods across different contexts, such as 
employing alternative classifiers, a decision has been made to replicate the entire 
experimental procedure once more. However, this time, the classifier chosen is the 
CART decision tree algorithm. 

By revisiting the experimentation process using the CART decision tree 
classifier, the aim is to assess whether the exceptional performance observed 
previously with the KNN classifier remains consistent across different classifier 
paradigms. This comparison will provide valuable insights into the generalizability 
and robustness of the methods across various machine learning models. 

4.5.1. Fixed number of instances for POS, POS 1.0 and POS 2.0 

As it happened in the preliminary experiments utilizing the KNN classifier 
(sec. 4.3.1.1, sec 4.3.1.2, sec4.3.2.1, sec 4.3.3.1), no discernible patterns using the CART 
classifier could be identified between the alteration of Imbalance Ratio (IR) and the 
optimal value of parameter 'p' for any of the three methods. Detailed tables 
containing this information are provided in the Appendix for reference. 

4.5.2. Fixed IR for POS, POS 1.0 and POS 2.0 

Similar observations persisted across all methods when the Imbalance Ratio 
(IR) was held constant at an average value of 9 (sec 4.3.1.3, sec 4.3.2.2, sec 4.3.3.2). 
Likewise, when the datasets were sorted in ascending order of their number of 
instances, a recurring pattern emerged: the optimal 'p' values decreased, mirroring 
the pattern witnessed with KNN classifiers. These tables can be checked in the 
Appendix section. 

However, a slightly distinct set of observations surfaced when the datasets 
were organized according to the least number of instances within the minority class. 

4.5.3. Examining the influence of the number of minority class instances 
for POS 

Upon analyzing the performance using the CART classifier (Table 19), notable 
differences become evident compared to the analogous outcomes with the POS 
method employing the KNN classifier (sec 4.3.1.4). Even though preferred values for 
'p' when 'm' (number of minority class instances) is 13 or fewer still tend to be 
greater than 1 in most instances, there's a shift in the optimal 'p' value. Specifically, 
for datasets with a low count of minority class instances, the optimal value for 'p' 
now appears closer to 1.5 as opposed to the previous value of 5. 

The shift in optimal 'p' values could be attributed to the inherent characteristics 
of the classifiers. Specifically, in the case of the CART classifier, it demonstrates 
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better performance when subjected to a slightly higher degree of perturbation in 
comparison to KNN. When confronted with datasets featuring a limited number of 
instances in the minority class, the CART classifier adapts by employing a smaller 'p' 
value than KNN to induce a slightly higher perturbation since perturbation is given 
by N(0, 1/mp). This choice aims to create more refined and precise decision 
boundaries within the feature space, enabling the classifier to effectively capture 
complex patterns in the minority class distribution. By intensifying the 
perturbation, the CART classifier generates complex boundaries that assist in better 
discerning the nuances of the minority class instances, ultimately enhancing its 
classification performance for challenging scenarios.  

 

Table 19: Performance results for the different values of 'p’. Classifier: CART Decision Tree, Evaluation metric: GM, 
Method: POS, arranged in ascending order of 'm' 

4.5.4. Optimal ‘p’ value for POS 

As highlighted in Table 20, the trend of preferred 'p' values remains 
consistent, once again indicating values lower than 1, specifically less than 0.7. This 
is demonstrated by the green-shaded cells in the last column labeled "MEAN." This 
pattern echoes the observations seen earlier with the KNN classifier (sec. 4.3.1.5). 
While a few exceptions exist, such as the ecoli-0-1_vs_2-3-5 dataset, these have an 
insignificant impact on the overall average results. In this specific case, the optimal 
'p' value would be 0.4 instead of 0.5. However, this marginal alteration is not 
substantial enough to impact the results significantly. As a result, the optimal 'p' 
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values identified for the KNN classifier continue to hold true when applied to the 
CART classifier. 

 

In a broader overview, it can be summarized that the optimal 'p' values 
exhibit consistency (for both KNN and CART classifiers) across datasets with a 
substantial number of instances in the minority class. However, a slight level of 
fluctuation becomes apparent when examining datasets characterized by a lower 
number of minority instances. Despite this variation, a prevailing trend remains 
intact: a preference for larger 'p' values in scenarios involving lower number of 
minority instances, consistently surpassing the threshold of 1. 

4.5.5. Examining the influence of the number of minority class instances 
for POS 1.0 

As stated before (sec. 4.5.2.) A slightly different pattern of observations 
emerged compared to what was observed for POS 1.0 (sec. 4.3.2.3) when the datasets 
were arranged based on the minimum number of instances present within the 
minority class.  

This table (Table 21) exhibits several discrepancies when compared to the 
table in section 4.3.2.3, which analyzed the same case for POS 1.0 but with the KNN 
classifier. In the previous scenario, for datasets with number of instances in the 
minority class less than 13 (even some datasets with 17 instances), the best 
performance was consistently achieved with all 'p' values equal to or greater than 
1.5. This led to the selection of an optimal 'p' value of 5. In the present case, we 
observe a different trend: only a single dataset adheres to this behavior. For the 

Table 20:Performance results for the different values of 'p’. Classifier: CART  Decision Tree, Evaluation metric: GM, 
Method: POS, arranged in ascending order of 'm' for datasets with more than m = 20 
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majority of the other datasets, the optimal performance is notably achieved with 'p' 
set to 2. While it is true that performance with values greater than 2 doesn't 
significantly deteriorate, these results prompt the recommendation to fix 'p' at 2 
when employing the POS method with the CART classifier.  

It's worth noting that the previously chosen value (5) with the KNN classifier 
wouldn't yield unfavorable results either, given these outcomes. 

 

Table 21: Performance results for the different values of 'p’. Classifier: CART Decision Tree, Evaluation metric: GM, 
Method: POS 1.0, arranged in ascending order of 'm' 

4.5.6. Optimal ‘p’ value for POS 1.0 

When considering the optimal 'p' values for POS 1.0 with a substantial 
number of instances (greater than 13) and utilizing the CART decision tree classifier, 
it becomes evident in the table (Table 22) that the optimal 'p' value is 0.6. This is 
highlighted in the green-shaded cells in the last column. Moreover, mirroring the 
observations from the previous instance of this experiment in POS 1.0 but 
employing the KNN classifier (sec. 4.3.2.4), it is evident that the best-performing 'p' 
values are those below 1. In the earlier case, the selected optimal 'p' value was 0.7, 
while in this instance, it is 0.6. However, this minute difference is of minor 
consequence and wouldn't result in significant alterations to the overall 
performance. 



 

53 

 

4.5.7. Examining the influence of the number of minority class instances 
for POS 2.0 

 

Table 23: Performance results for the different values of 'p’. Classifier: CART Decision Tree, Evaluation metric: GM, 
Method: POS 2.0, arranged in ascending order of 'm' 

Table 22: Performance results for the different values of 'p’. Classifier: CART Decision Tree, Evaluation metric: GM, 
Method: POS 1.0, arranged in ascending order of 'm' for datasets with more than m = 20 
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Through this study in the above table (Table 23), we gain valuable insights 
into the optimal parameter values that enhance performance within the framework 
of POS 2.0, coupled with the CART classifier and datasets comprising fewer than 13 
instances. Strikingly, the findings reiterate the significance of larger parameter 
values, consistently greater than 1, to achieve optimal results. In contrast to the 
findings from the same study but employing the KNN classifier (sec. 4.3.3.3), where 
the optimal 'p' value was 5, the value that would yield superior results in this CART 
scenario would be 2. 

4.5.8. Optimal ‘p’ value for POS 2.0 

In the presented table (Table 24), akin to the previous scenario where the 
optimal 'p' values were analyzed for datasets with a considerable number of 
instances in the minority class using POS 2.0 and the KNN classifier (sec. 4.3.3.4), a 
distinct pattern emerges. The optimal 'p' values associated with superior 
performance are central values, specifically those ranging between 1 and 0.7. In this 
instance, the most favorable 'p' value would be 0.8. Notably, this value diverges from 
the equivalent case with the KNN classifier, where the optimal 'p' value was 0.9.  

Consistently observed across all cases using the CART classifier—POS, POS 
1.0, or POS 2.0 —is a minimal variation in optimal 'p' values for datasets 
characterized by a high number of instances in the minority class, compared 
to the KNN classifier. The marginal discrepancy is of such insignificant that 
even if the optimal ‘p' values for KNN are employed in the CART context, 
exceptional performance can be anticipated without any concern. This 
reaffirms the initial conclusions regarding optimal 'p' values. 

 

Table 24: Performance results for the different values of 'p’. Classifier: CART Decision Tree, Evaluation metric: GM, 
Method: POS 2.0, arranged in ascending order of 'm' for datasets with more than m = 20 
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However, a shift in dynamics becomes apparent when dealing with datasets 
featuring a notably low number of minority instances. This can be seen in Table 25. 
Here, the 'p' values demonstrate fluctuation. While previously, the ideal values for 
POS, POS 1.0, and POS 2.0 were all 5, the current findings suggest slightly smaller 
values, specifically 1.5 and 2, emerging as optimal. Notably, this trend maintains the 
essence of the initial concept where values greater than 1 are preferred. 
Nevertheless, this variation should be considered, possibly attributed to the distinct 
nature of the CART decision tree classifier as stated in (sec. 4.5.3) 

 Low ‘m’ High ‘m’ 

POS KNN 5 0.3 

CART 1.5 0.4 

POS 1.0 KNN 5 0.7 

CART 2 0.6 

POS 2.0 KNN 5 0.9 

CART 2 0.8 

Table 25: Optimal 'p' values for each method and classifier 

4.6.  CART Classifier - Phase 2: Method Comparative Analysis 

Once again, a comparison between the methods introduced in this study and 
existing approaches is conducted as in section 4.4. In this case, with the application 
of the CART classifier, the optimal 'p' values established for the KNN classifier are 
evidently transferable. However, for enhanced performance in contrast to other 
existing methods, it is recommended to employ the 'p' values tailored specifically for 
the CART classifier. Nonetheless, given the consistency of the methods and the 
optimal 'p' values identified for datasets abundant in instances of the minority class, 
utilizing the 'p' values optimized for KNN wouldn't lead to unfavorable outcomes 
when employed in conjunction with the CART classifier. 
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4.6.1. Geometric Mean Comparison 

The results presented in Table 26 unmistakably highlight that the method 
POS 2.0 achieves the highest average performance. While OSS, NCR, and SMOTE 
showcase better performance in specific cases, the standout performer in this 
comparison remains the POS 2.0 method, exhibiting an average performance score 
of 0.80477. The subsequent contender is the RUS method, closely following with a 
score of 0.79270. The next two methods in line are those introduced within this 
study, namely POS and POS 1.0, boasting performance values of 0.77789 and 
0.76658, respectively. These methods significantly outshine the remaining 
techniques included in the comparative analysis. 

 

Table 26:Performance result table for the different undersampling and oversampling methods. Classifier: CART 
Decision Tree, Evaluation metric: GM 

4.6.2. F1 – Score Comparison 

Within the context of Table 27, a striking trend emerges that distinctly 
separates the new methodological approaches from the rest. These new techniques 
have managed to establish a considerable lead over their traditional counterparts, 
creating a significant performance disparity. Notably, POS 1.0 emerges as the 
undeniable champion in this arena, showcasing an impressive average performance 
score of 0.65411. This success is closely followed by POS 2.0, further reinforcing 
the efficacy of these newly introduced methods with a performance score of 
0.63993. 
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In comparison, the method SMOTE follows them achieving a performance 
score of 0.59265. However, despite obtaining high performance, SMOTE has not 
obtained the best performance in any dataset when compared to the rest of the 
methods under consideration. These findings emphasize the groundbreaking 
potential and robust performance of the new approaches, setting them apart as 
frontrunners in the pursuit of effective data augmentation and improved 
classification outcomes. 

 

Table 27: Performance result table for the different undersampling and oversampling methods. Classifier: CART 
Decision Tree, Evaluation metric: F1-Score 

4.6.3. AUC Comparison 

Upon reviewing Table 28, which presents the performance assessed through 
the AUC metric, it becomes evident once again that the POS, POS 1.0, and POS 2.0 
methods consistently deliver strong performance outcomes. What's particularly 
striking is that upon examining the average performance scores, none of the other 
existing methods manage to surpass a score of 0.8. This stands in sharp contrast to 
the methods introduced in this study, which have achieved values exceeding 0.8. 
Remarkably, all three of these newly implemented methods emerge as the highest-
performing techniques. Leading the pack is POS 2.0, attaining an impressive score 
of 0.8268, closely followed by POS 1.0 with a score of 0.80924, and the original 
POS method at 0.80730. 
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Table 28: Performance result table for the different undersampling and oversampling methods. Classifier: CART 
Decision Tree, Evaluation metric: AUC 

The success of the new approaches becomes increasingly evident, surpassing 
not only the established methods but also outshining the original POS method itself. 
This further underscores the substantial improvement and innovation these newly 
introduced techniques bring to the field of data augmentation and classification 
performance. 

4.6.4. AUCPR Comparison 

Observing Table 29, it becomes apparent that when evaluating performance 
using the AUCPR metric, the achieved scores are generally quite low compared to 
the previous metrics. None of the traditional methods manage to surpass the 
threshold of 0.5 in performance. Despite this trend, the new approaches introduced 
in this study, specifically POS 1.0 and POS 2.0, exhibit performance scores exceeding 
0.5. More precisely, POS 1.0 obtains a score of 0.51443, while POS 2.0 achieves 
0.50813. Consequently, these two methods stand out as the only ones with 
noteworthy performance, setting them apart from the rest of the methods evaluated 
in this study. 
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Table 29: Performance result table for the different undersampling and oversampling methods. Classifier: CART 
Decision Tree, Evaluation metric: AUCPR 

Upon comprehensive examination of the comparative analyses, a striking 
pattern emerges, showing the consistency of POS, POS 1.0, and POS 2.0 in terms of 
their performance. Notably, this consistency holds true regardless of whether the 
classifiers employed are KNN or CART. This remarkable stability can be attributed 
to the underlying robustness and effectiveness of these methods. 

These new approaches have demonstrated an unparalleled level of 
performance, consistently outperforming the traditional methods across a diverse 
array of evaluation metrics. The results obtained not only affirm the superiority of 
these methods but also emphasize their resilience in varying scenarios. Both the 
KNN and CART classifiers have been subjected to these novel methods, revealing 
that the methods' effectiveness in improving data augmentation and classification 
performance is not dependent on the specific classifier utilized. In essence, the trio 
of POS techniques, POS, POS 1.0, and POS 2.0, offer a reliable solution for enhancing 
classification outcomes and overcoming the challenges posed by class imbalance. 
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5. Conclusion 
In this study, the POS method has been explored. The Perturbation Based 

Sampling method involves introducing controlled perturbations through a 
hyperparameter ‘p’ to the minority class in a dataset for imbalanced classification 
problems. This is done with the goal of enhancing classification algorithm 
performance. 

Following an in-depth analysis of the original POS method, two refined versions 
were introduced in this study—namely POS 1.0 and POS 2.0. These versions aimed 
to clarify previously unclear aspects of the original method while also offering 
improved alternatives to it. By addressing ambiguities and incorporating 
enhancements, the objective was to elevate the methodology's effectiveness and 
utility in mitigating the challenges associated with class imbalance. 

These methods demonstrate exceptional performance. However, the challenge 
lies in determining an optimal value for the hyperparameter 'p' that would yield 
even higher performance. 

An extensive array of experiments has been carried out to ascertain the ideal 
value for the hyperparameter 'p' across a diverse range of dataset scenarios. 
Initially, a prevailing hypothesis suggested that the Imbalance Ratio (IR) of the 
datasets would directly correlate with the optimal 'p' value, implying that the degree 
of class imbalance would directly influence how 'p' should be set. However, upon 
meticulous investigation and rigorous experimentation, it became apparent that the 
relationship between the IR and 'p' is far more intricate and nuanced than initially 
assumed. Through systematic exploration and analysis of various datasets with 
varying levels of class imbalance, it was discovered that the association between the 
IR and the optimal 'p' value is not characterized by a linear or predictable pattern. 
In fact, the interplay between these factors often demonstrates substantial 
variability and complexity. Certain datasets with similar IRs exhibited contrasting 
trends in the optimal 'p' value, highlighting the influence of additional dataset-
specific attributes beyond the IR itself. Consequently, while the IR does indeed play 
a role in determining the optimal 'p' value, it is by no means the sole determinant.  

A notable relationship between the hyperparameter 'p' and the number of 
instances within the minority class has emerged from our investigation. Particularly 
in datasets characterized by a limited count of minority instances, we observed an 
intriguing trend where higher 'p' values translated to better method performance. 
This trend was pronounced when employing a KNN classifier, as 'p' values around 5 
appeared to yield optimal outcomes. On the other hand, when utilizing decision 
trees (CART), an ideal 'p' value got around 2. Although this relationship might 
initially appear somewhat variable, a thorough analysis of the complete range of 
experiments conducted revealed a consistent pattern. Across all scenarios explored, 
it was consistently observed that for datasets with a sparse minority class, the 
optimal 'p' values were consistently greater than 1. This finding led us to establish a 
general guideline: regardless of the classifier employed, adopting 'p' values greater 
than 1 ensures robust method performance in the majority of cases and scenarios. 
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For datasets with a substantial number of instances in the minority class, the POS 
method employs a lower 'p' value compared to the 'p' values utilized by the POS 1.0 
and POS 2.0 methods. These latter methods adopt values that are relatively modest 
in magnitude but still somewhat higher. This distinction arises from the fact that 
POS 1.0 and POS 2.0 introduce more perturbation to instances compared to the 
original POS method. While the original POS method perturbs a single feature of an 
instance, the newer versions perturb multiple features.  

Due to this difference in perturbation intensity, POS 1.0 and POS 2.0 utilize 'p' 
values that are not as low. In this context, a guideline has been established: the POS 
method employs a 'p' value of 0.3, while POS 1.0 and POS 2.0 adopt values of 0.7 and 
0.9 respectively, for datasets with a higher number of minority class instances. 

This approach aligns with the recognition that datasets containing a greater 
number of minority class instances necessitate a more pronounced level of 
perturbation. This is because as the number of instances increases, the variations 
within the minority class become more apparent, requiring a stronger perturbation 
to amplify these distinctions effectively and improve classification performance.  

Upon meticulous examination of the extensive array of experiments and 
comparative analyses conducted in comparison with existing class balancing 
methodologies, a resounding affirmation emerges: the POS method exhibits 
remarkable efficacy and robustness. Its adeptness in mitigating class imbalance 
issues is apparent across a spectrum of datasets and scenarios.  

The new approaches proposed in this study, POS 1.0 and POS 2.0, borne out of 
an intention to refine and clarify certain nuances in the original POS method, have 
demonstrated substantial promise. Notably, when subjected to rigorous 
performance evaluations across a diverse range of scenarios using both KNN and 
CART classifiers, the new methods consistently outshined the original POS approach 
in terms of overall performance. The majority of comparisons revealed that these 
novel methods show superior classification outcomes, sustaining their potential for 
providing robust solutions to class imbalance. This remarkable consistency shows 
the potential breakthrough that the POS 1.0 and POS 2.0 methodologies bring to the 
realm of class imbalance mitigation, offering new avenues for tackling this challenge 
with effectiveness. 
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APPENDIX 

ADDITIONAL RESULTS FOR THE CONDUCTED EXPERIMENTS 

The appendix contains tables with performance results that are similar to 
those already presented in the main report. Due to their similarity, these tables have 
been excluded from the main report for the sake of brevity. 

 

Table 30: Performance results for low number of instances (200 instances) and varied values for IR. Classifier: KNN, 
Evaluation metric: GM, Method: POS 1.0, arranged in an ascending order of IR. 

 

Table 31: Performance results for ‘p’, for high number of instances  (1500 instances) and varied values for IR. 
Classifier: KNN, Evaluation metric: GM, Method: POS 1.0, arranged in ascending order of IR. 
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Table 32: Performance results for low number of instances (200 instances) and varied values for IR. Classifier: KNN, 
Evaluation metric: GM, Method: POS 2.0, arranged in an ascending order of IR. 

 

Table 33: Performance results for ‘p’, for high number of instances  (1500 instances) and varied values for IR. 
Classifier: KNN, Evaluation metric: GM, Method: POS 2.0, arranged in ascending order of IR. 
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Table 34: Performance results for low number of instances  (200 instances) and varied values for IR. Classifier: CART 
Decision Tree, Evaluation metric: GM, Method: POS, arranged in an ascending order of IR. 

 

Table 35: Performance results for ‘p’, for high number of instances  (1500 instances) and varied values for IR. 
Classifier: CART Decision Tree, Evaluation metric: GM, Method: POS, arranged in ascending order of IR. 
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Table 36: Performance results for the different values of 'p' setting IR fixed at an average value of 9 and varying the 
number of instances . Classifier: CART Decision Tree, Evaluation metric: GM, Method: POS, arranged in ascending 
order of number of instances  

 

Table 37: Performance results for low number of instances  (200 instances) and varied values for IR. Classifier: CART 
Decision Tree, Evaluation metric: GM, Method: POS 1.0, arranged in an ascending order of IR. 
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Table 38: Performance results for ‘p’, for high number of instances  (1500 instances) and varied values for IR. 
Classifier: CART Decision Tree, Evaluation metric: GM, Method: POS 1.0, arranged in ascending order of IR. 

 

Table 39: Performance results for the different values of 'p' setting IR fixed at an average value of 9 and varying the 
number of instances . Classifier: CART Decision Tree, Evaluation metric: GM, Method: POS 1.0, arranged in ascending 
order of number of instances  
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Table 40: Performance results for low number of instances  (200 instances) and varied values for IR. Classifier: CART 
Decision Tree, Evaluation metric: GM, Method: POS 1.0, arranged in an ascending order of IR. 

 

Table 41: Performance results for ‘p’, for high number of instances  (1500 instances) and varied values for IR. 
Classifier: CART Decision Tree, Evaluation metric: GM, Method: POS 2.0, arranged in ascending order of IR. 
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Table 42: Performance results for the different values of 'p' setting IR fixed at an average value of 9 and varying the 
number of instances . Classifier: CART Decision Tree, Evaluation metric: GM, Method: POS 2.0, arranged in ascending 
order of number of instances  

 

 

 

 

 

 

 

 

 

 

 

 


