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1. CALCULATIONS USING COUPLED MODE THEORY

In the manuscript, reflectance (R) at normal incidence from calculations performed by the numer-
ical software GD-CalcTM on a ML with high index-contrast materials was shown. In this section
we show that identical results can be obtained using a full analytical method based on coupled
mode theory (CMT) using the Transfer Matrix Method equations from ref. [1]. Fig. S1(a) (red
open circles) shows R as a function of wavelength (λ) for a ML model with N = 15 and λ1 = 3.1
µm, using CMT and an infinitely thick SiO2 substrate (implying T ∼ 0, given material losses and
its infinite electrical size), up to 30 µm. Results from GD-CalcTM for the same ML are overlaid
(red solid curve) for the sake of comparison. Both results, either calculating R from GD-CalcTM or
using CMT, have an excellent match. Note that, in the CMT method the substrate is infinitely
thick while in GD-CalcTM is 0.5 mm thick. However, both methods yield the same results for the
same materials, which suggests that the substrate finiteness is not affecting R whatsoever. Results
are indistinguishable using either method and the reflection bandwidth (BW) is significantly
unaltered, which highlights the robustness of the calculated R.

Nonetheless, to test the influence of the substrate on R, Fig. S1(b) shows the reflectivity (r) at
the interface between a semi-infinite layer of the SiO2 model and a Al2O3 model (black curve) as
the substrate, as a function of λ. Reflectivity is calculated as r = [(nsb − n1)/(nsb + n1)]

2, where
nsb is the substrate index of refraction and n1 is that of Al2O3 (first layer in the ML). Reflectivity
(r) increases at certain wavelengths given the larger index contrast at the interface. Fig. S1(c)
shows a comparison between both methods using Al2O3 as the substrate layer. As mentioned
above, there are no significant differences between both methods. Besides, as expected from r at
the substrate interface, the high-R regions at longer λ appear very close to the locations where
r between SiO22 and Al2O3 is larger. These results reveal that ‘undesired’ R at the substrate
interface is in fact occurring, in addition to other interferences in the ML. The matching with r
is not exact precisely because of the latter. Nevertheless, these effects do not alter the reflection
performance in the solar window.
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Fig. S1. (a) Simulated R with GD-CalcTM (solid curve) and calculated with CMT (open circles)
using SiO2 as substrate. (b) Reflectivity r at the substrate interface if Al2O3 is used as substrate
(black curve). (c) Simulated (solid curve) and calculated (open circles) R when SiO2 or Al2O3 is
used as substrate (red and black curves, respectively).
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2. MATERIAL PROPERTIES AND MODELS

Fig. S2 shows the optical parameters, index of refraction (n) and the extinction coefficient (κ),
of some exemplary materials at our disposal, such as TiO2, SiO2, MgF2 and Si. Some of these
models were used in our investigations, as it will be explained later in this same section. The data
were obtained from the optical material database from ref. [? ], downloadable along with the
cited software installation package. Note that the (complex) dielectric permittivity (ϵ = ϵ′ − iϵ′′,
where minus sign is set as for common convention) is ñ2, being ñ = n + iκ. We take magnetic
relative permeability as unity in all models.
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Fig. S2. Index of refraction (n) and extinction coefficient (κ) for the employed material models
of (a) MgF2, (b) Si, (c) SiO2 and (d) TiO2, as functions of wavelength (λ) up to 28 µm.

In the manuscript, we investigate ’Chirped Bragg gratings’ made of material models that show
a high-index contrast. To that purpose and in order to obtain quantitative results, we chose the
material models of SiO2 and Si to fulfill that condition in our simulations (see Fig. 2(b-c)). In this
section we would like to explain the reasons of why choosing such material models, compared to
typical SiO2 and TiO2, and introduce some relevant fabrication aspects. Also if other materials
were used instead, such as MgF2. Note that further research on fabrication procedures is out of
the scope of this work.

Silicon (Si) and silicon dioxide (SiO2) are commonly used materials in the fabrication of
electronic and photonic devices due to their excellent mechanical, electrical, and optical properties.
The heavily contrasted refractive indices of Si and SiO2, along with the versatility of fabrication
methods, have enabled the development of Silicon on Insulator (SOI) technologies which are
the base of the current nanoscale photonic advances [2]. Furthermore, the SiO2/Si multilayer is
a well-studied combination that finds diverse applications including all-dielectric mirrors [3],
resonant cavity photodetectors [4], bandpass filters [5], polarizers [6] and solar cells [7]. The
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choice of fabrication method for Si-SiO2 layers depends on several factors, including the desired
film thickness, uniformity, and the specific application of the multilayer. Different techniques
such as Physical Vapor Deposition (PVD), Chemical Vapor Deposition (CVD), Atomic Layer
Deposition (ALD), E-beam evaporation [8] and Sol-Gel can be employed. Each technique presents
distinct advantages and limitations, and selecting the appropriate method is crucial to achieving
the desired film quality and properties. Recently, amorphous Si/SiO2 distributed Bragg reflectors
have been fabricated with transfer printed single-crystalline Si nanomembranes. This fabrication
approach is expected to reduce the process complexity, cost, and lead to the fabrication of large-
area, high-performance Si/SiO2-based DBRs [9].

The use of other materials of similar optical properties in the solar window as SiO2, such as
MgF2, was also investigated. Nevertheless, the use of this material might be disadvantageous
regarding fabrication. MgF2 has typically been used as the ‘low-index’ material in optical ML
structures [10] and, together with Si, both satisfy a considerably high index contrast. MgF2 can
be satisfactorily deposited as thin layers (from 20 nm to 1 µm) onto sufficiently heated quartz
substrates [10]. However, other practical aspects such as mechanical stress, porosity, adjacent
deposition incompatibility and/or cracking may result in a malfunctioning MgF2/Si ML [10–12],
via a reflection reduction or less efficient material packing. All these aspects should be carefully
considered in case of replacing SiO2 by another material.

In this section, the aim is not to validate fabrication pathways via simulations but rather to
show the feasability of devising Bragg MLs using higher contrast-index materials (for example,
SiO2 and Si models). We explore the response from an equivalent, lower index contrast ML
(N = 15) using TiO2 and SiO2 instead. The shortest and longest sections are designed ‘ad-hoc’
to cover the desired BW, (from 0.3 µm to 3.1 µm). For this, the thicknesses of the SiO2 layers are
kept the same as those from the equivalent ‘low index material’ layers (i = 1), and only the TiO2
layers thicknesses are varied to satisfy the Bragg condition. Note that other criteria are as valid as
the chosen one as long as the Bragg condition is fulfilled. The chosen criterion yields thicknesses
for the TiO2 layers in the first and last sections of d1 = 0.137 µm, and dN = 0.027 µm. Using a
higher index material (i = 2) instead of TiO2 implies that layers can be thinner in order to cover
the longest λ in the BW (for instance, using the model Si, d1 = 0.088 µm for reaching λ1 = 3.1
µm).

Fig. S3 shows R as a function of λ, from an equivalent TiO2 and SiO2 ML, and the original
ML (where material models of Si and SiO2 were used in simulations instead). Both BWs end at
the expected λ1 = 3.1 µm. However, given the smaller index contrast between TiO2 and SiO2
for the same N, this combination leads to a smaller reflection in the targeted BW. Adding more
sections (N = 30) helps to flatten the BW. After a considerable increment of N, R is noticeably
increased but also leads to a thicker ML structure. Hence, the overall improvement in R and the
ML thickness by using instead higher index-contrast materials, is clear.

μ
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SiO2/TiO2 (N = 15)
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Fig. S3. Simulated R for the original ML from the main text (MgF2 and Si), with λ1 = 3.1 µm,
for N = 15 (solid blue curve), and when Si is replaced by TiO2 and the thicknesses adjusted
accordingly to still meet the same Bragg conditions for N = 15 (dotted blue curve) and for
N = 30 (dotted red curve).

Regarding the latter discussion, we must stress that our proposed synthesis process based
on a linear chirping, when directly applied on physical thicknesses only (as in di,k = di,N + (N −
k)(di,1 − di,N)/(N − 1)), generally assumes that refraction indices (ni,k) are practically constant in
frequency (i.e., non-dispersive materials). In that case, if the linear chirp is applied on thicknesses
directly, regardless of n, the Bragg formula is still satisfied as ni,k are constants with λ. However, if
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materials with greater dispersion are used, calculation of di,k requires to account for ni,k = ni(λk)
in the Bragg formula, as it is explained next.

The thicknesses for each section and material (di,k) are obtained from the Bragg condition
satisfied for that particular λk. For C < 0, and since material models are the same for each section,
we consider two possible scenarios: (1) If materials show little-to-none dispersion, the Bragg
formula can be modified to be recursive as λk−1 = 2(n1αkd1,k + n2αkd2,k), where αk = λk−1/λk
for 2 < k < N (note that k = N corresponds to the thinnest section or λN = 0.3 µm, and thus
αk > 1). This way, successive change in the Bragg wavelength for each section (λk−1 = αkλk) is
directly mapped into the change in layer thicknesses di,k−1 = αkdi,k, down to the bottom of the
ML. Thus, after fixing di,N , our MATLABTM code automatically yields every di,k required for each
λk. (2) If materials show significant dispersion, the Bragg condition should still be met, but now
it must be applied to the optical thickness of the layers, accounting for dispersion. Starting from
a particular layer in section k, the proportionality factor must include the change in dispersion
too and so the Bragg formula for section k − 1, related to that of section k, must be modified as
follows: λk−1 = 2(n1,k−1d1,k−1 + n2,k−1d2,k−1) = 2(αkn1,kd1,k + αkn2,kd2,k), where ni,k = ni(λk).
By directly equating each term to the corresponding one from the right side of the equation, and
since αk = λk−1/λk, the new relation between successive thickness layers is

di,k−1 =
λk−1

λk

ni(λk)

ni(λk−1)
di,k (S1)

This way, every layer thickness di,k can still be retrieved recursively. For instance, given
d2,N = 0.02 µm, and taking n1 = nSiO2 (λN) = 1.41 and n2 = nSi(λN) = 4.2, which are now
dependent on frequency, the Bragg criterion yields d1,N = 0.047 µm. Then, for a linear chirp,
the rest of layer thicknesses for sections k < N can be directly calculated from di,N applying the
Bragg formula for each λk. It is still possible to retrieve each di,k following the Bragg criterion
by selecting the appropriate ni,k at each λk. Nevertheless, the synthesis of the CBG turns out
particularised for each section and the linear character in thickness in the ML is lost. This is because
the physical thicknesses of the layers (di,k) are no longer ‘linearly chirped’, strictly speaking, but
rather the product of index and thickness (ni,kdi,k or ‘optical thicknesses’), according to the Bragg
formula. If the thicknesses di,k were retrieved directly from the linear function at the beginning
of this paragraph, the Bragg condition is not necessarily met and there is a clear impact on the
flatness of the reflected BW, generally worsening the ML response. On the contrary, a linear chirp
can be directly applied to layer physical thicknesses if materials show very low dispersion in the
considered BW.

Fig. S4 shows the atmospheric transmission and the sun irradiance model curves used in
our investigations. They were taken from refs [13] and [14], respectively. The reduction in
transmission is due to absorption of power by molecules such as CO, CO2, O3 or H2O.

The black body radiation equation,

Ibb(λ) =
2hc2

λ5(e(hc/λkbT) − 1)
(S2)

where h is the Planck constant, c is the speed of light in vacuum (in m/s), kb is the Boltzmann
constant and T is the temperature of the object, is overlaid to I model for a temperature of
T = 5778 K (solid brown curve). From the I model, the fractional power under the curve (as
shown in the manuscript) can also be directly calculated by performing a numerical integration
following standard methods using MATLABTM, such as the trapezoidal method.

3. ML WITH A POSITIVE LINEAR CHIRP

We explore here how results are changed when a positive linear chirp (C > 0) is applied to the
ML layers instead of a negative one. As discussed in the manuscript, the sense of the chirping
affects the dispersion properties of the chirped grating [15]. However, our design does not take
dispersion into account, and the materials we used have almost negligible losses in the range
of wavelengths we explored. Nevertheless, for small wavelengths, the electrical size of the ML
would be large and thus small losses may introduce variations, as the dedicated section for such
wavelengths would be at the bottom of the structure, as opposed to C < 0 (being atop). Fig.
S5 shows the R spectrum from a ML similar to the one analyzed in the manuscript for C < 0
(solid blue curve) and for C > 0 (dotted blue curve) up to 30 µm, with N = 15 and λ1 = 3.1 µm.
In general, the reflected BW (grey shadow) remains significantly unaltered. Only a noticeable
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Fig. S4. Model curves for (top panel) atmospheric transmission and (bottom panel) sun irra-
diance, in arbitrary units, as functions of λ. Black body radiation model for T = 5778 K is
overlaid to the solar irradiance model.

reduction of R at the lowest end (λ ≈ 0.3 µm) is observed for C > 0 using the ‘little-to-none losses’
material models, as expected. Therefore, a C > 0 linear chirp may potentially lead to a smaller Pn
than a C < 0 chirp, which makes the latter slightly preferable for the design.

λ μ( m)

C > 0
C < 0

Fig. S5. Simulation results for a negative (C < 0) linearly chirped ML (solid blue curve), for
a positive (C > 0) chirped ML (dotted blue curve), as those from the main text, with N = 15
and λ1 = 3.1 µm. The targeted reflected BW covering the solar window is highlighted (grey
shadow).

4. REFLECTANCE AND TRANSMITANCE FOR θ > 0°

As explained in the manuscript, the net cooling power Pn is calculated from the absorbance
(A) curves at several incidence angles θ, from the normal direction (0°) to 80°. Fig. S6 shows
colormaps for R(λ) and T(λ) for several θ, from 0° to 80° in steps of 1° in the linearly chirped ML
from the main text, with N = 11 and λ1 = 2.1 µm. Note that A = 1 − R. We note a periodical
dependence of R with θ, as naturally expected from the angular dependence of Fresnel equations,
which can be easily found in any Optics dedicated book. Also, other high-R values are observed
out of the targeted BW which, as discussed before, is caused mostly by interference of multiple
Fresnel reflections in the chirped ML and on the substrate interface. A quantitative analysis of the
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Fig. S6. Simulated reflectance (R) and transmittance (T) as functions of λ (up to 30 µm) and θ
from θ = 0° to θ = 80° in steps of 1°, for λ1 = 2.1 µm.

former phenomena is out of the scope of this section. On the other hand, T is clearly minimised
in the explored range of λ and the targeted BW (i.e., yellow area between 0.3 µm and λ1) is
efficiently reflected for every θ.

5. ALGORITHM FOR A PROPORTIONAL DISTRIBUTION OF N SECTIONS FROM A
DISCRETISED I(λk)

In section C in the main text, results from an ML with a distribution of N sections adapted to I(λ)
were shown. To efficiently build such ML, the proposed algorithm is the following: Firstly, the
‘adapted chirping’ function is obtained from modeling the solar irradiance curve with the black
body radiation equation as in Fig. S4.

The number of sections in the grating devoted to reflect each Bragg wavelength λk is variable
(nk), adapted to the solar irradiance intensity at that frequency. In other words, the solar radiance
curve is normalised to its maximum, discretised in k − 1 intervals (I(λk)), and the number of
sections (nk) for each λk is proportional to I(λk). Mathematically,

nk = N
I(λk)

∑ I(λk)
(S3)

since ∑ nk = N. This way, the majority of sections in the grating will be concentrated in the
most intense region of I, devoted to reflect the most intense wavelengths from I. Fig. S7(a)
shows I(λ) accordingly discretised, assuming a ‘point’ step-size that depends on the slope of the
irradiance curve (the greater the slope, the smaller the step-size). We perform the discretisation of
the curve with different step-sizes in three different wavelength intervals (see vertical dashed
lines in Fig. S7(a)): Step-size of 0.075 µm for 0.28 µm < λ ≤ 0.4 µm; 0.15 µm for 0.4 µm < λ ≤ 1.7
µm; and 0.75 µm for 1.7 µm < λ ≤ 4 µm. Hence, more λk are obtained around the high-intensity
values of I (more pronounced slope) than in the outer regions. This can be regarded as a finer
‘sampling’ in the area of interest, where I is larger. We acknowledge there is some arbitrariness in
choosing the step-size and the wavelength intervals as it clearly depends on the curve profile,
which makes this particular step in the process difficult to generalise. However, the found interval
central wavelengths adjust very well with those λ where the variation in the slope is minimal (i.e.
second derivative of Ibb is minimal).

Fig. S7(b-e) show the number of sections (nk) allocated for each λk for different values of N, in a
proportional manner according to I. All results show that the long-wavelength regions in I can be
disregarded (nk = 0). This is reasonable given the lower I at such frequencies. We want to stress
again that there is some arbitrariness in the number of sections obtained at certain wavelengths,
as they also depend on the discretisation step-size of I(λ). Discretised results however resemble
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Fig. S7. (a) Normalised I modeled as a black body radiation curve at T = 5778 K, discretised
in 14 λk (open red circles), or equivalently 13 intervals (indicated by the vertical lines), from
a ‘sampling’ process dependent on the curve profile: The ‘sampling frequency’ or step-size is
variable depending on the λ ‘region’ (see related text). (b-e) The number of sections nk for each
λk depends on the number of total sections (N) making the ML.

very well to I(λ) with increasing N. For N = 4 (the smallest value), the distribution of sections
leads to a linear chirping (one section per λk) but also to a strong truncation of the thickest sections
(long λk). N = 11 also leads to a quasi-linear chirp, but adds only one more section to each three
central λk in the spectra. For larger N, the linear chirping is lost and many sections are repeated
for each λk. The effects of these various distributions of sections on R is discussed in more detail
in the main text.
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