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Chapter 1

Background & objectives

During my previous studies in Data Science, I had the opportunity to delve deeply into subjects related
to statistics and modelling. These subjects allowed me to understand the importance of data analysis
and its impact on real-life problems. However, throughout my career, I have had no contact with
Bayesian inference, an approach that involves fitting a probability model to data and summarizing
the outcome through a probability distribution on model parameters and unobserved quantities like
predictions for new observations. This gap in my knowledge has led me to believe that there is much
to learn about Bayesian inference and how it can improve my work in data analysis.

Another aspect that caught my attention is the lack of space-dependent models in my previous stud-
ies. These models are essential in the analysis of spatial data. Therefore, I believe that incorporating
space-dependent models in my work could help me gain a more comprehensive understanding of
spatial data and improve my modelling skills.

It is for these reasons that I have decided to embark on a new project to deepen my knowledge of
Bayesian inference and space-time modelling. I am particularly interested in exploring the use of the
Integrated Nested Laplace Approximation (INLA) methodology, which allows for fast and accurate
approximations of posterior distributions, making it an ideal tool for analyzing large and complex
datasets.

Additionally, I plan to compare classical machine learning models such as Extreme Gradient Boosting
or Random Forest and deep learning models such as Long-Short Term Memory (LSTM) or Bayesian
Neural Network (BNN) with Bayesian statistical models fitted with INLA to determine their strengths
and weaknesses. By identifying which modelling approach is best suited for different types of datasets
and analysis tasks, I aim to become a more versatile data analyst.

To these ends, we first introduce the theoretical framework explaining the concepts of Bayesian
inference, classical machine learning and deep learning in Chapter 2. In Chapter 3, we perform an
exploratory data analysis to gain a better understanding of the problem we are facing. Subsequently,
rate modelling is presented in Chapter 4, where we outline the advantages and drawbacks of each
method. We end this work in Chapter 5 with the conclusions and ideas on further work.
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Chapter 2

Theoretical frameworks

2.1 Bayesian statistics

Bayesian statistics (see [1] and [2]) is a framework for understanding and quantifying uncertainty.
The main difference between Bayesian and frequentist statistics is in how they approach the concept
of probability. In frequentist statistics, probability is viewed as the long-run frequency of an event in
repeated trials. On the other hand, Bayesian statistics sees probability as a measure of uncertainty
about a particular event or phenomenon, a measure of the degree of belief that an individual has in
that statement. This belief can be revised as new evidence becomes available.

To make probability statements about a certain parameter θ given observed data y , we first need a
model for the joint probability distribution. The joint probability can be written as the product of the
prior and the likelihood. That is, p(θ, y) = p(θ)p(y |θ).

Then, we use Bayes’ theorem 2.1, where p(θ|y) is the posterior density, p(y |θ) is the likelihood, p(θ)
is the prior and p(y) the marginal distribution, to update our beliefs or knowledge about a particular
event as we gather more information.

p(θ|y) =
p(θ, y)

p(y)
=
p(y |θ)× p(θ)

p(y)
(2.1)

As we can see, the posterior distribution will always be placed between the likelihood and the prior
distribution.

One example of Bayesian statistics in the field of lung cancer is in determining the effectiveness of a
new diagnostic test. Let’s say we have a new test for lung cancer and we want to know how accurate
it is at detecting the disease. We could use Bayesian statistics to update our prior belief about the
accuracy of the test based on data from clinical trials. Suppose our prior belief is that the test is
80% accurate. We then collect data from a clinical trial that shows the test correctly identified 90
out of 100 lung cancer cases. Using Bayesian statistics, we can update our belief about the accuracy
of the test to a posterior distribution that reflects our new knowledge. This can help us make more
informed decisions about the use of the test in clinical practice.

In summary, both Bayesian and frequentist statistics can be used to evaluate the accuracy of the
new diagnostic test for lung cancer, but they approach the problem differently. Bayesian statistics
provides a probability distribution of the test’s sensitivity based on prior knowledge and data, while
frequentist statistics provides a point estimate with a confidence interval based only on the data.

2.2 Spatial data

Spatial data refers to any type of data that contains information about the physical location or
spatial characteristics of objects, events, or phenomena. It can be found in various fields, including
but not limited to geography, environmental science, urban planning, and epidemiology, and is used to
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analyze, model, and visualize spatial patterns and relationships. Spatial data can be categorized into
three primary types: point-reference data (also called geostatistical data), areal data (also known as
lattice data), and point pattern data, each with its own unique characteristics and applications.

In this text, we will focus on areal data, where the region of study is partitioned into a finite number
of areal units with well-defined boundaries.

2.3 Spatio-temporal models in disease mapping

The use of spatio-temporal models in disease mapping has gained significant attention in recent
times due to its ability to offer a comprehensive understanding of how diseases are distributed and
spread over both space and time. This modeling approach allows researchers to detect areas that
have both high and low risks, and to identify any changes in the geographic patterns from one year
to another. By taking into account both geographic and temporal dimensions, these models provide
valuable insights into how the disease risk is evolving across the entire region, as well as how specific
regions are affected. As a result, spatio-temporal disease mapping provides a holistic understanding
of diseases, enabling the development of more effective interventions and policies that can inform
public health decision-making.

Assuming the region of study is divided into n areas, and the time domain has T consecutive periods,
we will establish some notation:

• Yit is the number of observed deaths in the i-th area at time t

• Eit is the number of expected deaths in the i-th area at time t

• Rit is the relative risk of the i-th area at time t

• i = 1, ..., n and t = 1, ..., T

Our assumption is that Yit |Rit ∼ Poisson(EitRit) independently and thus, the maximum likelihood
estimator of Rit is SMRit .

The Standardized Mortality Ratio (SMR, 2.2) is a statistical measure used to compare the observed
number of deaths in a population to the number of deaths that would be expected, i f the risk in the
i-th area and t-th year was the global risk over space and time. It assumes that the observed number
of deaths follows a Poisson distribution, which implies that the events (deaths) occur independently
of each other. When the data are independent and there is a reasonable amount of data, the SMR is
an appropriate and reliable measure to estimate the relative risk of mortality in different populations
or subgroups.

SMRit =
Yit
Eit

(2.2)

In general, to compute the expected cases Eit , we usually stratify the population by variables such
as age and gender. Therefore,

Eit =

J∑
j=1

nitjRj , Rj =

∑n
i=1

∑T
t=1Oitj∑n

i=1

∑T
t=1 Nitj

We can calculate the variance and the standard error as follows:

var [R̂it ] =
var [Yit ]

E2it
=
EitRit

E2it
=
Rit
Eit



2.3. Spatio-temporal models in disease mapping 5

s.e.[R̂it ] =

√
R̂it
Eit
=

√
Yit

E2it
=

√
Yit
Eit

So, in fact the SMR compares the number of observed cases in the i-th area with the number of
cases we would expect to observe if the small area had the same mortality rate as the whole region.

Notice that the SMR can be extremely variable when dealing with rare diseases or low-populated
areas. This leads to methods capable of smoothing risks in space and time, such as hierarchical
mixed Poisson models.

These models can be fitted from a frequentist point of view, or from a fully Bayes approach (most
common in disease mapping).

where nitj is the population at risk in the i-th area, t-th moment and j-th stratum and Rj is the
mortality rate in the j-th stratum.

The model used in this field 2.3 is a generalized linear model GLM.

Yit |Rit ∼ Poisson(µit = EitRit), i = 1, .., n and t = 1, ..., T (2.3)

log(µit) = log(Eit) + log(Rit)

From now on, we will sometimes let log(Rit) = βit , and thus, Rit = eβit . The log(Eit) is an offset.

The specification of log(Rit) gives rise to different models. One of these is the [3] model where

log(Rit) = α+ ξi + γt + φt + δit (2.4)

Here, α is a global intercept, ξi is a spatial structured random effect with a Leroux prior assigned to
it, γt is a temporary structured random effect, φt is a temporary unstructured random effect and δit
is a random effect to take account of the spatio-temporal effect.

In practice, the temporal effect is usually structured, so the uncorrelated temporal component φt can
be removed and the following reduced model is considered:

log(Rit) = α+ ξi + γt + δit (2.5)

Let’s define what each component exactly is:

• α quantifies the logarithm of the global risk and represents an overall risk.

• ξ = (ξ1, ..., ξn)
′ ∼ N(0, [τξ(λξRξ + (1 − λξ)In)]−) where λξ ∈ [0, 1] is a spatial smoothing

parameter, In is the identity matrix and Rξ is the neighborhood matrix (Ri j = −1 ⇐⇒
i and j are neighbors, otherwise Ri j = 0).

When λξ = 0, the Leroux prior becomes ξ ∼ N(0, τ−1ξ In).

On the other hand, when λξ = 1, the Leroux prior reduces to ξ ∼ N(0, [τ−1ξ Rξ]
−).

• γt is usually modeled with a random walk of order one or two (RW1 or RW2). For RW1, the
conditional distribution takes the form (see [4] Theorem 2.3, pp 22- , pp 97 and pp 110):

γt |γ−t ∼ N
(
1

2
(γt−1 + γt+1),

σ2γ
2

)
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The joint distribution of γ can be expressed as γ ∼ N(0, σ2γR−γ ), where Rγ for a RW1 takes
the form [4]:

Rγ =



1 −1 0 · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . −1 2 −1 0
...

. . . −1 2 −1
0 · · · · · · · · · · · · 0 −1 1


(2.6)

• δ = (δ11, ..., δnT )
′ is the vector of the space–time interaction effects, that is assumed to follow

the following multivariate distribution: δ ∼ N(0, σ2δR
−
δ ) . Rδ is the structure matrix of the

space-time interaction and is given by the Kronecker product of Rγ and Rξ: Rδ = Rγ ⊗Rξ.

Depending on the structure matrix of δ, different types of interactions arise:

Table 2.1: Possible types of space-time interactions

Space-time interaction Rδ Rank of Rδ

Type I Iξ ⊗ It I · T
Type II Iξ ⊗Rt I · (T − 1)
Type III Rξ ⊗ It (I − 1) · T
Type IV Rξ ⊗Rt (I − 1) · (T − 1)

Type I interaction means δit are all independent. There is no structure in space and time.
Type II is adequate when there is structure in time but not in space whereas Type III considers
structure in space but not in time. Finally, Type IV is appropriate when δit are structured
in space and time and is suitable if temporal trends from neighboring regions are likely to be
similar.

Model 2.5 presents identifiability issues, as space and time effects have an implicit intercept which
cannot be distinguished from the overall level, and the interaction terms are entangled with the
main effects. To address this problem and achieve model identifiability, sum-to-zero constraints
are typically imposed on the random effects of the model. In [5], they summarize the necessary
identifiability constraints for different types of space-time interactions, displayed in Table 2.1 using
RW1 priors for the temporally structured random effect.

Note that all the random effects in equation 2.5 are modeled as Gaussian Markov random fields
(GMRF).

2.4 Integrated Nested Laplace Approximation

In recent years, the use of spatial and spatio-temporal data has become increasingly important in
a wide range of scientific fields, including disease mapping, ecology, and climate modeling. These
data often have complex structures, which require sophisticated statistical methods for analysis.
Bayesian modeling is a popular approach for analyzing such data, but traditional methods for Bayesian
inference, such as Markov Chain Monte Carlo (MCMC), can be computationally intensive and time-
consuming, especially for complex models.
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The Integrated Nested Laplace Approximation (INLA) approach, proposed by [6], uses a deterministic
algorithm for Bayesian inference. It is especially designed for latent Gaussian models 2.5, a subclass
of structured additive regression models which are flexible enough to be used in many different types
of applications. INLA is a statistical method that provides a computationally efficient alternative
to MCMC for fitting Bayesian models to spatial and spatio-temporal data. INLA, compared to
MCMC, provides accurate results in shorter computing time. It also has the advantage of providing
an approximation of the marginal likelihood, which can be used for model selection and comparison.

The key idea behind INLA is to approximate the posterior distribution of the model parameters using a
sequence of nested Laplace approximations. The first Laplace approximation is used to estimate the
posterior mode and curvature, while subsequent approximations are used to estimate the remaining
posterior distribution. This approach allows for the efficient estimation of complex models, even for
large datasets.

By fitting a Gaussian distribution with a mean equivalent to the Maximum A Posteriori (MAP)
solution and a variance equivalent to the observed Fisher information, Laplace’s approximation offers
an analytical expression for a posterior probability distribution. This approximation is supported by
the Bernstein-von Mises theorem, which asserts that in large samples, the posterior converges to a
Gaussian distribution under regularity conditions.

Let’s see how Laplace’s approximation works. Suppose we want to compute the following integral:

∫
f (x)dx =

∫
exp(log f (x))dx

where f (x) is the density function of a random variable X. Using the Taylor series expansion for the
log f (x) at x = x0:

log f (x) ≈ log f (x0) +
∂ log f (x)

∂x

∣∣∣∣
x=x0

(x − x0) +
∂2 log f (x)

∂x2

∣∣∣∣
x=x0

(x − x0)2

2

If x0 is equal to the mode x∗ = argmaxx log f (x), then ∂ log f (x)
∂x

∣∣∣
x=x∗

= 0 and the approximation

becomes:

log f (x) ≈ log f (x∗) +
∂2 log f (x)

∂x2

∣∣∣∣
x=x∗

(x − x∗)2

2

Therefore, the integral of interest is approximated as follows:∫
f (x)dx ≈

∫
exp

(
log f (x∗) +

∂2 log f (x)

∂x2

∣∣∣∣
x=x∗

(x − x∗)2

2

)
dx

= exp (log f (x∗))

∫
exp

(
∂2 log f (x)

∂x2

∣∣∣∣
x=x∗

(x − x∗)2

2

)
dx

The integrand can be approximated by the density of a Normal distribution by setting

σ2∗ = −1/
(
∂2 log f (x)

∂x2

∣∣∣∣
x=x∗

)
∫
f (x)dx ≈ exp (log f (x∗))

∫
exp

(
− (x − x∗)2

2σ2∗

)
dx

where the integrand is the kernel of a Normal distribution with mean equal to x∗ and variance σ2∗.
More precisely ∫ β

α

f (x)dx ≈ f (x∗)
√
2πσ2∗(Φ(β)−Φ(α))
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where Φ(.) denotes the cumulative density function of the Normal
(
x∗, σ2∗

)
distribution.

As an example, suppose we need to compute the following integral, where f (x) is the Weibull density
function. We will calculate the result by means of Laplace’s approximation:

f (x) =
k

λ

( x
λ

)k−1
e−(x/λ)

k

,

∫ 5
2

f (x)dx

For that, we will need the following quantities:

log f (x) = log
(
kλ−kxk−1

)
−
( x
λ

)k
∂

∂x
(log f (x)) =

∂

∂x

(
log
(
kλ−kxk−1

)
−
( x
λ

)k)
=
−k
( x
λ

)k
+ k − 1
x

∂2

∂x2
(log f (x)) =

∂

∂x

(
−1 + k − k

(
x
λ

)k
x

)
= −
(k − 1)

(
k
(
x
λ

)k
+ 1
)

x2

By solving ∂ log f (x)
∂x = 0, we obtain the mode x∗ = λ k

√
1− 1

k . The variance is obtained by evaluating

σ2∗ = −1/ ∂
2 log f (x)
∂x2 at the mode x∗:

σ2∗|x=x∗ = −1/

−(k − 1)
(
k
(
x
λ

)k
+ 1
)

x2

∣∣∣∣∣∣
x=x∗

=
x2

(k − 1)(k( xλ)k + 1)

∣∣∣∣
x=x∗

σ2∗|x=x∗ =
(
k−1
k

)2/k
λ2

(k − 1)
(
k k

√
k−1
k + 1

)
Therefore,

∫ 5
2

f (x)dx ≈ f (x∗)
√
2πσ2∗(Φ(β)−Φ(α))

Once we know how to perform Laplace’s approximation, which is the core to INLA, let’s remember
a few basic properties of conditionals.

In what follows, we provide a concise recap of several properties associated with conditional distri-
butions. This will serve as a foundation for understanding how INLA operates, which we will discuss
subsequently.

Given any pair of variables (x, y) and provided that p(y) > 0,

p(x | y) =
p(x, y)

p(y)
=⇒ p(x, y) = p(x | y)p(y)

then

p(y) =
p(x, y)

p(x | y)
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If we consider a third variable z we can write

p(y | z) =
p(x, y | z)
p(x | y , z)

which is particularly relevant to the Bayesian case.

The general idea is that we can approximate a generic conditional (posterior) distribution as

p(y | z) ≈
p(x, y | z)
p̃(x | y , z)

where p̃(x | y , z) is the Laplace approximation to the conditional distribution of x given y and z .

This idea can be used to approximate any generic required posterior distribution.

The main aim of Bayesian inference for Latent Gaussian Models (LGM, explained in Section 2.5) are
the posterior marginals. We denote the latent gaussian field as θ and the hyperparameters as ψ:

p (θi | y) =
∫
p (θi , ψ | y) dψ =

∫
p (θi | ψ, y) p(ψ | y)dψ

p (ψk | y) =
∫
p(ψ | y)dψ−k

On the other hand, the approximated posterior marginals of interest returned by INLA have the
following form:

p̃ (θi | y) = . . . =
∫
p̃ (θi | ψ, y) p̃(ψ | y)dψ

p̃ (ψk | y) =
∫
p̃(ψ | y)dψ−k

Thus, we need to find expressions for p (θi | ψ, y) and p(ψ | y).

The approximation to the second term is straightforward and presented right below, whereas the one
to the first term is slightly more complex, because most of the times there will be more elements in
θ than there are in ψ, making the computation more expensive.

p(ψ | y) =
p(θ, ψ | y)
p(θ | ψ, y)

=
p(y | θ, ψ)p(θ, ψ)

p(y)

1

p(θ | ψ, y)

=
p(y | θ, ψ)p(θ | ψ)p(ψ)

p(y)

1

p(θ | ψ, y)

∝
p(ψ)p(θ | ψ)p(y | θ, ψ)

p(θ | ψ, y)

≈
p(ψ)p(θ | ψ)p(y | θ, ψ)

p̃(θ | ψ, y)

∣∣∣∣
θ=θ∗(ψ)

=: p̃(ψ | y)

where p̃(θ | ψ, y) is the Laplace approximation of p(θ | ψ, y) and θ = θ∗(ψ) is its mode for a given
ψ. Since psi has few dimensions, we can get the marginals for ψk |y directly from the approximation
to ψ|y .

Moving on to the first term we wanted to approximate, there are two possibilities:
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1. Gaussian Approximation using p̃(θ | ψ, y).

2. Full Laplace Approximation: we can write θ = {θi , θ−i}, use the definition of conditional
probability and again Laplace approximation to obtain

p (θi | ψ, y) =
p ((θi , θ−i) | ψ, y)
p (θ−i | θi ,ψ, y)

=
p ((θi , θ−i) ,ψ | y)

p(ψ | y)
1

p (θ−i | θi , ψ, y)

∝
p(θ, ψ | y)

p (θ−i | θi , ψ, y)
∝
p(ψ)p(θ | ψ)p(y | θ, ψ)

p (θ−i | θi , ψ, y)

≈
p(ψ)p(θ | ψ)p(y | θ, ψ)

p̃ (θ−i | θi , ψ, y)

∣∣∣∣
θ−i=θ

∗
−i (θi ,ψ)

=: p̃ (θi | ψ, y)

This approximation is generally correct but is computationally expensive. Once we get p̃ (θi | ψ, y)
and p̃(ψ | y), the marginal posterior distribution p (θi | y) is then approximated by

p̃ (θi | y) ≈
∫
p̃ (θi | ψ, y) p̃(ψ | y)dψ

and the integral can be solved numerically through a finite weighted sum

p̃ (θi | y) ≈
∑
j

p̃
(
θi | ψ(∗), y

)
p̃
(
ψ(∗) | y

)
∆∗

for some relevant integration points ψ(∗) with a corresponding set of weights ∆∗.

Taking all the preceding information into account, we are now able to outline the specific actions
that INLA performs:

1. Examine the combined posterior distribution of the hyperparameters, p̃(ψ|y), and generate a
collection of favorable integration points ψ∗ that are linked with the majority of the distribution’s
mass. Additionally, create a corresponding set of associated area weights ∆∗.

2. Following the grid search, compute the marginal posterior distribution p̃(ψk |y) by applying an
interpolation method that relies on the density values of p̃(ψ|y) evaluated at the integration
points ψ∗.

3. Calculate the estimated marginal distribution p̃(θi |ψ∗, y) for certain chosen values of parameter
θi at each integration point in ψ∗.

4. For each i , use numerical integration to obtain

p̃(θi |y) ≈
∑
ψ∗

p̃(θi |ψ∗, y)p̃(ψ∗|y)∆∗

The so called Simplified Laplace Approximation is a computationally efficient alternative to the Full
Laplace Approximation, which is much faster and provides similar results.

2.5 Latent Gaussian models

For a statistician, the crux of the issue in (parametric) inference lies in establishing a probability
model that can account for the observed data, by leveraging pertinent parameters that are central
to the statistical problem at hand. Conditional Independence is assumed in the first hierarchy level.

y | θ, ψ ∼ p(y | θ, ψ) =
n∏
i=1

p (yi | θi , ψ)
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In the second one, we assume that the parameters are described by a Gaussian Markov Random Field
(GMRF) θ | ψ ∼ Normal

(
0,Q−1(ψ)

)
, where Q is the precision matrix and verifies that, for a general

pair i and j , with i ̸= j it holds that the corresponding element of the precision matrix is null

θi⊥⊥ θj | θ−i ,j ⇔ Qi j(ψ) = 0

Therefore, it is clear that in GMRF we have sparse precision matrices, which can be exploited for
very quick computations for the Gaussian part of the model. Latent Gaussian models are flexible
prior models which explicitly model dependence among samples and which allow for efficient learning
of predictor functions and for making probabilistic predictions.

The joint posterior distribution of θ and ψ is given by the product of the likelihood, the GMRF density
and the hyperparameter prior distribution,

p(θ, ψ|y) ∝ p(y |θ, ψ)× p(θ|ψ)× p(ψ)

We can restate a LGM by partitioning ψ = (ψ1, ψ2). Hence, the LGM will take the following form:

y | θ,ψ ∼
∏
i

p (yi | θi , ψ2) (data model)

θ | ψ ∼ Normal
(
0,Q−1 (ψ1)

)
(GMRF prior)

ψ ∼ p(ψ) (hyperprior)

where (a) ψ1 are the hyper-parameters and ψ2 are the nuisance parameters, (b) the dimension of θ
can be very large and (3) the dimension of ψ must be relatively small (not to exceed 20) to avoid
an exponential increase in computational time computational time.

2.6 Variational Bayes

The low-rank Variational Bayes correction to the posterior means of a Gaussian latent field is a
technique used in Bayesian inference to approximate the posterior distribution of a high-dimensional
Gaussian random field, proposed by [7]. In many applications, such as spatial modeling or image anal-
ysis, the dimensionality of the data is very large, making the computation of the posterior distribution
infeasible.

This technique involves approximating the high-dimensional Gaussian random field using a lower-
dimensional approximation, such as a low-rank matrix. This approximation reduces the computational
burden of the inference algorithm and allows for faster and more efficient computation of the posterior
distribution.

The posterior means of the Gaussian latent field are corrected using the low-rank approximation to
improve the accuracy of the inference results. The correction is based on a second-order Taylor series
expansion of the posterior distribution, which approximates the curvature of the posterior distribution
around its mode.

It can significantly improve the accuracy and efficiency of Bayesian inference algorithms and is the
default option in the R-INLA package since 2022 (see [8] on how to use the package).

2.7 Model selection criteria: INLA

Model selection is a critical task in statistical analysis, where the goal is to identify the model that
best represents the underlying data generating process. Several model selection criteria are used to
compare and evaluate different models and choose the one that is most appropriate for the data. In
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this context, two widely used model selection criteria are Deviance Information Criterion (DIC, [9])
and Watanabe-Akaike Information Criterion (WAIC, [10]).

DIC is a measure of the goodness-of-fit of a model that takes into account both the complexity of
the model and the degree of overfitting. It is computed as the difference between the posterior mean
of the deviance and the deviance evaluated at the posterior mean of the parameter estimates. A
lower DIC value indicates a better fitting model.

On the other hand, WAIC is a model selection criterion that measures the out-of-sample predictive
accuracy of a model. It is based on the Kullback-Leibler (KL) divergence between the predictive
distribution of the model and the true distribution of the data. Unlike DIC, WAIC takes into account
the entire posterior distribution of the model parameters and adjusts for overfitting by penalizing
complex models. A lower WAIC value implies better predictive accuracy of the model.

In summary, while WAIC focuses on the predictive accuracy of a model, DIC considers both the
goodness-of-fit and the model complexity. Therefore, both WAIC and DIC are useful tools for
selecting the best model among different alternatives.

A new measure has been proposed for model selection in terms of the predictive capacity of the
models, which is a leave-group-out technique (see [11] for more information). In INLA, this option
is achieved by using the inla.group.cv function. The higher the value, the better the predictive
capacity.

2.8 Classical machine learning

In recent years, there has been a growing interest in modelling and predicting risk in various domains.
In the field of machine learning, regression models have been widely used to make predictions on
input features. These models aim to find the relationship between the input features and the target
variable, using various statistical and mathematical techniques. In this project, we will explore classical
machine learning algorithms such as linear regression, Decision Tree, Random Forest or Extreme
Gradient Boosting and their application in predicting death rates based on demographic information.
Specifically, we will be using the dataset introduced in chapter 3.

Not only will we fit several models, but we will also develop a nested approach to maximize the
model’s performance. It consists of using different sets of variables, such that in each step, we
consider extra information (hopefully useful) to the model. We will do this using python.

2.9 Cross validation

Cross-validation is a technique used in machine learning and other areas to assess the performance
of a model on an independent dataset. The basic idea is to split the dataset into two parts: a
training set, which is used to train the model, and a validation set, which is used to evaluate the
model’s performance. Cross-validation involves repeatedly splitting the data into different training
and validation sets, and averaging the performance over these splits to obtain a more robust estimate
of the model’s performance.

It works well when the data is independently and identically distributed (i.i.d), meaning that the ob-
servations are independent of each other and are drawn from the same distribution. However, it can
lead to biased estimates in certain cases, such as when the data has a temporal or spatial dependency
structure. In time-dependent datasets, the performance may be better estimated using time-series
cross-validation, which takes into account the temporal dependencies between observations. In spa-
tially dependent datasets, leave-one-out cross-validation can be used to ensure that the validation
set is not too similar to the training set.

This is our case, so we had to use a type of hand-coded cross-validation since there are no automatic
implementations for this type of data. The validation used involves splitting a training set containing



2.10. Model selection criteria: ML 13

Figure 2.1: Time series split representation.

Figure 2.2: Space dependent split representation.

information from certain years and a test set containing information from subsequent years (to avoid
training with variables to be predicted in each case). Additionally, we will include certain provinces
in the training set and use different ones in the test set (to avoid training the model with data from
the same province)."

The resulting cross validation can be explained as the combination of time series split (2.1) with
space dependent split (2.2).

2.10 Model selection criteria: ML

Model selection criteria play a crucial role in machine learning as they provide a means of comparing
and selecting among different models. One commonly used metric is the R-squared (R2) value, which
is a measure of how well the model fits the data. It is defined as the proportion of variance in the
dependent variable that is explained by the independent variables in the model. A value of 1 indicates
a perfect fit, while a value of 0 indicates that the model does not explain any of the variance in the
dependent variable.

Another widely used metric is the root mean square error (RMSE), which is a measure of the difference
between the predicted values and the actual values. It is calculated by taking the square root of the
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average of the squared differences between the predicted and actual values. The RMSE provides a
measure of the accuracy of the model, and a lower value indicates a better fit.

It is important to note that while R2 and RMSE are commonly used metrics, they have their limita-
tions. R2 does not provide any information on the absolute error of the model, and it can be biased
towards models with more parameters. On the other hand, RMSE is sensitive to outliers and can be
affected by the scale of the data.

2.11 Deep learning

Deep learning models are capable of extracting and identifying intricate patterns and relationships
within the data, without the need for explicit feature engineering. In our case, a deep learning
model could learn the underlying patterns that link the predictors to the number/rate of deaths. By
using deep learning, we could potentially improve the accuracy of our predictions and uncover hidden
patterns that would not be captured by traditional machine learning models. However, deep learning
models require more computational resources, more training data, and more time to train compared
to classical machine learning models.

Deep learning approaches for space-time data [12], including disease mapping, typically involve the
use of convolutional neural networks (CNNs) and recurrent neural networks (RNNs).

CNNs are well-suited for analyzing spatial data, such as satellite imagery or maps, and have been used
for various applications in disease mapping. For example, researchers have used CNNs to identify
areas with high rates of malaria transmission by analyzing satellite imagery of vegetation in [13],
which can serve as a proxy for the presence of breeding sites for the mosquitoes that carry the
disease.

RNNs, on the other hand, are particularly useful for analyzing temporal data, such as time series
data. In disease mapping, RNNs have been used to model the spread of infectious diseases over
time and space. For example, researchers have used RNNs to forecast the spread of dengue fever by
analyzing spatio-temporal data on climate, mosquito abundance, and reported cases of the disease.

However, despite the spatio-temporal nature of the data, neither CNN nor RNN architectures have
been utilized in this study. The data characteristics do not naturally lend themselves to a suitable
representation for CNNs, which are primarily designed for image data. Additionally, RNNs have been
surpassed by more advanced network architectures such as GRU (Gated Recurrent Unit) or LSTM
(Long-Short-Term-Memory).

Moreover, upon discovering the existence of Bayesian Neural Networks (BNNs), there was a strong
motivation to explore their implementation in this study, given their potential advantages and rele-
vance to the research topic.

In a nutshell, we will implement three kinds of neural networs: MLP, LSTM and BNN and compare
them.
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Chapter 3

Exploratory data analysis

3.1 Introduction & Preprocessing

The present exploratory data analysis (EDA) focuses on a dataset of lung cancer mortality in Spain,
spanning from 1999 to 2020, for each province year by year. The study is motivated by the importance
of gaining insight into cancer mortality patterns and trends, and the relevance of understanding such
trends for public health and policy-making purposes, as well as to serve as an example on which to
apply the techniques under study.

Cancer continues to be a major public health concern worldwide, and lung cancer, in particular, is
a leading cause of cancer mortality in Spain. With approximately 20% of all cancer-related deaths
attributed to lung cancer [14], it is critical to investigate the factors contributing to the spatio-
temporal distribution of lung cancer mortality rates across the country. While our study does not
directly investigate risk factors, our contribution lies in enhancing the comprehension of the temporal
evolution of geographical patterns. By doing so, we aim to provide insights that may help identify
potential risk factor. The EDA will involve applying data analysis techniques to examine patterns
and trends in cancer mortality data in Spain.

Through the investigation, we aim to identify potential hotspots associated with lung cancer mortality
in Spain, which can inform the development of targeted public health interventions and policies.

The top 5 rows of the provided data are show in Table 3.1.

Table 3.1: Top 5 rows of the original lung cancer data.

PROV ANO SEX EDADGR O Pop

0 1 1999 1 1 0 5454.0
1 1 1999 1 10 7 10292.0
2 1 1999 1 11 3 10216.0
3 1 1999 1 12 15 7930.0
4 1 1999 1 13 13 7375.0

The dataset contains the following columns:

• PROV: province’s ID (from 1 to 50) corresponding to their zip codes,

• ANO: year (from 1999 until 2020),

• SEX: wheter mortality refers to males (SEX=1) or females (SEX=6),

• EDADGR: age group to which individuals belong (from 1 to 18, where the group 1 contains
people of 0-4 years, the group number 2 from 5-9 etc.)

• O: number of observed cases (deaths),

• Pop: population.
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Table 3.2: Top 5 rows of the preprocessed lung cancer dataset.

ProvinceID Year Sex AgeGr Obs Population Risk Exp Rate

0 1 1999 Man 1 0 5454 2.2385e-07 0.0012 0.00
1 1 1999 Man 10 7 10292 2.7430e-04 2.8231 0.68
2 1 1999 Man 11 3 10216 6.2067e-04 6.3408 0.29
3 1 1999 Man 12 15 7930 1.1574e-03 9.1782 1.89
4 1 1999 Man 13 13 7375 1.8102e-03 13.3502 1.76

We have done some preprocessing work, as well as calculations to obtain the expected number of
cases for each row and the SMR, according to the expressions in section 2.3. Results are presented
in Table 3.2. We wanted to express the gender with its string representation, change some of the
column names and make sure the data types were appropriate.

Apart from the SMR, we have calculated the rate per thousand individuals, defined as Ratei jt =
Oi jt

Populationi jt
× 1000 because of the following reasons:

• Interpretation: The rate per thousand is more straightforward to interpret compared to the
SMR, which requires understanding of the reference population.

• Comparability: The rate per thousand allows for easier comparisons between groups or over
time, as the denominator (population at risk) is constant. In contrast, the SMR requires
adjusting for differences in the reference population, which can complicate comparisons.

• Precision: The rate per thousand may be more precise in some instances as it is based on
actual population denominators, whereas the SMR relies on estimated denominators.

Therefore, from now on the target variable will be the Rate. After these steps, we merged the Table
3.2 with the spanish cartography dataset, performing a left join by ProvinceID to get the region
names and the geometry multi-polygons (provinces’ boundaries). The table is not presented in this
work because of its dimensions.

Once the data is in the appropriate format, exploratory analysis begins.

3.2 Data analysis

Data analysis is a crucial component in making informed decisions and understanding complex phe-
nomena in a variety of fields. In this study, we analyze the previously introduced dataset to gain
insights into the relationships and patterns among different variables. Through the use of descriptive
statistics and data visualization techniques, we aim to uncover hidden trends and correlations that
may be useful for our objectives.

To begin our analysis, we first investigate how the individuals in the dataset are distributed according
to their gender and age. To achieve this, we will determine the proportion of deaths of male and
female subjects, as well as the distribution of deaths across different age groups. The respective
plots are presented in Figure 3.1.

One can observe huge differences regarding gender with 75% of deaths corresponding to males. If
we focus on age groups, lung cancer mortality is nearly nonexistent in people younger than 40. For
the older age groups, the proportion of deaths is similar.

To get an idea of the distribution of each variable, we describe data through numerical summaries,
shown in Table 3.3.
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Figure 3.1: Proportion of deaths of each sex and age group.

Table 3.3: Numerical summaries of the variables in our dataset.

min max mean sd cv

Observed 0.0 401.0 11.24 30.12 2.68
Population 1.23e+03 321933.00 24772.27 34946.26 1.41
Expected 6.74e-05 425.76 11.24 29.31 2.61
Rate 0.0 8.65 0.67 1.28 1.91

When the coefficient of variation (cv) is above 1, it indicates a relatively high degree of variability or
dispersion in the dataset compared to the mean and suggests that the standard deviation is larger
than the mean, indicating that the data points are spread out over a wider range.

The mean and standard deviation of the Observed variable suggest that there is quite a bit of variability
in the number of observed cases. The standard deviation is larger than the mean, indicating that the
distribution is likely skewed to the right.

The mean and standard deviation of the Population variable suggest that the population size also
varies quite a bit, and there are likely some very large values that are driving up the standard deviation.

Expected cases have a similar mean to the Observed variable, but a smaller standard deviation. This
indicates that the expected number of cases is more consistent across the population than the actual
number of observed cases.

Finally, the rate has a mean of 0.68 cases per 1000 inhabitants and a standard deviation of 1.28. In
this case, the highest value is 8.66 cases per 1000 inhabitants.

In Figure 3.2 we show how rates evolved for men and women between 1999 and 2020. Males exhibit
a declining tendency, whereas females display a contrasting pattern.

Despite the fact that lung cancer deaths are primarily among men, there has been a decreasing trend
in this group in recent years. On the other hand, women, who historically had a lower number of
deaths, have experienced a consolidated upward trend. This trend may be attributed to the fact
that in the past, the majority of women did not smoke. However, with significant advancements
in gender equality and personal rights, women have started smoking, leading to an increase in lung
cancer cases. Additionally, a notable discrepancy in the magnitude of the variable is evident between
the two sexes.
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Figure 3.2: Evolution of mean Rate by sex.

Figure 3.3: Mean Rate for each age group and sex from 1999 until 2020.
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Figure 3.4: Evolution of Spanish population between 1999 and 2020.

Regarding Figure 3.3, the lower age groups present higher deviations from the mean (see error bars).
This is due to the fact that a single death in early ages has a bigger impact in the mean that one
death among the older ones, because close to 0 rates are expected for the youngest. We must also
take into account that people in higher age groups are more likely to die, not just because of cancer
but from other diseases too. That is why, even if there is less population in older ages, rates remain
high.

We present a plot in Figure 3.4 to see the population’s temporal evolution. If the rate remained
constant, we would expect a higher absolute number of deaths.

We are now interested in identifying the regions and years with a higher rate. The heatmap displayed
in Figure 3.5 makes it easy to find this information. The results in the rate heatmap are consistent
(time neighbors exhibit similar rates) and is hard to find extreme values. Overall, the later the year,
the smaller the rate is. The darkest region is Extremadura, which means the rate is higher there.

To compare multiple models and mitigate the computational cost, dimensionality reduction tech-
niques are necessary. We employed a straightforward clustering method called DBSCAN on the
entire population, considering only age groups and the proportion of deaths within each group.

By clustering the data into 5 groups, we selected 2 clusters with a sufficient number of non-zero
observations. Age groups 14 and 15 were merged into one cluster (65-74 years), while age groups
16 and 17 were grouped together in another cluster (75-84). This allowed us to simplify the analysis
by grouping up these individuals into single groups. Therefore, from now on, we will work with these
four groups:

• Group 1: Men, from 65 to 74 years,

• Group 2: Women, from 65 to 74 year,

• Group 3: Men, from 75 to 84 years,

• Group 4: Women, from 75 to 84 years

For the selected groups, the evolution of the rate is shown in Figure 3.6. As expected, the ones
corresponding to men are decreasing, while the trends for women are increasing.
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Figure 3.5: Heatmap of Rate for each region from 1999 to 2020.

Figure 3.6: Evolution of mean rate by groups.
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Another way of visualizing this is through map plots. Figures 3.7, 3.8, 3.9 and 3.10 help us identify
areas with higher and lower rates at a glance. Finally, to account for the variability of each province,
we found interesting to show 3.11, 3.12, 3.13 and 3.14, where the rates for each province are shown
in different lines and the overall mean is presented in blue. Despite the visible peaks and valleys
observed for each province and the variability among them, the overall trend within each group is
clear. If we pay attention to Figure 3.12, we can see that there are some provinces with rates higher
than the mean and others that are below the mean rate. Some lines exhibit higher variability than
others, and probably belong to lower populated areas.
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Figure 3.7: Evolution of mortality rates per 1000 inhabitants for men between 65
and 74 years, group 1.

Figure 3.8: Evolution of mortality rates per 1000 inhabitants for women between
65 and 74 years, group 2.
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Figure 3.9: Evolution of mortality rates per 1000 inhabitants for men between 75
and 84 years, group 3.

Figure 3.10: Evolution of mortality rates per 1000 inhabitants for women between
75 and 84 years, group 4.
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Figure 3.11: Evolution of mortality rates per 1000 inhabitants for men between 65
and 74 years for each province. The blue line indicates the mean rates per year.

Figure 3.12: Evolution of mortality rates per 1000 inhabitants for women between
65 and 74 years for each province. The blue line indicates the mean rates per year.
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Figure 3.13: Evolution of mortality rates per 1000 inhabitants for men between 75
and 84 years for each province. The blue line indicates the mean rates per year.

Figure 3.14: Evolution of mortality rates per 1000 inhabitants for women between
75 and 84 years for each province. The blue line indicates the mean rates per year.
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Chapter 4

Rate modelling

4.1 INLA models

This section details the INLA-fitted models for each of the four strata of interest, namely: gender
(male/female) and age group (65-74/75-84).

The present study uses the BigDM library developed by Spatial Statistics UPNA, which features a
function with adjustable parameters for fitting the desired model. This library is built upon the widely
used R-INLA package and has been optimized to effectively analyze large datasets by utilizing disjoint
models or k-order neighborhoods instead of the global one.

4.1.1 Fitted models & results

We fitted 4 models for each stratum / group, for different types of interaction [15]. Results are
shown in Table 4.1.

As explained before, we make decisions based on DIC and WAIC, primarily. Both criteria yielded the
same results. The selected interactions are presented in bold in Table 4.1. For the male groups the
selected interaction type was II, which means that each area has a temporal correlation structure,
but neighboring areas have independent temporal correlations, i.e., trends of adjacent provinces don’t
have to be similar. On the other hand, female groups obtained better DIC values with interaction
type IV. That is, at each time point and for contiguous periods, there are spatial correlations, and
vice-versa. Note that, for group number 2, the DIC and WAIC are the same for interaction types
II and IV, but we selected the second option because of the leave-group-out value, which is slightly
higher for type IV.

Plotting the rate versus the posterior median estimate, we obtain Figure 4.1 (for the subsequent
models, we will show the predictions for the 4 groups in the same plot, but the behavior is the same).
We did not expect to recover the observed rates (we do not believe they are true) and we expect
some shrinkage due to the smoothing of the model. In group number 4, rates are more unstable and
INLA smoothes more, which allows us to see the temporal trend.

The posterior median estimates are shown, in stratum order, in Figures 4.2, 4.3, 4.4 and 4.5. We
must keep into account, that this approach gives us the full posterior distribution, not only point
estimates. This is a huge advantage of this method and will keep an important role in interpretation
and comparison with the two other proposed model families.

In Figures 4.6, 4.7 and 4.8, crude rates are shown against posterior median estimates together with
the credible intervals for each group, in Madrid, Navarra and Valencia, respectively. INLA captures
the tendencies and credible intervals are good at reflecting the variations in the data. As expected,
men were easier to adjust than women, because of the amount of available data.

As the EDA showed, trends for men are decreasing, while those for women have been increasing in
the last years. Note that the legends vary from one sex to the other, because scales for these two
groups are still very different. These plots are also useful in identifying whether a specific time period

https://github.com/spatialstatisticsupna/bigDM
https://www.r-inla.org/
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Table 4.1: Results for INLA models fitted to each stratum and interaction type.

Group Interaction DIC WAIC N. parameters Leave-group-out

1 Type I 7639 7636 294 0.0322
Type II 7526 7535 157 0.0339
Type III 7639 7655 231 0.0331
Type IV 7531 7544 151 0.0342

2 Type I 5264 5265 112 0.1051
Type II 5249 5253 94 0.1056
Type III 5268 5271 86 0.1055
Type IV 5249 5253 81 0.1058

3 Type I 7418 7417 179 0.0354
Type II 7361 7361 130 0.0362
Type III 7429 7429 126 0.0358
Type IV 7364 7364 131 0.03623

4 Type I 5352 5352 79 0.0973
Type II 5348 5349 69 0.0974
Type III 5352 5353 65 0.0975
Type IV 5345 5347 68 0.0975

exhibits a higher (above the median) or lower (below the median) than expected rate. Provinces with
higher populations (Madrid) tend to have smoother crude rate values, whereas low populated areas
(Navarra and Cáceres) exhibit strong changes in consecutive years. The credibility intervals provided
by INLA are, therefore, more accurate as the areas become more populated.

Comparing these maps with the ones presented in Chapter 3, we can see that the posterior median
estimates are "smoother" that the original rates, not only in space, but also in time. It seem clear
that Extremadura is one of the regions where the mortality risk is higher for male groups, whereas
for females, the zones with higher risks are at the coast.

Figure 4.1: Posterior median estimates for the rate with the corresponding 95%
credible intervals for each group.
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Figure 4.2: Posterior median estimates for the rates for men between 65 and 74
years.

Figure 4.3: Posterior median estimates for the rates for women between 65 and 74
years.
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Figure 4.4: Posterior median estimates for the rates for men between 75 and 84
years.

Figure 4.5: Posterior median estimates for the rates for women between 75 and 84
years.
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Figure 4.6: Evolution of rate and posterior median in Madrid, from first to last year,
with the corresponding credible intervals.

Figure 4.7: Evolution of rate and posterior median in Navarra, from first to last
year, with the corresponding credible intervals.

Figure 4.8: Evolution of rate and posterior median in Cáceres, from first to last
year, with the corresponding credible intervals.
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4.2 Classical machine learning

4.2.1 ML models

Machine learning models in this study have been implemented in python, using the scikit-learn
package. There are plenty of available models in this library and therefore, we decided to use the
most popular ones. We studied the behavior of each model with different predictor variables, by
applying feature engineering1.

4.2.2 Fitted models & results

Here we present the list of predictor variables used to fit each model and the obtained results.

1. Encoded province and population.

2. Encoded province, population and sex.

3. Encoded province, population, sex and age group.

4. Encoded province, population, sex, age group and year.

5. Population, sex, age group, year, longitude and latitude of the centroids of each province.

We obtained the information from the cartography dataframe.

6. Population, sex, age group, year, x and y coordinates of the centroids of each province.

We transformed the longitude and latitude values to x and y coordinates of a plane. The
representation of these centroids is shown in Figure 4.9.

Figure 4.9: Centroids of each province in Cartesian coordinates.

7. Population, sex, age group, x and y coordinates and temporal lags.

We created a function which adds columns to our dataset. These columns are the previous
years’ rates (number of years decided by the data scientist), for the same province and stratum.
We used 2 columns to take into consideration the two previous years for each observation. This
aims to capture the time dependencies in data.

Notice that for the first 2 years, there is no information and thus, we have missing values for
them. We could apply some imputation techniques, but we didn’t want to include a bias in our
data, so we ended up removing the first 2 years of observations.

A glance at these temporal lags is shown in Figure 4.10.
1Feature engineering refers to the process of using domain knowledge to select and transform the most relevant

variables from raw data when creating a predictive model using machine learning or statistical modeling.

https://scikit-learn.org/stable/
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Figure 4.10: Temporal lags 1 and 2 versus Rate.

8. Population, sex, age group, x and y coordinates, temporal lags and spatial lags.

We have defined a new variable named spatial_lag (see [16]), to account for the spatial
auto-correlation. It is calculated based on the adjacency matrix and calculates the average of
the rates of the adjacent provinces. It also helps reduce noise.

Spatial lag of order 1 (considering only adjacent provinces) presents a positive correlation with
the original Rate. See figure 4.11.

Figure 4.11: Spatial lag versus Rate.

9. Population, sex, age group, x and y coordinates, temporal lags, spatial lags and spatio-temporal
lags.

Incorporating a spatio-temporal lag is a natural approach to account for the potential interplay
between temporal and spatial auto-correlations. It is the same as the spatial lag but for previous
years.

The spatio-temporal lag is shown in Figure 4.12 and looks similar to the spatial_lag.
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Figure 4.12: Spatio-temporal lag versus Rate.

10. Population, sex, age group, x and y coordinates, temporal lags, spatial lags and spatio-temporal
lags and basis functions for each variable.

Basis functions are a set of functions used in machine learning to transform input data into
a new feature space. This technique can improve model performance by capturing complex
patterns in the data, reducing dimensionality, and increasing flexibility.

In this work we included polynomial features, gaussian basis and sigmoid-like basis.

Each predictor subset has been trained with the above mentioned models using the grid search
strategy with the cross validation explained before. This is the way we fine-tuned the hyperparameters
too. The full training of all models had an estimated time of 15h.

These models were selected based on their specific features: linear regression and decision tree
models offer interpretability, random forest models enable the estimation of confidence intervals (as
we will see later), and XGBoost is well-known for its exceptional performance.

The final model selected, together with the preprocessing pipeline, can be represented as in Figure
4.13.

It is important to highlight that due to the striking similarity in results among the four regression
models used, one might be inclined to favor the decision tree model, given its high interpretability.
However, it is noteworthy that the predictions from this model appear to be rather unusual (for the
problem, not for a decision tree), as demonstrated in Figure 4.14.

The results are presented in Table 4.2 and a nice way to visualize what we obtained is presented in
Figures 4.15 and 4.16.

We achieved a better fit by incorporating the information we believed would be useful. Our models
didn’t have to face to overfitting because we selected the hyperparameters with the cross validation
explained before. It is worth noting that for models 7 and beyond, the differences were relatively
small. This could indicate that lung cancer does not exhibit significant spatial autocorrelation or that
its effect is really small, at least for province lattice data.

The use of geographic coordinates in the modeling process has yielded interesting results. Surprisingly,
the longitude and latitude variables do not seem to have a strong relationship with the response
variable. However, the inclusion of X and Y coordinates has been found to improve the model, as
evidenced by the lower RMSE and higher R2 values, though the difference is small.

We must keep in mind that, even if the lag variables do not seem to improve the model by much,
they are variables substituting the previous encoded P rov inceID and Y ear variables and though,
seem to capture the essence of the autocorrelations. Ultimately, the basis functions had almost no
effect on the performance of the model.
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Upon testing the aforementioned techniques, it appears that we have encountered the limits of
model fitting given the available data. It is possible that the inclusion of additional covariates, such
as the proportion of smokers in each group, could enhance the model’s performance and mitigate
the variability of the fitted values, but we managed to improve the quality from the first to the last
model including knowledge in the form of covariates

Figure 4.13: Preprocessing and modeling pipeline scheme for the selected model.

Figure 4.14: Random forest test predictions (x) versus real values (y).
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Table 4.2: Results for the classical machine learning models.

Predictors Model RMSE train R2 train RMSE test R2 test

1 LR 1.37 0.39 1.37 0.36
RF 1.55 0.21 1.63 0.15

XGB 1.14 0.58 1.45 0.28
DT 1.46 0.31 1.58 0.14

2 LR 0.58 0.89 0.57 0.89
RF 0.73 0.82 0.82 0.78

XGB 0.49 0.92 0.61 0.87
DT 0.71 0.84 0.73 0.82

3 LR 0.50 0.92 0.51 0.91
RF 0.67 0.85 0.71 0.84

XGB 0.42 0.94 0.54 0.89
DT 0.54 0.91 0.57 0.89

4 LR 0.50 0.92 0.49 0.91
RF 0.67 0.85 0.71 0.84

XGB 0.42 0.94 0.53 0.90
DT 0.54 0.91 0.57 0.89

5 LR 0.55 0.90 0.56 0.89
RF 0.39 0.94 0.51 0.89

XGB 0.46 0.93 0.56 0.89
DT 0.57 0.89 0.60 0.87

6 LR 0.56 0.90 0.57 0.91
RF 0.45 0.92 0.54 0.89

XGB 0.49 0.92 0.55 0.89
DT 0.51 0.91 0.58 0.89

7 LR 0.55 0.90 0.54 0.91
RF 0.42 0.93 0.58 0.90

XGB 0.47 0.93 0.56 0.90
DT 0.57 0.89 0.58 0.90

8 LR 0.55 0.90 0.53 0.91
RF 0.41 0.95 0.53 0.92

XGB 0.46 0.93 0.55 0.90
DT 0.57 0.89 0.57 0.90

9 LR 0.52 0.91 0.57 0.91
RF 0.41 0.95 0.51 0.91

XGB 0.43 0.94 0.55 0.90
DT 0.55 0.90 0.60 0.90

10 LR 0.55 0.90 0.53 0.91
RF 0.40 0.95 0.51 0.91

XGB 0.39 0.95 0.53 0.91
DT 0.56 0.89 0.56 0.90
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Figure 4.15: R2 in train and test for the different variable configurations.

Figure 4.16: RMSE in train and test for the different variable configurations.
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Based on the principle of parsimony, we will choose the simplest model among the two considered
(in bold), which is model 9. The residual diagnosis plot is presented in Figure 4.17.

Figure 4.17: Residual diagnosis for random forest selected model.

In the context of lung cancer mortality rate per 1000 inhabitants, an RMSE of 0.51 indicates that,
on average, the model’s predicted values deviate from the actual values by 0.51 deaths per 1000
inhabitants. This could be considered a relatively high error, but it seems that the model is having
trouble with group number 4 more than with the others, which increases the overall RMSE. The
behavior of the model is similar to the one reflected in Figure 4.6, which looks adequate, indicating
that the model is performing reasonably well in its predictions.

An R2 value of 0.91 suggests that the model explains 91% of the variance in the data. This means
that the model is able to capture most of the variation in lung cancer mortality rates and provides
a good fit to the data. It also suggests that the model is likely to be reliable in making predictions
about lung cancer mortality rates for new data, as it has explained a large proportion of the variance
in the existing data. The behavior of the model’s predictions on the training and test sets can be
observed in Figure 4.18.

So far, we have obtained classical machine learning results, specifically point estimates. Now, let’s
consider the scenario where we want to incorporate confidence intervals, similar to what we do in
Bayesian statistical models. To achieve this, we utilized the python library forestci to compute the
unbiased sample variance using the infinitesimal jackknife method (explained in [17]). In Figure 4.19,

https://pypi.org/project/forestci/
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Figure 4.18: Real versus predicted Rates, colored by pertenence to the training or
to the test dataset.

we depict this sample variance. Subsequently, we apply that

CI1−α(pred) = pred ± tn−1,α/2 ∗
√
S2

n

to derive the confidence intervals from the point estimates pred and the obtained sample variance,
S2.

Now, we are able to plot the point estimates together with the prediction intervals for each row of
the dataset, 4.20.

Figure 4.19: Point estimates for the test dataset together with each point’s stan-
dard deviation acording to forestci.



40 Chapter 4. Rate modelling

Figure 4.20: Real versus predicted values for each group with their 95% prediction
intervals.

4.3 Deep learning models

The objective is to train a deep learning model that can effectively capture and model spatio-temporal
data patterns. To achieve this, a preprocessing step has been conducted to transform the input data:
the construction of temporal windows. Specifically, temporal windows of 3 years have been defined
for each province, enabling the consideration of spatial and temporal dependencies during both the
training and validation processes. By incorporating these temporal windows, the model can account
for the complex interplay between spatial and temporal factors. Furthermore, it is because of these
windows that the model accounts for the temporal autocorrelations.

In this work, three types of neural networks have been implemented: Multilayer Perceptron (MLP),
Long Short-Term Memory (LSTM), and Bayesian Neural Networks (BNN). Each of these neural
network architectures possesses distinct features and is worth comparing them.

The MLP is a fundamental type of neural network commonly used for supervised learning tasks. It
consists of multiple layers of interconnected nodes, where each node applies a (non)linear activation
function to the weighted sum of its inputs. MLPs are known for their ability to approximate complex
nonlinear mappings and are widely used for tasks such as classification and regression.

The LSTM network is a specialized type of recurrent neural network (RNN) that addresses the
vanishing gradient problem associated with traditional RNNs. LSTMs are designed to effectively
capture and model dependencies over time, making them suitable for tasks involving sequential or
time-series data. They utilize memory cells and gating mechanisms to selectively remember or forget
information, enabling them to capture long-term dependencies and handle sequential patterns more
effectively.

BNNs (introduced by [18]) are neural networks that incorporate Bayesian inference techniques. Unlike
traditional neural networks, BNNs provide not only point estimates but also uncertainty estimates
for their predictions. This is achieved by representing the weights of the network as probability
distributions and sampling for them, allowing for the propagation of uncertainty throughout the
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Table 4.3: Results for deep learning models.

Network type RMSE train R2 train RMSE test R2 test

MLP 0.46 0.93 0.51 0.91
LSTM 0.49 0.92 0.51 0.91
BNN 0.55 0.84 0.63 0.84

network. BNNs offer benefits such as robustness to overfitting, better calibration of uncertainty, and
the ability to incorporate prior knowledge.

The best results obtained for each network are shown in Table 4.3. For each network type, we
performed several trials with different configurations of hyperparameters and architectures. Apart
from that, we used a learning rate scheduler and tensorboard to visualize the loss evolution and
weights distribution among other magnitudes. Then we selected the best configuration of each kind.
The loss function we used was the RMSE for the MLP and LSTM and the negative log likelihood
for the BNN. Since the output of the BNN model is a distribution rather than a point estimate, the
loss function should be used to compute how likely it is to see the true data from the estimated
distribution produced by the model.

The selected model was the BNN because it provides credible intervals and good point estimates.
The MLP and LSTM obtain similar results to the ones by Random Forest, but are not able to give
these intervals. The BNN model architecture is shown in Figure 4.21. The results are quite nice, as
we can see in Figure 4.22.

An example of what we visualize when using tensorboard on the fully connected 30 nodes layer is
presented in Figure 4.23. At first, weights are randomly initialized and is easy to see how they are
learnt (calculated to reduce the loss function through backpropagation), getting fixed around the
100-th epoch.

Finally, we conducted the same analysis we did before with INLA, for Madrid, Navarra and Cáceres
using our BNN. Results are displayed in Figures 4.24, 4.25, 4.26. As we can see, the posterior median
is much closer to the crude rate than INLA models, but the intervals are much wider. For women,
predictions didn’t work very well. Some observations fall under the credible intervals because they
are too wide and the median estimates are not smooth. Differences are due to the fact that BNN
credible intervals are created to provide a range of values on which each observation will fall with a
95% probability.
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Figure 4.21: Selected Bayesian Neural Network architecture.



4.3. Deep learning models 43

Figure 4.22: Posterior median estimates for the rate with the corresponding 95%
credible intervals.

Figure 4.23: Weight distributions for the first dense layer of the BNN.
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Figure 4.24: Evolution of rate and posterior median in Madrid, from first to last
year, with the corresponding credible intervals.

Figure 4.25: Evolution of rate and posterior median in Navarra, from first to last
year, with the corresponding credible intervals.

Figure 4.26: Evolution of rate and posterior median in Cáceres, from first to last
year, with the corresponding credible intervals.
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4.4 Comparison and results

In this section we compare the results obtained with each method and discuss their main strengths
and weaknesses.

4.4.1 Simulation

To rigorously evaluate the performance of the different models, we conduct a simulation study inspired
by [19]. This simulation involves considering the observations we have for each province, year, and
stratum as realizations of a stochastic process. While we have a specific sample, it is important to
acknowledge that alternative samples could have been generated from an unknown distribution for
each location, time, and stratum.

Therefore, we are interested in evaluating how well our models would perform on different realizations
of the stochastic process. However, the challenge lies in the fact that we do not have access to the
means of these Poisson distributions. To address this, we propose treating each observation as the
mean of a Poisson distribution, allowing us to generate additional samples. It is worth noting that
this approach may introduce some bias, as the observed values may not necessarily align with the
true means of the Poisson distributions, although we assume they are close.

To mitigate this bias, we plan to estimate the means of the Poisson distributions by taking a weighted
average of the observations in each province, year, and stratum, considering the spatial proximity
of neighboring provinces. This will help to smooth out the values by incorporating information from
neighboring provinces.

Therefore, we calculate
λi jt = 0.8 ∗ Ratei jt + 0.2 ∗ spatial_lagi jt

and assign, for the k-ith simulation,

SimulatedDeaths
(k)
i jt = Poisson(λi jtni jt)

Once we have the simulated observations, which can be interpreted as other possible outcomes of
the stochastic process, we calculate the simulated rates dividing by the population. Consequently, we
have successfully generated simulations for the rates. We have conducted a total of 10 simulations.
The results of the simulations are shown in Figure 4.27.

Figure 4.27: Simulated rates versus original rates for 10 replications.
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4.4.2 Results

The simulation allows us to assess whether our models have been overfitted to the specific instance
of the spatio-temporal stochastic process in the original data, or if they can effectively generalize to
alternative outcomes of the same process.

To evaluate the three approaches, we will utilize the following metrics:

• Mean absolute difference:
∑K=10

k=1

|SimulatedRate(k)
i jt
−predictioni jt |

10 , ∀i , j, t. It represents the mean
difference in absolute magnitude between the simulated rates and the predicted rates for the
10 simulations.

• Mean R2:
∑K=10

k=1
R2
(k)

10 . Represents the mean R2 for one realization of the stochastic process.

• Mean RMSE:
∑K=10

k=1
RMSE(k)

10 . It is the expected RMSE for one realization of the stochastic
process.

• Number of simulated rates that fall inside the 95% credible/prediction intervals. It helps us get
an idea of how well the confidence/credible/prediction intervals capture the rates and simulated
rates.

• Mean interval amplitude.

• Interpretability of the model.

• Fitting time.

We present the results for the numerical metrics in Figure 4.28. INLA was able to get the best
results in R2, RMSE, and Absolute difference, but the three model types were excellent. It is worth
noting that the BNN exchanges R2 and RMSE to provide credible intervals, compared to the other
neural networks. The random forest approach has a very small interval amplitude, due to the fact
that those are prediction intervals and there is small variability in the predictions of the model. On
the other hand, BNN intervals are wide to capture 95% of the rates. In contrast, INLA has small
credible intervals with accurate median estimates. INLA captured 58% of the simulated rates in its
credible intervals, random forest captured 44% and BNN captured 96%.

Neural networks have demonstrated the ability to achieve comparable accuracy to classical machine
learning models, eliminating the need for explicit feature engineering. They autonomously uncover
the intrinsic patterns within the data, even with a small dataset. INLA operates similarly by utiliz-
ing informative prior distributions that contribute valuable insights to the model. Random Forest
models offer feature importance measures, which indicate the relative contribution of predictors to
the model’s predictions. However, the interpretability of individual trees within the Random Forest
ensemble is limited. Apart from that, machine learning approaches do not require the design of neural
network architectures; instead, established models are employed and applied directly to the data at
hand.

In terms of computational time required to fit the data, the classical machine learning models took
the longest, with approximately 15 hours for the entire process (ranging from 45 minutes to 1 hour
and 30 minutes for each model). The Bayesian Neural Network fit with 300 epochs took around 5
minutes, but exploring different networks and configurations extended the total fitting time to about
2 hours and 30 minutes. Fitting a BNN is not an easy task, as only small to medium size datasets
are appropriate. For large amounts of data it would be non-viable. In contrast, fitting the INLA
models involved 4 models per group (16 models in total), and each model took approximately 10
seconds to fit when using the compact mode, which makes INLA the fastest in this case. INLA
leverages optimization techniques and approximate methods to provide fast results, even for large
datasets. BNNs exhibit black box characteristics in prediction, yet they provide valuable insights into
the posterior distribution of their parameters.

INLA allows for easy interpretation of the effects of predictor variables and can incorporate prior
information effectively. BNNs, however, can be more challenging to interpret due to the complexity
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of neural network architectures. They often focus on prediction rather than explicit parameter
estimation, making it harder to derive interpretable insights from the network weights.

Figure 4.28: Absolute difference, mean R2, mean RMSE and mean interval ampli-
tude for each approach.

INLA is capable of making predictions based on the estimated spatio-temporal patterns and incorpo-
rates uncertainty quantification through posterior distributions. ML models, on the other hand, are
designed to optimize predictive accuracy. They leverage large amounts of data to learn patterns and
relationships, allowing for more accurate predictions in many cases. ML models can handle complex
and non-linear relationships, and with appropriate training, they can generalize well to new spatio-
temporal scenarios. However, ML models often lack explicit uncertainty quantification, which can
be a disadvantage when making decisions in uncertain or risk sensitive contexts. Overall, while INLA
provides detailed description and uncertainty quantification, ML models prioritize predictive accuracy
by learning patterns directly from the data. The choice between the two approaches depends on the
specific goals of the analysis, the available data, the need for interpretability, and the importance of
uncertainty estimation in the context of the spatio-temporal dataset.

Classical ML models have well-established theoretical foundations and are often easier to understand
conceptually. They rely on mathematical algorithms and statistical principles that are relatively
straightforward to grasp, making them accessible to users with a solid understanding of statistical
concepts. INLA is a Bayesian approach that requires a good understanding of Bayesian statistics
and modeling assumptions. The theoretical foundations of INLA involve complex statistical concepts
like Bayesian inference and approximations using the Laplace method. Implementing INLA effectively
requires a strong grasp of these advanced statistical principles, making it more challenging from
a theoretical perspective. Deep learning models, especially deep neural networks, involve highly
complex architectures and mathematical concepts like backpropagation, gradient optimization, and
activation functions. Understanding the theoretical foundations of deep learning can be challenging.
Deep learning models often require a solid understanding of linear algebra, calculus, and optimization
algorithms.
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Chapter 5

Conclusions and further work

Throughout my journey as a Data Science student, I have gained valuable knowledge and practical
experience in various aspects of the field. My end-of-studies work has provided me with a comprehen-
sive understanding of Bayesian inference, its fundamental principles, and its application to real-life
problems. I have also explored innovative techniques to incorporate spatio-temporal dependencies
into classical machine learning models.

One of the areas I focused on was enhancing the performance of machine learning models by incor-
porating spatial and temporal information. By leveraging coordinates, space, time, and space-time
lags, as well as utilizing basis functions, I was able to capture the underlying dependencies present in
the data. This approach proved effective in improving the performance of classical machine learning
models when dealing with spatio-temporal data.

In addition, I extended my exploration to Random Forest models and successfully obtained prediction
intervals. These prediction intervals provided valuable insights into the uncertainty associated with
the model’s predictions, enabling a more comprehensive assessment of the model’s reliability and the
potential variability in the outcomes.

Moreover, I delved into the realm of neural networks and developed the architectures of three dis-
tinct types: Multi-Layer Perceptron, Long Short-Term Memory, and Bayesian Neural Network. The
Bayesian Neural Network, in particular, allowed me to provide credible intervals for the model’s pre-
dictions. By incorporating Bayesian principles, I was able to quantify the uncertainty in the model’s
output and provide more informative predictions with associated confidence.

Due to the academic nature of this work and its main objectives, not every proposed model has
been fully exploited. However, a hypothetical continuation of the study could enhance the results
and interpretability of the models. One potential avenue for improvement is the incorporation of
explainability techniques, such as SHAP (SHapley Additive exPlanations) values, to classical machine
learning models. SHAP values provide insights into the contribution of each feature to the model’s
predictions, thereby improving interpretability.

To further capture spatio-temporal correlations in data within machine learning models, additional
exploration is needed. More sophisticated approaches, such as graph neural networks, could be
investigated. Graph neural networks are specifically designed to handle spatial and temporal depen-
dencies and are considered a promising solution for analyzing space-time dependent datasets. Their
utilization could enhance the accuracy and predictive capabilities of the models.

The outcomes derived from INLA can be leveraged extensively to extract maximum benefits. The
results obtained from INLA can be incorporated into the training process of machine learning models
or utilized as priors in Bayesian frameworks. This incorporation enhances the interpretability and
robustness of the models, enabling better decision-making and improved performance.

In conclusion, while this study has provided valuable insights into Bayesian inference, spatio-temporal
dependencies, and neural network architectures, there are several areas for further exploration and
improvement, which I am sure I will pursue in future research.
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