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Chapter 13
Applications of Sensing for Disease 
Detection
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Abstract  The potential loss of world crop production from the effect of pests, 
including weeds, animal pests, pathogens and viruses has been quantified as around 
40%. In addition to the economic threat, plant diseases could have disastrous 
consequences for the environment. Accurate and timely disease detection requires 
the use of rapid and reliable techniques capable of identifying infected plants and 
providing the tools required to implement precision agriculture strategies. The com-
bination of suitable remote sensing (RS) data and advanced analysis algorithms 
makes it possible to develop prescription maps for precision disease control. This 
chapter shows some case studies on the use of remote sensing technology in some 
one of the world’s major crops; namely cotton, avocado and grapevines. In these 
case studies, RS has been applied to detect disease caused by fungi using different 
acquisition platforms at different scales, such as leaf-level hyperspectral data and 
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canopy-level remote imagery taken from satellites, manned airplanes or helicopter, 
and UAVs. The results proved that remote sensing is useful, efficient and effective 
for identifying cotton root rot zones in cotton fields, laurel wilt-infested avocado 
trees and esca-affected vines, which would allow farmers to optimise inputs and 
field operations, resulting in reduced yield losses and increased profits.

Keywords  Crop disease · Leaf and canopy level · Image analysis · Spectral 
analysis · UAVs · Multispectral and hyperspectral imaging · Prescription map

13.1  �Introduction

The potential yield of agricultural crops can be affected by biotic and abiotic stress 
factors that can reduce the quality and quantity of production. It has been estimated 
that around 40% of world crop production is lost due to the impact of pests, includ-
ing weeds, animal pests, pathogens and viruses (Oerke and Dehne 2004). Moreover, 
in terms of the efficacy of actual crop protection practices, the control of diseases 
caused by fungi and bacteria is considerably less than protection obtained for other 
pests (Oerke and Dehne 2004). In addition, plant diseases are not only an economic 
threat, but could also have disastrous consequences for the environment, as new 
diseases and the re-emergence of controlled ones are developing at an alarming rate 
in crops around the world with transfers between hosts, global climate change and 
the use of some intensive management practices to increase productivity (Howden 
et al. 2007). Precision disease control is therefore a challenging goal in agriculture 
that could assist growers in decision-making to improve crop yields and reduce 
economic costs and environmental risks.

Traditionally, diagnostic methods consist of visual inspection of suspicious trees, 
collecting symptomatic plants and laboratory analyses, including microscopic eval-
uation, and molecular, serological and microbiological diagnostic techniques. These 
methods are costly and time-consuming, especially when disease symptoms are 
similar to those caused by abiotic stress such as nutrient and water deficiency, 
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making visual diagnosis of the disease very complicated. In addition, visual estima-
tion is subject to the individual’s experience and, therefore, to human bias (Mahlein 
2016). Accurate and timely disease detection requires the use of rapid and reliable 
techniques to collect and process data, based on spatial and temporal information on 
the crop in the field. In that sense, techniques capable of detecting infected plants 
before they show symptoms noticeable to the human eye would allow better crop 
management and mitigate the spread of disease (De Castro et al. 2015a).

The need for robust and timely indicators of disease is increasing the focus of the 
agricultural sector to find technological advances for monitoring plant health. The 
main objective of such advances is to provide growers with tools to implement pre-
cision agriculture (PA) methods that reduce the economic and environmental costs 
related to agricultural activity and adapt to the social demands for improved food 
security and the sustainability of agricultural production systems. In this context, 
remote sensing (RS) systems play a key role through the application of powerful 
technologies, such as new terrestrial (tractor, carriers, robots) or remote platforms 
(satellite, manned aircraft and unmanned aerial vehicles -UAVs), and multispectral, 
hyperspectral and thermal sensors, which have immense potential for monitoring 
the health status of crops (Zhang et al. 2019). Sensors can provide dense informa-
tion for the whole field with less expense and can also provide information at wave-
lengths not visible to the human eye making earlier disease detection possible. In 
addition, the development of increasingly powerful algorithms for image and data 
analysis (e.g. multivariate analysis, machine learning and deep learning) enables the 
discovery of hidden patterns and unknown correlations between the factors involved 
in the disease development. However, the data analysis necessary can be time-
consuming and requires automation once sound approaches have been developed. 
The combination of suitable remote sensing data and advanced analysis algorithms 
makes it possible to develop prescription maps for site-specific pest management 
programs in sustainable crop production.

In this chapter, case studies on the use of remote sensing techniques in arable 
crops, horticulture and viticulture, accounting for some of the world’s major crops; 
namely cotton, avocado and grapevines, are described. In all the cases, RS has been 
applied to detect disease caused by fungi using data from several types of RS plat-
form. Images from satellite, manned plane and UAVs were used to map cotton root 
rot (CRR) for site-specific application of fungicide using tractor pulled variable-rate 
(VR) control systems. In the case of avocado, the study describes the spatial and 
spectral properties for the diagnosis of laurel wilt (Lw) using spectral information 
and remote images from helicopter flights at low altitude. In addition, another wide-
spread avocado disease, i.e. Phytophthora root rot, and abiotic factors causing simi-
lar symptoms were evaluated. In the grapevine case study, a hyperspectral (HS) 
imaging system was employed on esca diseased leaves to distinguish between visu-
ally asymptomatic and symptomatic leaves at the laboratory scale using multivari-
ate data analysis and several pre-processing imaging techniques.
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13.2  �Case Study 13.1. Detecting Cotton Root Rot disease 
for Precision Fungicide Application

13.2.1  �Introduction

Cotton Root Rot (CRR), caused by the soilborne fungus Phymatotrichopsis omniv-
ora, has been a major disease in cotton crops in the southwestern USA (mainly 
Texas and Arizona) since first described by Pammel (1888). From 2002 to 2011, 
roughly 6% of the Texas cotton crop was lost to CRR annually (NCC 2013). Roots 
of infected plants rot, and then the plants wilt and die quickly with the leaves still 
attached. Symptoms in a cotton crop begin during vegetative growth but typically 
are more noticeable during flowering and fruit development. The CRR tends not to 
affect entire fields; instead it begins at various points in a field and typically spreads 
from these foci throughout the growing season (Smith et  al. 1962) in irregular, 
mainly circular patterns (Lyda 1978). Diseased areas (Fig. 13.1a) range in size from 
less than a square metre to several hectares and expand as the season progresses, 
especially in rainy years. Moreover, CRR tends to occur from year to year in virtu-
ally the same areas within fields (Yang et al. 2016). Therefore, remote sensing (RS) 
imagery recorded late in one growing season and used to detect CRR zones can be 
useful to predict their occurrence in future seasons.

Over many decades, several treatments have been evaluated for disease control 
with little or no success. But in 2008 Topguard fungicide (FMC Corp., Philadelphia, 
PA, USA), containing the active ingredient flutriafol, was found in a research trial 
to be effective at controlling CRR (Isakeit et al. 2009) and has been available to 
growers since 2012. Growers who applied the fungicide on their fields achieved 
lower CRR incidence, larger yields, and better fibre quality on affected fields (Drake 
et al. 2013; Yang et al. 2014). The most effective method of fungicide application is 
during planting, which is many weeks before the appearance of symptoms in plants 
growing in an infested field.

13.2.2  �Methods

Now that a successful treatment for CRR has been found, fields with a history of 
CRR are commonly treated uniformly, even though the fungicide is expensive (up 
to $125 USD per ha in 2019) and the grower is aware that only a portion of the field 
is infected. Uniform treatment ensures that all existing and potential new infected 
areas are treated because it is not known whether infected areas will expand from 
year to year. Furthermore, growers historically have not had ready access to site-
specific application equipment and prescription maps that could potentially be 
developed from RS imagery. The following descriptions illustrate the use of three 
types of RS data in field studies to map areas of diseased cotton for site-specifically 
applying fungicide, as well as describing the advantages and disadvantages of each 
method, and potential future advances in the technology.
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13.2.2.1  �Satellite Remote Sensing

Until recently, available satellite data (e.g. Landsat) did not have adequate spatial 
resolution to map CRR precisely in a field. Newer satellite systems, however, are 
reaching a level of resolution (1.0 to 2.0 m per pixel) that can be useful in mapping 
CRR. Yang et al. (2018) used a GeoEye (DigitalGlobe, Inc., Longmont, CO, USA) 
satellite scene acquired on July 27, 2009, to detect CRR in a southern Texas field 
with a history of CRR (Fig. 13.1a). Image-acquisition timing was late in the grow-
ing season when the full extent of CRR was expressed, but prior to pre-harvest 

Fig. 13.1  (a) A 2009 GeoEye-1 satellite colour-infrared (CIR) image of a 41-ha cotton field in 
southern Texas with areas of CRR, (b) a two-zone classification map of the field, in which light-
grey spots are classified as infected and the dark-grey area is classified as healthy, (c) a prescription 
map of the field in which only the light-grey spots were treated with fungicide, (d) the as-applied 
map for actual fungicide applied during planting, (e) the original satellite image of the field with 
fungicide-application zones delineated, and (f) the post-treatment image, showing that virtually no 
disease is evident in the field in 2016 after the precision fungicide application. (Adapted from Yang 
et al. 2018. Used with permission)
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defoliation so that green leaves remained on the live plants. The scene included four 
image bands (red, green, blue and near-infrared; or RGB plus NIR) at fairly high 
resolution (2 m).

A prescription map based on the satellite image was created in eight steps. (1) A 
field boundary was defined for the field to create an area of interest (AOI). (2) A 
normalised difference vegetation index (NDVI) image was created for the 
AOI. Pixels with smaller NDVI values were generally associated with CRR-infected 
zones, while those with larger values were associated with non-infected zones. (3) 
The NDVI images were classified with Imagine software (Erdas Inc., Norcross, GA, 
USA) into CRR-infected and non-infected zones by ISODATA (iterative self-
organizing data analysis) unsupervised classification (Campbell 2002). The 
ISODATA method was initiated with two classes having arbitrary class means based 
on the NDVI image statistics. Each pixel was assigned to the class closest to the 
NDVI mean. Once all image pixels were assigned to a class, the NDVI means of the 
two classes were recalculated and used for subsequent iteration. The process was 
repeated until the number of iterations reached a prescribed limit or the percentage 
of changed pixels was within a small prescribed tolerance of 0% between iterations. 
(4) Once the iterative process was complete, the classification maps contained many 
polygons representing CRR infection. Some of the smaller polygons represented 
actual CRR infection, whereas some were artefacts of the classification procedure. 
The CRR polygons with areas less than or equal to 4 m2 were filtered out where they 
were sparse or merged together where they were dense with ArcInfo GIS software 
(ESRI Inc., Redlands, CA, USA). About 11% of the field was classified as having 
CRR (Fig. 13.1b) at this point in the classification process, and it occurred at various 
locations around the field. (5) Ground observations were made to verify that field 
areas classified as CRR were related to CRR. In general, ground observations sup-
ported the classification of field areas into CRR zones based on analysis of the satel-
lite imagery. However, some field areas classified as CRR were related to anomalies 
such as planter skips and human-caused artefacts that needed to be removed manu-
ally from the prescription map. (6) To account for possible spatial variation of CRR 
from year to year, a buffer of 10 m was added around the CRR areas on the classifi-
cation map to become part of the treatment area in the prescription map (Fig. 13.1c). 
The buffer zones significantly increased the treatment area and tended to connect 
some of the CRR areas, making the prescription map more practical for site-specific 
application. After this step about 37% of the field was prescribed as treatment area. 
(7) The polygons in the prescription map were assigned as Spray for CRR areas and 
No-Spray for non-CRR areas. (8) The prescription map was converted to an ESRI 
shapefile for use by the variable-rate (VR) application equipment.

The prescription map described in the previous paragraph and based on 2009 
satellite data was loaded onto a tractor’s VR control system to apply Topguard Terra 
at planting in 2016. The map was converted to the appropriate format for the vari-
able-rate (VR) control system installed on a John Deere 8230 tractor (Deere & 
Company, Moline, IL, USA) owned by the cotton grower. Planting of half the field 
occurred on March 18, 2016 and the other half on March 23. The application rate of 
Topguard Terra was 0.585 L ha−1 (full prescribed rate) mixed with 56.1 L ha−1 of 
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water. The liquid was applied during planting with the modified in-furrow method. 
Liquid flow was distributed to the shanks of a 12-row planter with row spacing at 
0.965 m. Rainfall occurred a day after the first half of the field was planted resulting 
in a poor stand, replanting of that half of the field was required on April 6. No fun-
gicide was applied at replanting.

Two tasks were carried out to evaluate the results of the satellite-based prescrip-
tion map and VR fungicide application. (A) An as-applied map for the fungicide 
was recorded during planting (Fig. 13.1d), and it consisted of rectangular regions 
with fixed width equivalent to the effective swath of the planter (11.58 m). The map 
data included target and actual rates for comparison between actual application and 
the prescription. The application system missed some small areas and did not turn 
on and off exactly when entering and exiting treatment zones, respectively. The 
actual treatment area was 6% smaller than the prescribed area, and the actual appli-
cation rate was 0.4% higher than the prescribed rate, but with such small deviations 
from the prescription map, the VR application was considered adequate for evalua-
tion of overall efficacy. (B) A two-camera aerial imaging system on a manned air-
craft, capturing RGB plus NIR images, was used in 2016 to collect post-application 
images to evaluate the efficacy of the site-specific fungicide application. An image 
acquired late in the season at 1220 m above ground level (AGL) with a pixel size of 
0.30 m was used to detect CRR areas and assess the efficacy of the site-specific 
application. Compared to the map of fungicide-application zones based on the 2009 
image (Fig.  13.1e), the 2016 image (Fig.  13.1f) made it clear that the fungicide 
effectively controlled the disease in the treated areas, although CRR appeared in a 
few treated areas towards the end of the growing season. This late CRR manifesta-
tion had little effect on yield, because most cotton bolls were fully developed by 
that time.

13.2.2.2  �Manned Aircraft Remote Sensing

High-resolution satellite imagery has shown potential for CRR detection and creat-
ing fungicide prescription maps, but manned-aircraft images have been used repeat-
edly for this purpose on numerous fields (Yang et  al. 2014). Aerial imagery has 
advantages over satellite imagery including higher spatial resolution, more flexibil-
ity in timing of data acquisition and the ability to collect data on cloudy days. Yang 
et  al. (2018) used a four-camera system (Yang 2012) to collect RGB plus NIR 
images of two fields with a history of CRR in different cotton-growing regions of 
Texas. Field 1 was in southern Texas, and Field 2 was in western Texas. Images 
were collected from a single-engine aircraft shortly before harvest-to aid applica-
tion in 2010, when CRR was fully expressed for the season. Image acquisition 
occurred at 2740 m AGL, giving a pixel resolution of 0.90 m, which was resam-
pled to 1 m.

Prescription maps based on the aerial images of Fields 1 and 2 were created in 
eight steps, similar to those described in the section on satellite remote sensing. 
Minor differences are noted here. After step (4), about 33% of Field 1 and 37% of 
Field 2 were classified as CRR area. In step (6) a 5-m buffer (instead of 10-m) was 
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added around the CRR areas on the classification maps to become part of the treat-
ment area in the prescription maps. After this step about 57% of Field 1 and 63% of 
Field 2 were prescribed as treatment areas.

These prescription maps based on 2010 aerial image data were loaded onto trac-
tors’ variable-rate (VR) control systems to apply fungicide at planting in 2015, the 
next growing season when access to the field was possible and when cotton was 
being grown in the rotation. For Field 1 a John Deere VR control system was 
installed on a John Deere 8230 tractor owned by the grower. Topguard Terra fungi-
cide was applied at planting on May 1, 2015, about six weeks later than the usual 
planting date because of excessive rainfall. The application rate was 0.292 L ha−1 of 
product (half the prescribed rate) mixed with 56.1 L ha−1 of water. Liquid flow was 
distributed to the shanks of a 12-row planter with row spacing of 0.965  m and 
applied with the modified in-furrow method. For Field 2 a Trimble Field-IQ spray 
control system was installed on a John Deere 8210 tractor owned by the grower. The 
older Topguard fungicide formulation (approved under EPA Section 18) was applied 
at planting on June 3, 2015. The application rate was 2.34 L ha−1 of product (full 
prescribed rate) mixed with 46.8 L ha−1 of water. Liquid flow was distributed to the 
shanks of an 8-row planter with row spacing of 1.016  m and applied with the 
T-band method.

Similar to the assessment with satellite imagery, two tasks were carried out to 
evaluate the results of the aerial-image based prescription map and VR fungicide 
application. Minor differences are noted here. In task (A), evaluation of an as-
applied maps the effective swaths of the planters were 11.58  m in Field 1 and 
8.128 m for field 2. The actual treatment area was 1.5% smaller than prescribed for 
Field 1 and 1.4% larger for Field 2. The actual application rate was 4.1% higher than 
prescribed for Field 1 and 1.5% lower for Field 2. In task (B), evaluation of post-
application images, a two-camera aerial imaging system on a manned aircraft was 
used in 2015 to collect post-application images. The images were acquired late in 
the growing season at 1070 m AGL with a pixel size of 0.35 m and used to detect 
CRR areas. These 2015 post-application images were compared to the 2010 pre-
scription maps to determine efficacy. In Field 1, the fungicide applied at half rate 
was able to control the disease for most of the growing season, but late-season CRR 
infection may have had negative effects on cotton yield and quality. In Field 2, the 
fungicide effectively controlled the disease in the treated areas, although CRR 
occurred at a few treated areas toward the end of the season but had little effect on 
the crop.

13.2.2.3  �UAV Remote Sensing

Unmanned aerial vehicles (UAVs) have been used extensively for RS in agricultural 
research over the last few years. While they have disadvantages including large 
volumes of data and challenges in pre-processing of images, their advantages 
include higher spatial-resolution imagery, more flexibility in timing of data acquisi-
tion and lower cost of data acquisition. With respect to fungicide application for 
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CRR, technological advances suggest that future VR systems will possibly be capa-
ble of precision spraying to the level of an individual seed at planting. For example, 
state-of-the-art planting systems with real-time kinematic (RTK) Global Navigation 
Satellite System (GNSS) receivers are currently capable of precisely planting indi-
vidual seeds at a known location, accurate to within 2 cm, and auxiliary state-of-the-
art spraying systems are currently capable of applying starter fertilizer adjacent to 
each seed planted. The high resolution of UAV imagery, therefore, offers the pos-
sibility of prescription maps with extremely high precision, potentially capable of 
fungicide application on a seed-by-seed basis during planting, and limiting fungi-
cide application to a small area adjacent to each seed planted in a small CRR zone. 
Research with UAVs for CRR detection was undertaken first to replicate the genera-
tion of prescription maps possible with imagery from manned aircraft and satellites, 
and second to pursue development of prescription maps at the single-plant level. 
One study (Thomasson et  al. 2018) was conducted on a 32.9-ha field in central 
Texas with a history of CRR. On August 22, 2015, image data in the green, red and 
NIR bands were acquired with a Lancaster (PrecisionHawk Corp., Raleigh, NC, 
USA) fixed-wing UAV flown at 120 m AGL, giving 3.7-cm pixels. Another study 
(Wang and Thomasson 2019) was conducted on a 5.7-ha field with a history of 
CRR, also in central Texas. In this study RGB plus NIR and red edge band image 
data were acquired on August 20, 2017, with a UAV Mapper fixed-wing UAV 
(Tuffwing LLC, Boerne, TX, USA) flown at 120  m AGL, giving 7.6-cm pixels. 
Images in both studies were acquired with a minimum of 70% image overlap (for-
ward and sideward) to enable generation of a high-quality mosaic.

13.2.2.4  �Regional Classification

The methods used previously to classify satellite and manned-aircraft images for 
CRR have been regional methods, classifying fields into zones of multiple square 
metres to match the precision of current VR equipment. Regional classification can 
be based on traditional image-analysis techniques and is relatively computationally 
efficient. To show the capability of UAVs for practical RS tasks, regional classifica-
tion of UAV imagery was used to develop CRR prescription maps to demonstrate 
efficacy, in essence mimicking what has been done previously with manned-aircraft 
and satellite RS. An image mosaic of the 2015 images of the 32.9-ha field was cre-
ated with Pix4D software (Lausanne, Switzerland) and resampled in ENVI software 
(Harris Geospatial, Boulder, CO, USA) to a resolution of 1.0 m per pixel. Support 
vector machine (SVM) classification was applied to the mosaic to classify it into 
CRR and non-CRR areas. Based on the classified image data, prescription maps 
were developed in ArcGIS (ESRI, Redlands, CA, USA). The proportion of CRR 
area was 5.52% at this stage in the classification process. Ground observations were 
made to verify CRR areas of various sizes along the western edge and in the south-
eastern corner of the field, and that the classified CRR areas were actually CRR. In 
general, most were classified correctly, but a few small areas were misclassified 
because of, for example, planter skips. To accommodate the potential expansion and 
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temporal variation of the disease, a 5-m buffer zone was created around the infected 
areas as part of the treatment areas in the prescription map.

The 2015 UAV images were used for VR fungicide application in 2017. The clas-
sified image was converted into a shapefile-based prescription map in ArcMap 
(ESRI, Redlands, CA, USA). The polygons in the prescription map were assigned 
Spray for CRR areas and No-Spray for non-CRR areas. A Trimble Field IQ system 
was integrated with a Trimble FM 1000 monitor and a Trimble RTK GNSS receiver 
installed on a CASE IH Puma 210 Tractor owned by the grower. At planting on 
April 25, 2017, Topguard Terra was applied with the T-band method at a rate of 
0.585 L ha−1 (full prescribed rate) with 57.1 L ha-1 of water from a 12-row planter 
with row spacing of 0.762 m.

An as-applied map (A) was not evaluated in this study, but based on the work 
with satellite and manned-aircraft imagery the fungicide application was expected 
to conform closely to the prescription map. Similar to the assessment with satellite 
and manned-aircraft imagery, one additional task (B) was carried out to evaluate the 
results of the UAV-based prescription map and VR fungicide application. The UAV 
images of the 32.9-ha field were collected to determine the efficacy of the UAV-
based prescription map based on regional classification. On August 20, 2017, RGB 
plus NIR and red edge image data were acquired with a Micasense RedEdge camera 
on a UAV Mapper flown at 120 m AGL, giving 7.64-cm pixel resolution. As with the 
2015 image data, the 2017 images were collected with minimum 70% image over-
lap (forward and sideward) so that a mosaic could be created with Pix4D and pro-
cessed and classified into CRR and non-CRR areas. These 2017 post-application 
images were compared to the 2015 prescription maps to determine efficacy. The 
proportion of CRR area in the field was reduced from 5.52% in 2015 to 0.55% in 
2017, giving a strong indication of the efficacy of the UAV-based prescription map 
in mitigating CRR, similar to the results with manned-aircraft and satellite imagery.

13.2.2.5  �Plant-by-Plant Classification

In the future it may be desirable to apply fungicide precisely at a greater level of 
detail than 5 × 5 m, potentially even at the single-plant level. To take full advantage 
of the capability of UAV remote sensing, one must utilise the high resolution inher-
ent in the images. Two methods have been developed to approach plant-by-plant 
(PBP) classification. The first method, a custom row-searching algorithm, identified 
individual crop rows and then scanned each row, applying a plant-size mask to the 
image data, to enable PBP classification. A global (i.e. to be used consistently across 
an entire mosaic) algorithm was developed to exploit the fact that straight rows in a 
field share the same angle between row direction and latitude lines, so that angles 
need be measured at only one representative location in a given field. The algorithm 
automatically pre-processed the mosaic and then measured the row angle based on 
two-dimensional gradients. Then a morphological operation, tailored to the angle of 
the rows was used with a customised structural element set to the specific row spac-
ing in the field. Row centre lines were constructed with this process, and then 
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collinear rows were connected across breaks resulting from the presence of long 
planting skips or streaks of dead plants along the rows. The complete row centre 
lines were then overlaid onto an image mosaic. Plant-size zones were classified into 
three categories (live plant, dead plant, and no plant) by applying a plant-size mask 
from one end to the other on each row. The row-searching algorithm was applied to 
the mosaic of the 2017 image data from the 32.9-ha field (Fig. 13.2a) and performed 
well, providing generally accurate identification of live and dead plants. The algo-
rithm was efficient when it was restricted to searching for linear crop rows, requir-
ing only a few minutes of processing on a PC for the entire field. Computation time 
with curved rows (e.g. in fields irrigated by centre pivot) would probably be signifi-
cantly longer, and programming improvements would be needed to achieve accept-
able processing times.

The second method for PBP CRR classification, a superpixel algorithm, used 
simple linear iterative cluster (SLIC) superpixel segmentation, a state-of-the-art 
object-based image classification technique. The superpixel algorithm was applied 
to the 2015 image mosaic of the 5.7-ha field and ‘seeded’ (i.e. the iteration process 
was initiated) with a large number that closely resembled the number of plants 
expected to be in the field based on planting density. The image of the field was 
segmented into roughly that number of small pieces (superpixels), each based on 
the colour, shape and texture of the original image data, and assigned spectral and 
spatial statistics based on the constituent pixels. The k-means clustering was applied 
automatically to the superpixel image to generate a classification map. The overall 
algorithm was efficient, taking about two minutes for the 5.7-ha field. The super-
pixel algorithm provided accurate classification (93.5%) of individual plant zones 
(Fig. 13.2b), with small errors of omission and commission, and it was faster than 
the more detailed row-searching algorithm.

13.3  �Conclusions

In summary, remote sensing has proved to be useful for developing prescription 
maps to enable precision application of fungicide to protect cotton plants against 
CRR disease. High-resolution satellite and manned-aircraft images have been 
shown to be useful for delineating zones of disease incidence in fields. Images from 
UAVs can also be used for this purpose, but the extremely high resolution of UAV 
images also allows for the possibility of plant-by-plant fungicide application. Two 
studies have shown how individual cotton plants can be located and classified into 
diseased and healthy categories. Therefore, fungicide applied during planting may, 
in the future, be placed very precisely next to the seed, further reducing cost and 
environmental risk associated with over-application.
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Fig. 13.2  (a) Plant-by-plant labelling of live plants (white circles) and dead plants (black circles) 
and soil (light grey) along cotton rows based on a custom row-searching algorithm. Centre lines of 
rows recognised by the algorithm are marked with white lines. (b) Plant-by-plant labelling of live 
plants (white crosses) and dead plants (black crosses) based on superpixel classification
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13.4  �Case Study 13.2. Detection of Laurel Wilt Disease 
in Avocado: A Case Study for Avocado Production 
in Florida

13.4.1  �Introduction

Avocado (Persea americana) is important to the agricultural economy of Florida. 
The avocado industry is second in importance after citrus; it represents approxi-
mately 60% of the tropical fruit crop in Florida (2800 ha) (Evans et al. 2015). It 
provides an economic benefit of approximately $100 million per year (Evans et al. 
2015). In addition, this economic importance reflects that the United States is one of 
the main producers and importers of avocados in the world (Statista 2018).

However, the avocado industry in Florida is under severe threat because of the 
invasion of an exogenous pathogen, the Asian fungus Raffaelea lauricola, and its 
original vector, the redbay ambrosia beetle Xyleborus glabratus, which causes the 
lethal vascular disease laurel wilt (Lw) (Ploetz et al. 2011). This complex disease 
has spread rapidly along the southeastern seaboard of the United States because of 
the natural dissemination of X. glabratus, the great susceptibility of the native 
Persea spp. and their attractiveness to X. glabratus, the substantial amounts of inoc-
ulum that most females of X. glabratus carry and the human transport of infested 
wood (Hanula et al. 2008; Ploetz et al. 2017a). Moreover, the disease appears to 
spread through interconnected root systems, which allows the movement of the 
pathogen without the aid of vectors (Ploetz et  al. 2017b). Consequently, Lw has 
caused the loss of 300 million redbay trees throughout the coastal forests from 
North Carolina to Florida and over 25,000 avocado trees since its migration into 
Florida (Ploetz et al. 2017b; Mendel et al. 2018). Furthermore, it is difficult to pre-
vent the spread of the disease as there is no effective fungicide-based control strat-
egy. Sanitation, which consists of identifying affected trees and destroying them 
before new generations of vectors emerge and colonise new host trees, is the only 
available control measure (Ploetz et al. 2011; De Castro et al. 2015b).

Laurel wilt impairs xylem function as soon as three days after inoculation, 
impeding the flow of water and nutrients into affected trees, which soon causes 
external symptoms of wilting and foliar necrosis in affected portions of the tree, and 
full defoliation within 2–3 months of symptomatic onset (Ploetz et al. 2011). Before 
the appearance of external symptoms consisting of leaves changing from an oily 
green to brown colour, internal symptoms of increased tree temperature that arise 
from water and nutrient blockage occur. This results in a reduced amount of chloro-
phyll in the leaves and damaged cell structure (De Castro et al. 2015b). Those varia-
tions in leaf plant pigment and temperature make it possible to detect diseased trees, 
even in the early stages of disease development, with remote sensing tools including 
those that are spectroscopic and imaging-based.

Laurel wilt symptoms are very similar to those caused by other vascular diseases 
or factors such as frost damage, Phytophthora root rot, Verticillium wilt, nutrient 
deficiencies, salinity and fruit stress (overbearing), and consequently their visual 
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discrimination is very difficult (De Castro et  al. 2015b). Despite this, diagnostic 
practice consists of visual inspection of suspect trees, collection of wood and labo-
ratory analyses, which is time-consuming, labour intensive, expensive and requires 
symptomatic trees. Once plants display external symptoms, it is then complicated to 
manage the disease because by that time significant colonization of the host by the 
fungus has already occurred; at which point the best choice is sanitation, i.e. elimi-
nation of affected trees (Ploetz et al. 2011). Therefore, a methodology to detect Lw 
before the external symptoms appears, i.e. at an early stage, and its discrimination 
from other biotic and abiotic stress factors is highly desirable. This case study 
describes the required spatial and spectral properties for the rapid and accurate diag-
nosis of Lw at an early stage using remote sensing tools, long recognised as suitable 
for the fast monitoring of large areas and reducing the costs of extensive field cam-
paigns. In addition, another widespread avocado disease (Phytophthora root rot 
caused by P. cinnamomi) as well as abiotic factors (salinity and nitrogen and iron 
nutrient deficiencies), which cause similar symptoms, were evaluated.

13.4.2  �Materials and Methods

An effective mapping system begins with an evaluation of the spectral signature at 
the leaf level of diseases and factors affecting avocado. Once a suitable sensor is 
selected based on spectral requirements, the study should be scaled up to the canopy 
level to evaluate other aspects related to image analysis, such as flight altitude, spa-
tial resolution, pre-processing and image algorithm.

13.4.3  �Spectral Requirements: Spectral Data Analysis

First, the feasibility of discriminating healthy plants from damaged plants due to 
biotic and abiotic stressors at an early stage with spectral information was deter-
mined. Next, the optimal wavebands and hence the sensor for affected and healthy 
plant discrimination was selected.

Multivariate analysis tools are considered as one of the most suitable and 
advanced techniques for the detection of spectral difference (De Castro et al. 2012). 
Among these tools, neural networks have received great attention from the remote 
sensing community because of their flexibility and adaptability to the results, toler-
ance of noisy data and errors, fast computation processing speed, and ability to 
explore correlations or models that could not be detected by traditional statistical 
procedures (Han et al. 2012).
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13.4.3.1  �Spectral Data Collection

Spectral data were taken from avocado leaves under controlled laboratory condi-
tions using a handheld spectroradiometer (SVC HR-1024, Spectra Vista Corp., 
Poughkeepsie, NY, USA) placed at a height of 50 cm above the leaf. Five reflec-
tance spectra per leaf were taken at the range of 400 to 950 nm with a 10 nm spectral 
resolution based on published recommendations and the noise of the remainder of 
the spectral range (Fig. 13.3).

Four asymptomatic and slightly affected leaves in the early stage of stress devel-
opment, i.e. just beginning to lose turgidity, were selected from each abiotic factor- 
and disease-affected plant. These leaves were taken from potted ‘Simmonds’ variety 
avocado trees grown in a greenhouse at the University of Florida’s Tropical Research 
and Education Center (TREC) in Homestead, FL, USA. The experiment consisted 
of 10 plants for each class, and all showed symptoms like those caused by Lw. In 
addition, healthy (H) leaves were obtained from potted plants grown in full sun. The 
disease induction and symptom development were performed as follows:

•	 Laurel wilt (Lw): Conidial suspensions of R. lauricola with a concentration of 
30,000 colony forming units (CFUs) mL−1 were introduced in four small holes 
5 cm above the soil level around each trunk circumference, resulting in a total of 
3000 CFUs per plant. Early symptoms of Lw began to develop by 14 days after 
inoculation.

•	 Phytophthora root rot (Prr): 6 g of wheat seed colonised with P. cinnamomi were 
used for the inoculation. Early symptoms, i.e. yellowing of some leaves, appeared 
after 14 days.

Fig. 13.3  Mean reflectance spectra of leaves representing healthy, laurel wilt, Phytophthora root 
rot, salinity, water damage, and Fe and N deficiencies of avocado trees. All leaves are typical of the 
early stage of symptom development. (The figure has been adapted from De Castro et al. 2015a 
and Abdurhina et al. 2018)
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•	 Salinity (Sln): One litre of a salt solution with a similar concentration to that of 
sea water from the east coast of Florida, i.e. 36 g L−1, was applied to each tree. 
Early browning symptoms were found in leaves after seven days.

•	 Nitrogen (N) deficiency: avocado plants growing in a nutrient-free matrix com-
posed of sand and perlite received a modified Hoagland solution with all essen-
tial nutrients except N once a week. Early symptoms occurred 60 days after the 
beginning of the procedure.

•	 Iron (Fe) deficiency: these avocado samples grew under the same conditions as 
N deficient samples, although the applied Hoagland solution contained all the 
minerals with the exception of Fe. The first symptoms occurred in the same time 
as the previous case.

The spectral dataset was calibrated using a barium sulphate standard reflectance 
panel (Spectralon®, Labsphere Inc., North Sutton, NH, USA) in the presence of 
two portable 500-W halogen work lamps used as extra light source.

13.4.3.2  �Spectral Data Analysis

The 10-nm averaged spectral measurements were analysed statistically with the 
multilayer perceptron (MLP) neural network to identify the best waveband for dis-
crimination of H, Lw and other stressors such as Prr, salinity, and N and Fe 
deficiencies.

As a multilayer feed-forward neural network, MLP creates an analytically 
adjusted model based on supervised training with a back-propagation algorithm that 
minimises the prediction error (Han et  al. 2012). The weight, bias and typology 
parameters of the network are adjusted by learning the relation between inputs 
(spectral information in this case) and outputs data (health status class in this case). 
The MLP comprises an input layer, in this case a 10-nm averaged spectral data set, 
a hidden layer of neurons to compute the data and create the model, and an output 
layer consisting of the classes to which the samples are classified (H, Lw, and other 
disease or abiotic factors). The validation of the MLP algorithm was performed by 
a hold-out cross-validation procedure, where 3n/4 of the full data set was used to 
train the model and n/4 was used as a test set to provide the generalization accuracy; 
n was the number of units in the full dataset in every analysis.

The statistical analyses were performed using SPSS software (IBM Statistical 
Package for Social Science, SPSS Inc., Microsoft Corp., Redmond, WA).

13.4.4  �Image Specifications: Image Data Analysis

Multispectral image acquisition and spatial requirements. A user-configurable 
bandpass filter camera was selected for the experiment. The Tetracam mini-MCA-6 
(Tetracam, Inc., Chatsworth, CA, USA) multispectral camera is a lightweight 

A. I. de Castro Megías et al.

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522



sensor of six individual digital channels with independent optics, each holding a 
1.3-megapixel CMOS sensor (1280 × 1024 pixels) with a focal length of 9.6 mm 
and FOV of 43.7° × 35.6°. Each unit independently stored the data in compact flash 
cards embedded in the camera. The images were taken in the presence of avocado 
experts from the Florida Avocado Committee in a commercial avocado production 
field in Miami-Dade County containing healthy and Lw-infested trees. Experts 
identified diseased trees that were shortly after confirmed as such by a diagnostic 
DNA test. No other damaging biotic agents or disturbances were found in or around 
this field.

The remote images were acquired by a helicopter flight at a height of 250 m, 
considered to be the optimum height according to the size of typical avocado trees. 
The pixel size obtained using this sensor at this flight height was 15-cm, large 
enough to identify a standard avocado tree with a canopy diameter of 7–9  m. 
Moreover, the average avocado orchard size ranges from 0.4 and 2 ha (Evans et al. 
2015), which was covered by images taken with the MCA-camera from a height of 
170 m. A lower flight altitude would involve more flight time and cost, and may 
require an extra mosaicking process to cover the entire field.

Ground truth data. Healthy and Lw avocado trees at early stage were located in 
the images and manual digitalization was conducted to extract the digital informa-
tion of the affected portion of the trees and healthy plants. The ground truth data 
consisted of 21 Lw-infested and 12 healthy trees.

13.4.5  �Results

13.4.5.1  �Spectral Analysis-Leaf Level

The six channels of the Mini-MCA were selected according to the results obtained 
in the spectral analysis (Table 13.1), where values ranging from 96% to 100% accu-
racy were obtained in all the classifications. Table 13.1 shows the wavelengths that 
contributed to the greater specific weights in the neural network algorithm, which 
all used one hidden layer with a similar number of neurons.

The most frequently selected 10  nm wavelengths were 740  nm and 750  nm, 
which were also among the first variables entered into the MLP model in all the 
cases, indicating that they are crucial in discriminating between infested and healthy 
avocado plants. An extra filter was selected in the red edge region (760 nm) because 
wavelengths around that value were chosen in several MLP algorithms and also the 
importance of that part of the spectrum to detect vascular diseases in plants (De 
Castro et  al. 2015b). The Lw plugs the xylem, blocking the flow of water and 
increasing the tree temperature. Consequently, leaf chlorophyll concentration and 
photosynthesis decrease while carotenoid production increases, affecting the reflec-
tance values in the green, red edge and near-infrared regions (Chappelle et al. 1992). 
For these reasons, it was appropriate to add a filter in the NIR region. Taking into 
account the most frequently selected wavelengths in that part of the region, 

13  Applications of Sensing for Disease Detection

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562



economic reasons and commercial availability, a band with a centre wavelength at 
850 nm and 40 nm full-width was added to the camera. In addition, because of those 
changes in the vegetal pigment concentrations, the absolute difference between the 
red edge and NIR region with the green one decreases in diseased plant spectral 
data, making the ratios between bands useful to separate plants affected by damag-
ing agents from healthy ones. Therefore, an additional filter was selected in the 
green region (580–10 nm full-width). Finally, another 10 nm full-width (650 nm) 
was added in the red region because the large variety of narrow-band vegetation 
indices (VIs) obtained from remote sensing data to assess plant health rely on the 
combination of NIR and red reflectance.

13.4.5.2  �Image Processing-Canopy Level

After the suitable filters were selected and attached to the camera, images were 
taken to assess the feasibility to detect infested avocado plants at an early stage of 
symptom development.

13.4.5.3  �Multispectral Band Alignment and Image 
Radiometric Calibration

Both processing steps are required before image analysis. The alignment process 
reduces geometric differences between the bands and groups the six images saved 
in each channel. This was carried out by Tetracam PixelWrench 2 (PW2) software 
(Tetracam Inc.) that provides a band-to-band registration file. During this process, 
the vignetting parameters were also adjusted.

Radiometric correction was conducted using two calibration targets (black of 3% 
and white of 82%) and an empirical line calibration method with ENVI software 
(ENVI®, Research Systems Inc., Boulder, CO, USA).

Table 13.1  Accuracy assessment on 10-nm bandwidth data classification for healthy (H), laurel 
wilt-infested plants (Lw) and other stressors such as Phytophthora root rot (Prr), salinity (Sln) and 
N and Fe deficiencies, using MLP neural networks

Analysed classes Selected wavelengthsa (nm) Accuracy (%)

H vs Lw vs Prr 740, 750, 830, 760 100
H vs Lw vs N vs Fe 840, 930, 750, 720, 830, 740 100
H vs Lw vs Sln 720, 750, 740, 526, 950, 770 96

aWavelengths selected to account for the greater specific weights in the neural network algorithm
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13.4.5.4  �Image Data Analysis

The mean digital information extracted from pixels of Lw–infested and healthy 
trees was used to calculate and evaluate a large pool of VIs calculated from the six 
bands of the customised MCA camera. The VIs have been widely used in physio-
logical stress detection (Lu et al. 2017, 2018) as they magnify the differences in 
spectral signatures, thus making the identification of infested plants easier (Mahlein 
et al. 2012).

The M-statistic was applied to quantify the histogram separation of vegetation 
indices and to establish their potential for spectral discrimination. The M-statistic 
evaluates the mean (μ) difference of the class 1 and class 2 histograms normalised 
by the sum of their standard deviations (σ) (Kaufman and Remer 1994) (Eq. 13.1). 
The larger is the M value, the better is the spectral separation. Values less than 1 
indicate poor separation.

	
M �

�
�

�
� �

class class

a b

1 2�

	
(13.1)

The resulting M values varied according to the vegetation indices, suggesting 
that the separation capacity depends largely on the spectral region analysed. Only M 
values >1.5 were considered as indicators of strong discriminatory power here. The 
best results were obtained with red edge/G, GRVI, VIgreen and GNDVI, where any 
of the bands related to the red edge region (740, 750 and 760 nm) of the Tetracam 
camera were used (Table 13.2). These VIs work by combining digital values in the 
green, red edge and near-infrared region of the spectrum and are related to changes 
in vegetal pigment concentration and cellular damage, both of which occur in 
Lw-infested plants due to xylem blockage. These results confirm the importance of 
proper band selection early in the procedure because their use made it possible to 

AU5

Table 13.2  The M values obtained in the analysis of digital data of laurel wilt-infested trees at the 
early stage of symptom development and those of healthy avocado trees using remote sensed data

Vegetation Index Equation Adapted from
Bands 
used M value

R/G Redgex/G – Redge740 1.8
Redge 50 1.8
Redge760 2.1

Green ratio vegetation index GRVI = NIRx/G – NIR850 1.9
Green vegetation
Index VIgreen �

�
�

G R

G R
x

x

Gitelson et al. 
2002

Redge740 1.8
Redge750 1.8
Redge760 2.1

Green normalised difference 
vegetation index GNDVI

NIR

NIR
�

�
�

x

x

G

G

Gitelson et al. 
1996

NIR850 1.8

Redgex in this form represents the filters in the red edge region of the MCA-camera used to  
calculate the VI. i.e., 740, 750 or 760 nm
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identify Lw-infested trees at an early stage of disease development with minimal 
symptoms, i.e. leaves are still green and have barely begun to lose turgidity.

Therefore, the analysis of images obtained from the camera with the attached 
filters using the selected VIs can overcome the challenge of early detection of Lw, 
which represents a great advance in preventing the spread of this lethal avocado 
disease.

13.5  �Conclusions

The spatial and spectral specifications for the quick and accurate diagnosis of Lw at 
an early stage, as well as the possibility to separate it from other abiotic and biotic 
factors that cause similar symptoms, were evaluated in this case study. Therefore, 
once suitable sensor and flight planning requirements have been defined, an auto-
matic algorithm based on aerial system imaging, such as UAV, may be developed 
for early and rapid Lw detection in further research. The early detection of LW will 
prevent the spread of the disease and facilitate the implementation of disease control 
precision strategies, such as targeted sanitation, in the context of PA.

13.6  �Case Study 13.3. The Use of Hyperspectral Imaging 
for Esca Detection in a Vineyard

13.6.1  �Introduction

Hyperspectral (HS) imaging systems are one of the most currently used image-
based phenotyping methods in modern agriculture due to their inherent advantages. 
They include the possibility of acquiring data in a non-destructive and non-invasive 
way, being amenable to automation and allowing in-field sample analyses (ElMasry 
and Sun 2010). For these reasons, HS systems represent a promising tool for plant 
disease diagnosis, together with the fact that not only can an infection be identified 
successfully, but also its location within the plant can be detected (Mutka and Bart 
2015; Rançon et al. 2019). The HS techniques generally work in the near-infrared 
(NIR) region of the electromagnetic spectrum because the spectral signature of veg-
etation is characterised by high reflectance in this region (Rodríguez-Pérez et al. 
2007). It is particularly relevant for disease detection, as symptoms can sometimes 
be detected before the naked eye is able to do so (Di Gennaro et al. 2016). Thus, HS 
systems may have the potential to enable diagnosis of plant diseases that have no 
visible symptoms at the early stages of their development, as in the case for esca, a 
grapevine fungal trunk disease.

Currently, grapevine trunk diseases are one of the main concerns of viticulture 
worldwide because they are responsible for substantial economic loss to the wine 
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industry (Levasseur-Garcia et al. 2016). They result in a decrease in crop productiv-
ity and, in many cases, the early decay of plants (Laveau et al. 2009). Among these 
diseases the most prominent in the Mediterranean countries is esca (Fischer 2002). 
It was considered to be a problem in older vineyards only, and it was relatively eas-
ily controlled with fungicides (Graniti et  al. 2000). However, the use of sodium 
arsenite – the main fungicide tool against it – was banned at the beginning of the 
twenty-first century in many countries which, together with other changes in grow-
ing techniques, led to a considerable increase in esca incidence worldwide (Bertsch 
et al. 2009).

Esca is a complex disease, mainly caused by the ascomycete fungi Phaeomoniella 
chlamydospore and Phaeoacremonium aleophilum and the basidiomycete fungus 
Formitiporia mediterranea (Di Marco et al. 2011). It usually affects adult plants 
aged above 10 years, either causing foliar discoloration or sudden wilting of the 
entire vine (apoplexy) which kills the plant within a short period (Mugnai et  al. 
1999). Affected leaves generally show a ‘tiger-stripe’ pattern (Surico et al. 2008), 
while a characteristic spotting, described as ‘black measles’ in the USA, is observed 
on berries (Mugnai et al. 1999). Foliar symptoms may or may not be observed in 
consecutive years, but affected plants generally end up dying from apoplexy 
(Hofstetter et al. 2012). Currently, in the absence of chemical methods of control of 
proven efficiency against esca, any treatment should be preventive and various cul-
tural and crop management measures are recommended, including good pruning 
practices and the use of a high-quality plant material (García-Jiménez et al. 2010). 
Once the vine is affected, alterations to the cells arise at leaf level before symptoms 
become visible (Valtaud et al. 2009). Therefore, a technique capable of detecting 
infected vines before the symptoms become visible would allow better crop man-
agement and decision-making.

The present case study shows the potential of a near-infrared hyperspectral sys-
tem (NIR-HSI) to distinguish between visually asymptomatic grapevine leaves, 
picked from esca-affected vines, and symptomatic leaves, collected from the same 
vines, at a laboratory scale. This methodology opens up an area of research aiming 
to apply it at the field scale through the development of sensors that could help 
growers to detect disease presence early, before the symptoms become visually 
noticeable.

13.6.2  �Materials and Methods

13.6.2.1  �Plant Material

In this study, grapevine leaves of cv. Tempranillo (Vitis vinifera L.) picked from an 
experimental vineyard belonging to the Viticulture and Enology Station of Navarra 
(EVENA) and located in Olite (Navarra, Spain) were used. Two leaf categories were 
selected visually, identified and handpicked from the field at a growth stage close to 
harvest (September 20, 2018). A total of 60 samples were collected: 30 

13  Applications of Sensing for Disease Detection

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685



asymptomatic leaves from esca-affected vines, named Esca 1 (E1), and 30 symp-
tomatic leaves from the same esca-affected vines of class E1 and designated Esca 2 
(E2). Samples were kept in cold storage at 3 °C until analysis. The measurements 
were made approximately 24 h later. Before hyperspectral image acquisition, a ref-
erence RGB image was obtained for each leaf.

13.6.2.2  �Hyperspectral Imaging

Hyperspectral Image Acquisition

Hyperspectral images were recorded using an NIR-HSI system consisting of an 
NIR InGaAs camera with 320  ×  256 pixel resolution (Xeva 1.7–320, Xenics, 
Leuven, Belgium) coupled to a spectrograph (ImSpector N17E, Specim, Spectral 
Imaging Ltd., Oulu, Finland), both sensitive in the range 900–1700 nm. This line-
scanning imager was mounted 400 mm above a linear translation stage (LEFS25, 
SMC Corporation, Tokyo, Japan) that allowed samples to be moved under the field 
of view of the camera. Four 46 W halogen lamps and a black cover enclosing the 
entire set-up were used for stable lighting conditions of the scene. A computer 
equipped with Xeneth 2.5 and ACT Controller software was used to control the 
camera and the translation stage and to record the leaf images.

One hyperspectral image of the adaxial leaf side was acquired per sample with a 
spatial resolution of 0.75 mm per pixel (320 pixels per line) and a spectral resolution 
of about 3 nm (256 spectral bands). Detector saturation was avoided by optimizing 
the integration time at 2 ms. In addition, white reference with standard reflectance 
of 99% (Teflon white calibration tile, Specim, Spectral Imaging Ltd., Oulu, Finland) 
and dark reference (camera lens covered by an opaque black cap) images were taken 
for reflectance calibration.

Image Processing

The first step in image processing consisted of forming the three-dimensional data 
cube (hypercube) by stacking the raw leaf images. Then, reflectance calibration was 
performed to convert the raw intensity values in hyperspectral images into relative 
reflectance (R) values by using Eq. 13.2 (Geladi et al. 2004):

	
R

I D
�

�Raw

W D–
,
	

(13.2)

where IRaw is the raw irradiance intensity acquired on the sample, D is the intensity 
acquired for the dark reference and W is the intensity acquired on the white reference.

At the next step, images were segmented to separate the region of interest, in this 
case the whole leaf, from the saturated areas and background. In this study segmen-
tation was accomplished following the algorithm presented in Lopez-Molina et al. 
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(2017). Moreover, data between 900–1000 nm were removed as spectral noise was 
observed within that region.

Finally, the relevant spectral data were extracted by unfolding the 3-dimensional 
hypercube into a 2-dimensional data matrix of the leaf pixel reflectance values at the 
selected wavelengths (224 bands). In this case, the dataset was divided randomly 
into calibration and validation groups, comprising 60 and 40% leaves of each class, 
respectively. For each leaf that composed the calibration group (18 images per 
class), 10 pixels were manually selected using the graphical user-friendly interface 
HYPER-Tools (Mobaraki and Amigo 2018) and taking the RGB images as a refer-
ence. For class E1, pixels were selected from one external and one internal leaf ring 
(5 pixels per ring), while for class E2 only the pixels corresponding to leaf zones 
with visible esca symptoms were selected. The resulting X matrix consisted of 360 
rows and 224 columns (180 rows per class), and was used as the calibration set to 
form classification models. In the remaining 12 images per class, the unfolding 
process was performed automatically, and one matrix including the leaf pixels con-
tained in the segmented mask was obtained for each leaf sample for validation 
purposes.

Image processing was performed in MATLAB R2016b (The MathWorks, Natick, 
MA, USA).

13.6.2.3  �Multivariate Data Analysis

Data processing and qualitative analysis were performed using the PLS_Toolbox 
(Eigenvector Research Inc., Wenatchee, WA) within MATLAB® computational 
environment.

Spectral Pre-processing

Prior to model building, spectral data were pre-processed to correct light scattering 
and system noise effects. The following pre-processing techniques were tested indi-
vidually and combined: standard normal variate (SNV), multiplicative scatter cor-
rection (MSC), detrending, smoothing, and first and second derivatives (1st Der and 
2nd Der, respectively). Smoothing was performed using the Savitzky–Golay algo-
rithm, on a total window of 15 points and a zero-order polynomial, while derivatives 
were calculated using the Savitzky–Golay method by second order polynomial and 
a 15-point window. The effect of no pre-processing (None) was also analysed.

Leaf Pixel Classification

A partial least squares discriminant analysis (PLS-DA) method was used to create a 
two-class classifier to differentiate pixels belonging to class E1 (asymptomatic 
leaves from esca-affected vines) from those belonging to class E2 (symptomatic 
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leaves). The PLS-DA is a supervised classification technique in which a PLS regres-
sion is carried out to predict class membership (Barker and Rayens 2003). For that 
reason, a Y matrix consisting of 0 s and 1 s needs to be formulated to indicate class 
membership (1) or non-membership (0). In this case, the spectral information (X 
matrix) was linked with the category the samples belonged to (E1 or E2) (Y matrix).

As stated above, 60% of samples (36 leaves) of each class were randomly 
selected for calibration and cross-validation (CV; Venetian blinds cross-validation 
method with 10 data splits), while the remaining 40% (24 leaves) were used as a 
validation group.

The performance of PLS-DA models was evaluated in terms of the percentage of 
correctly classified (%CC) pixels, and the sensitivity and specificity in CV, together 
with the percentage of correctly predicted pixels per class obtained on each sample 
in the validation.

13.6.3  �Results and Discussion

Figure 13.4 shows the mean spectra of the selected pixels of each of the two classes, 
E1 (asymptomatic) and E2 (symptomatic), in the calibration group. Considerable 
differences in the magnitude of reflectance were observed between the two classes 
along the selected spectral range (1000–1700 nm). A deep dip in the spectrum is 

Fig. 13.4  Mean spectra of classes E1 and E2 in the calibration group
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evident at around 1450 nm because of the first overtone of the OH-stretching band 
(Osborne et al. 1993). As can be seen in Fig. 13.4 the reflectance of class E1 at 
1450 nm is lower and thus, absorbance was higher, than that of class E2. Since the 
strong water absorption bands near this wavelength change according to the water 
content status of foods (Büning-Pfaue 2003), it is hypothesised that this difference 
occurs because of the greater water content in the asymptomatic leaves than symp-
tomatic ones where esca has already caused desiccation of some leaf areas. This 
statement accords with the findings of Büning-Pfaue (2003), who observed that the 
absorption band at around 1400 nm of sliced pear flesh decreased in intensity at the 
same time as dehydration increased.

Table 13.3 presents the % CC pixels in the calibration and the CV groups obtained 
with the different pre-processing methods applied. The number of samples (n) (after 
elimination of outliers) and the number of latent variables (LVs) used to develop the 
PLS-DA models are also included. Good classification results were obtained with 
all of the pre-processing techniques, achieving more than 85% CC pixels. However, 
the best results were achieved when applying smoothing, with more than 94% of 
pixels correctly classified in the CV group.

Table 13.4 shows the confusion matrix and the sensitivity and specificity values 
obtained for the CV group after the smoothing pre-process. Class E1 has a higher 
sensitivity value than class E2, indicating that pixels belonging to E1 were classified 
better into their corresponding group (97.2% CC versus 92.2%).

Table 13.3  Number of LVs and % CC samples obtained in the PLS-DA models with the different 
pre-processing

Pre-processing n LVs % CCCal % CCCV

None 360 3 91.9 91.1
SNV 354 3 91.0 90.4
MSC (mean) 358 2 90.8 90.5
Detrending 360 2 90.8 89.7
Smoothing 360 5 95.3 94.7
1st Der 360 4 90.6 90.6
2nd Der 358 3 86.6 85.2
Smoothing+2nd Der 360 3 89.7 88.6
Smoothing+MSC 360 4 90.6 90.0
Smoothing+SNV 358 4 90.5 89.9
Smoothing+1st Der 360 2 89.7 90.0
1st Der + MSC 359 6 93.6 93.0
1st Der + SNV 360 4 90.8 90.6

Values in bold correspond to the highest % CC pixels in the PLS-DA models

Table 13.4  Confusion matrix and sensitivity and specificity values of CV group after smoothing

Actual class (%) Sensitivity Specificity

Predicted class (%) E1 97.2 7.8 0.972 0.928
E2 2.8 92.2 0.928 0.972
Not assigned 0 0

13  Applications of Sensing for Disease Detection

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

t3.1

t3.2

t3.3

t3.4

t3.5

t3.6

t3.7

t3.8

t3.9

t3.10

t3.11

t3.12

t3.13

t3.14

t3.15

t3.16

t3.17

t4.1

t4.2

t4.3

t4.4

t4.5



This is an interesting result, since quite the opposite was expected, i.e. that symp-
tomatic pixels would have been classified better than asymptomatic ones. However, 
this highlights the capability of HS systems to identify vines potentially affected by 
esca, but without visual symptoms.

Regarding the results obtained for the validation group (24 leaves) (data not 
shown), in most cases, a larger proportion of pixels was classified into the class they 
belong to. In total, 84% of the pixels from the 12 leaves of class E1 were correctly 
classified into their corresponding class (asymptomatic), whereas 76% of the pixels 
from the 12 leaves of class E2 were correctly labelled as symptomatic.

Figure13.5 displays the classification of pixels from two leaves of the validation 
group belonging to classes E1 (a,b) and E2 (c,d), respectively. Images in Fig. 13.5a 
and c correspond to the RGB images taken as reference and images in Fig. 13.5b 
and d are those obtained by the HS system. In sample E1 (Fig. 13.5b) 77.5% of 
pixels were correctly assigned as class E1 (grey pixels), whereas in sample E2 
(Fig. 13.5d) 76.8% of pixels were classified as class E2 (black pixels). Fig. 13.5d 
also shows that most of the black pixels were at the edges of the leaf, matching the 
most esca-affected areas as shown in the equivalent RGB image (Fig. 13.5c).

13.7  �Conclusions

The feasibility of NIR hyperspectral imaging, combined with multivariate analysis, 
to differentiate between asymptomatic and symptomatic leaves from esca-affected 
vines was evaluated in this case study. Good classification rates (above 85% CC in 

Fig. 13.5  Classification of pixels in the validation (grey: E1 class; black: E2 class) leaf samples 
(a,b) E1; (c,d) E2 obtained by HS system (b,d) and their corresponding RGB images (a,c)
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CV) were obtained when applying different pre-processing techniques in PLS-DA 
models. More accurate discrimination of asymptomatic (E1) and symptomatic (E2) 
pixels was achieved after the smoothing pre-process (94.7% CC). Furthermore, a 
pixel-based prediction accuracy above 75% was obtained in the validation group. 
Class E1 was classified better than class E2 suggesting that HS systems could be 
used for esca diagnosis at early stages of infection.

13.8  �Conclusions for the Chapter

Based on the importance of having early and accurate indicators of disease infesta-
tion in crops for timely and proper disease control management, case studies in 
cotton, avocado and grape vines using remote sensing technology have been illus-
trated. Different acquisition platforms were evaluated, such as leaf-level hyperspec-
tral data and canopy-level remote imagery taken from manned airplanes or helicopter 
and UAVs, as well as from satellites. The results proved that remote sensing is very 
useful, efficient and effective for identifying CRR zones in cotton field, laurel wilt-
infested avocado trees and esca-affected vines. The use of powerful analytical algo-
rithms on remotely-sensed data enables the challenge of detecting infested plants at 
an early stage to be overcome, i.e. with minimal symptoms, discriminating them 
from asymptomatic plants and from plants affected by other biotic and abiotic fac-
tors that cause similar symptoms, and for developing prescription maps. Therefore, 
the combination of suitable remote-sensing data and advanced algorithms are pre-
sented as robust tools for rapid and accurate disease detection, offering major sav-
ings compared to traditional diagnostics such as visual inspection, which is costly, 
time-consuming, and subject to human bias. The choice between the remote-sensing 
platforms and analysis techniques depends on the agronomic goal, the cost and 
availability of data and their ease of analysis, the computing power required and the 
overall ease of use.

The early identification of infested plants could assist growers in the decision-
making process and in developing proper and timely site-specific disease manage-
ment strategies to control the spread of these important diseases. In addition, the use 
of disease and prescription maps would allow farmers to optimise inputs and field 
operations, resulting in reduced yield losses and increased profits. Consequently, 
the environmental impact would be lessened with fewer and targeted inputs. Further 
research should be aimed at developing automatic algorithms applied at the plant 
level to control the evolution of these diseases in a robust, fast and accurate way.
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