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Abstract

Rhizobia are Gram-negative bacteria known for their ability to fix atmospheric N2 in symbio-

sis with leguminous plants. Current evidence shows that rhizobia carry in most cases a vari-

able number of plasmids, containing genes necessary for symbiosis or free-living, a

common feature being the presence of several plasmid replicons within the same strain. For

many years, we have been studying the mobilization properties of pSmeLPU88b from the

strain Sinorhizobium meliloti LPU88, an isolate from Argentina. To advance in the character-

ization of pSmeLPU88b plasmid, the full sequence was obtained. pSmeLPU88b is 35.9 kb

in size, had an average GC % of 58.6 and 31 CDS. Two replication modules were identified

in silico: one belonging to the repABC type, and the other to the repC. The replication mod-

ules presented high DNA identity to the replication modules from plasmid pMBA9a present

in an S. meliloti isolate from Canada. In addition, three CDS presenting identity with recom-

binases and with toxin-antitoxin systems were found downstream of the repABC system. It

is noteworthy that these CDS present the same genetic structure in pSmeLPU88b and in

other rhizobial plasmids. Moreover, in all cases they are found downstream of the repABC

operon. By cloning each replication system in suicide plasmids, we demonstrated that each

of them can support plasmid replication in the S. meliloti genetic background, but with differ-

ent stability behavior. Interestingly, while incompatibility analysis of the cloned rep systems

results in the loss of the parental module, both obtained plasmids can coexist together.

Introduction

Bacteria are ubiquitous microorganisms able to colonize and adapt to different environments

in a very short-term period. Horizontal gene transfer (HGT) plays a key role in the adaptation

process, being conjugative plasmid transfer one of the most efficient DNA exchange
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mechanisms between bacteria [1]. Plasmids are widely distributed selfish genetic elements that

are characterized by their autonomous replication. It has been shown that plasmids have many

strategies to remain stable within host cell populations [2–4]. Plasmids consist of backbone

genes that are involved in replication, stability and in some cases conjugative transfer, in addi-

tion to accessory genes that confer variable traits that might give an advantage to their hosts,

such as antibiotic resistance, genes involved in the degradation of diverse carbon sources or in

the establishment of pathogenesis or symbiosis [5].

Gram-negative bacteria belonging to the genera Rhizobium, Sinorhizobium, and Mesorhizo-
bium, among others, can grow in the soil in free-living conditions and in symbiosis with the

root of leguminous plants as nitrogen-fixing organisms. A common feature of the genomes of

these genera is that, in addition to the chromosome, they usually harbor plasmids encoding

widely diverse functions [6–8]. Rhizobial plasmids vary greatly in number (1 to 10) and size

(ten to thousands of kilobases) and can constitute a high proportion of the bacterial genome

[6, 7, 9]. Many of them have relevant roles during the interaction between rhizobia and the

host plant. Most of the genes required for the symbiotic process are encoded in the so-called

symbiotic plasmids or pSym [10]. In addition to these pSym, most of the plasmids carried by

rhizobia are dispensable for symbiosis or have simply not yet been assigned a specific function.

These plasmids with no apparent function are referred, in a generic manner, as non-symbiotic,

cryptic, or accessory plasmids [7].

For the survival of plasmids in the host cell, they must replicate through a functional repli-

cation system, independent of the chromosomal replication system. In addition, different

mechanisms involved in plasmid stability have been described in the literature, such as multi-

mer resolution, active partitioning and post-segregational killing, also known as toxin-anti-

toxin or plasmid addiction systems [2–4]. Regarding replication systems, necessary to achieve

independent replication, the best-studied system in soil bacteria is the repABC replication sys-

tem [11]. In the Rhizobiaceae family, specifically, repABC-type replicons predominate in plas-

mids in which their replication regions have been studied [12, 13]. The repABC system

consists of four genes: an operon composed of three genes (repA, repB, and repC) [14–18] and

a gene encoding a small regulatory antisense RNA (ctRNA) located in the complementary

strand of the intergenic space between repB and repC [19–22]. RepA and RepB belong to the

ParAB family of partition proteins. The interaction between RepA, RepB and a centromere-

like sequence (parS) provides the plasmid’s segregation machinery [11, 13, 23]. The parS site

of repABC plasmids consists of single or multiple 16 bp palindromic sequence that could be

located at different positions in each plasmid [24–26]. Regarding RepC, it has been proposed

to be the initiator protein [15]. Cervantes-Rivera et al. [27] showed that in the repABC operon

of pRetCFN42d of Rhizobium etli CFN42, repC is the only required element to sustain replica-

tion. In addition, the origin of replication of the repABC plasmids is located at the central sec-

tion of the repC gene [27, 28]. Incompatibility determinants are also commonly present in

plasmids. For repABC plasmids, three main incompatibility determinants were described [20,

24, 25, 29–31]. In addition to being involved in plasmid segregation, the 16 bp palindromic

sequence parS exerts strong incompatibility towards the parental plasmid or plasmids having

identical parS [24, 25]. The other elements involved in plasmid segregation, RepA and RepB,

could induce plasmid incompatibility when expressed in trans, downregulating the transcrip-

tion of the repABC operon [29, 31]. Another incompatibility determinant consists of the

ctRNA located between repB and repC. It has been demonstrated that the expression of this

small RNA in trans causes the loss of the parental plasmid due to the interference with the

expression of repC [20, 25]. Recently, Rivera-Urbalejo et al. [30] mapped the sequences of the

ctRNA that are required for plasmid incompatibility by site directed mutagenesis. Besides the

repABC system, other replication systems have been described in rhizobia. The second system
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of replicons, called the repC family, is evolutionarily related to the repABC family. These sys-

tems share the replication initiation protein RepC, but in contrast to the organization of

repABC, repC is not forming an operon with repA and repB genes [32]. In this family, an anti-

sense RNA also plays a central role as a negative regulator of repC expression and as a determi-

nant of incompatibility [33]. A third system, includes only one member, the 7.2 kb pRm1132f

plasmid isolated from S. meliloti strain 1132, which also belongs to group II of rolling circle

replication systems [34].

As we mentioned before, the segregational stability of the rhizobial plasmids is achieved by

the activity of plasmid-specific partitioning proteins (RepAB) that direct plasmid copies to

new daughter cells during cell division. In addition to partitioning systems, plasmids can har-

bor toxin-antitoxin (TA) genes to ensure the inheritance of plasmids. TA systems are small

genetic modules coding for a stable toxin and for an unstable antitoxin protein that counter-

acts the activity of the toxic protein. Wheatley et al [35], described the presence of a TA module

on Rhizobium leguminosarum bv. viciae 3841 pRL10 plasmid and associate its presence to the

inability to lose pRL10.

In our laboratory, we have been studying rhizobial accessory plasmids as vehicles of

adaptation and evolution [36–41]. We have previously described the transmissibility prop-

erties of two cryptic plasmids from the strain Sinorhizobium meliloti LPU88, a local isolate

from Argentina. One of them, pSmeLPU88b, resulted to be mobilizable only if helper func-

tions were supplied in trans by the accompanying plasmid pSmeLPU88a (binary conjugal

system) [41]. Later, it was shown that the mobilization region of plasmid pSmeLPU88b pre-

sented a new mob region that was conserved in other rhizobia and in different Gram-nega-

tive bacteria [42]. To get a deeper insight into the traits encoded by this plasmid we report

here the complete sequence and the genomic characterization of pSmeLPU88b. Moreover,

we studied the replication and stability elements found in it. Plasmid pSmeLPU88b presents

two origins of replication, one belonging to the repABC family and another related to the

repC family. Interestingly, both are capable of supporting the replication of the plasmid. It is

noteworthy that the pSmeLPU88b plasmid backbone is not only conserved in S. meliloti
plasmids but also in Sinorhizobium spp. and Rhizobium spp. strains thus, our work depicts

replication genes distributed in rhizobia and contributes to the basic knowledge of rhizobial

plasmid biology.

Materials and methods

Bacterial strains and plasmids

The strains and plasmids used are listed in Table 1. Escherichia coli was grown on LB [43]

medium at 37˚C. S. meliloti strains were grown on TY [44] medium at 28˚C. For the agarized

media 15 g of agar per liter of medium was added. The growth kinetics (28˚C, 200 rpm) was

analyzed by monitoring OD600 in a microplate reader (BMG Labtech, Germany). The final

antibiotic concentrations per mL of medium were: 25 μg kanamycin (Km) and 10 μg gentamy-

cin (Gm) for E. coli; 400 μg streptomycin (Sm), 120 μg neomycin (Nm), and 30 μg Gm for S.

meliloti.

DNA sequencing and bioinformatics tools

The pSmeLPU88b plasmid sequence was obtained by sequencing S. meliloti LPU88 at

SNPsaurus (https://www.snpsaurus.com/illumina-bacterial-assembly/) by means of Illumina

technology. The reads obtained were assembled using Spades Assembler software (Version

3.12.0). Plasmid finishing was accomplished using a previously sequenced plasmid library

[42]. The accession number for plasmid pSmeLPU88b is MZ505104. Plasmid pSmeLPU88b
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was automatically annotated by the genomes annotations platforms Prokka [48] and RAST

[49] and then manually curated. Sequence alignment and graphic comparison were performed

using the genome comparison visualizer Easyfig [50]. For the identification of ctRNAs present

in pSmeLPU88b plasmids, the intergenic region between the repB and repC genes of repABC
family and the region upstream of repC of repC family were aligned along with the ctRNA

genes from some repABC and repC families. The transcriptional start sites of p42d [20] and

pRmeGR4a [33] have been previously experimentally determined. We used that information

to map the ctRNAs. The ctRNA structures were predicted using the RNAfold WebServer

(http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi).

Bacterial mating

Bacterial matings were performed as described by Simon et al [45]. Stated in brief, liquid cul-

tures were grown to the early exponential phase for donor cells and the late exponential phase

for recipient cells. Donor and recipient strains were mixed in a 1:1 volume ratio and plated on

TY plates, and then incubated overnight at 28˚C. Afterwards, the transconjugants and controls

were plated in TY medium supplemented with the appropriated antibiotics.

Plasmid profiles—Eckhardt gels

Cells were grown in TY medium to the mid-exponential phase and the plasmid profiles were

performed according to previously established techniques [51, 52].

Table 1. Bacterial strains and plasmids used in this work.

Strain and plasmids Relevant Properties Source or Reference

Escherichia coli

E. coli DH5α recA, ΔlacU169, F80dlac ZDM15 Bathesda Res. Lab.

E. coli S 17–1 E. coli 294 RP4-2-Tc::Mu-Km::Tn7 integrated into the

chromosome

[45]

Sinorhizobium
meliloti

2011 Smr, Nod+ Fix+ in alfalfa, derived from strain SU47 J. Denarié, Toulouse,

France

LPU88 Wild type isolate from Argentina, Smr [41]

LPU57 Wild type isolate from Argentina, Smr [36]

LPU121 Wild type isolate from Argentina, Smr [36]

LPU122 Wild type isolate from Argentina, Smr [36]

LPU178 Wild type isolate from Argentina, Smr [36]

Plasmids

pK18mob Kmr, high copy number cloning vector. [46]

pBBR1MCS-2 Kmr, broad host range [47]

pG700 Gmr, pG18mob2, [42]

pKmutC pK18mob, containing an internal fragment of repC2 This work

pKmutABC pK18mob, containing an internal fragment of repC1 This work

pKrepC pK18mob, containing repC family replicon This work

pGrepABC pG700, containing the repABC family replicon This work

pKrepC-T pK18mob, containing a truncated repC family replicon This work

pBBRparS pBBR1MCS-2 containing a 0,7 kb fragment of pSmeLPU88b This work

Nmr, Smr, and Gmr = neomycin, streptomycin, and gentamicin resistance, respectively.

https://doi.org/10.1371/journal.pone.0285505.t001
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DNA manipulation and genetic constructs

Plasmid and total DNA preparation, restriction-enzyme analysis, cloning procedures, and E.

coli transformation were performed as previously described [53].

Construction of repC mutants

An internal fragment of each repC gene was amplified with the appropriate primers (S1 Table)

with Pfu polymerase (for repC1: repC1-(ABC)-MN, repC1-(ABC)-MC; for repC2: repC2-MN

repC2-MC) (S1 Table). The obtained fragment was cloned in the SmaI site of pK18mob (a sui-

cide vector in rhizobia) resulting in the vectors pKrepCmut and pKrepABCmut. The obtained

plasmids were transferred by conjugation to strain LPU88 to yield the site-specific insertional

mutagenesis. The insertion was evaluated by PCR with external primers: repC1-(ABC)-Ext

and repC2-trunc for repC1 and repC2, respectively (S1 Table).

Functional analysis of replication modules

RepC family replicon. The complete coding sequence of repC gene and 500 bp upstream was

obtained using primers repC-F and repC-R (S1 Table) amplifying a 2,492 bp fragment with

Pfu polymerase. This fragment was cloned in the SmaI site of pK18mob (this vector is not able

to replicate in rhizobia). The constructed plasmid, designed pKrepC, was introduced into S.

meliloti strains by conjugation, using E. coli S17-1 as the donor, to determine if this plasmid

was able to replicate in rhizobia and if it is incompatible with different plasmids.

RepABC family replicon. We have previously described the obtention of a partial library of

pSmeLPU88b plasmid [42, 54]. One clone of the library, pG700, contained a DNA fragment

encoding the C-terminal domain of the RepC of the repABC operon in pG18mob2 plasmid

(non-replicative in rhizobia). pG700 was introduced into strain LPU88 by conjugation. The

presence of sequences in common between pG700 and pSmeLPU88b enabled the formation of

cointegrate plasmids. The entire repABC operon was then obtained by isolation of total DNA,

digestion of isolated genomic DNA with restriction endonuclease SmaI, to generate a restric-

tion fragment containing the integrated plasmid and repABC operon. Circularization of this

DNA fragment by ligation and transformation into E. coli DH5α competent cells allow us to

obtained plasmid pGrepABC.

Truncated RepC2. By introducing a stop codon in the reverse primer (repC2-trunc, S1

Table), a truncated variant of the repC2 gene was amplified by PCR and cloned in the SmaI
site of the pK18mob suicide plasmid. The position of the reverse primer was selected after

aligning the DNA sequence of repC2 of LPU88 to other repC family sequences.

parS site. In the non-replicative pG700 plasmid the parS site was identified. To test its func-

tion, pG700 plasmid was digested with EcoRI and the liberated fragment cloned in the replica-

tive plasmid pBBR1MCS-2, yielding pBBRparS.

Stability of plasmids

The stability of plasmids in S. meliloti LPU88 and S. meliloti 2011 was determined as previ-

ously described [55]. The proportion of bacteria that harbor plasmids was determined by

plating subculture steps on TY agar and further replication on TY agar plates and TY agar

plates containing the corresponding antibiotics for each plasmid. Colonies that had lost the

plasmid were able to grow on TY agar plates but not in TY agar plates with antibiotics,

while colonies harboring plasmids were able to grow on both plates. The rate of plasmid

loss was calculated.
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Results and discussion

Overall features of pSmeLPU88b

We have previously reported the conjugal properties of two cryptic plasmids from the strain S.

meliloti LPU88 [41]. To further advance in the characterization of the mobilizable plasmid

pSmeLPU88b, the complete nucleotide sequence was obtained and analyzed, focusing on gene

content and backbone gene organization. General features of pSmeLPU88b sequence revealed

the following: the plasmid genome is 35,933 bp long and its GC content is 58.6%. The annota-

tion of the plasmid nucleotide sequence was first done automatically by Rast [49] and Prokka

[48] followed by manual curation, resulting in 31 CDS (Fig 1A, Table 2). The 31 CDS pre-

sented identity to genes in the NCBI nr database and 25 of them (78%) could be assigned to a

Cluster of Orthologous Group (COG) (Table 2). Two of the remaining six CDS could be

assigned to a PFAM family while four CDS could not be assigned to any specific function.

Of the total CDS, eleven were associated with plasmid biology functions, like replication

(repABC1 and repC2), stability (CDS 4,5,6), and mobilization (parA-like, mobCZ, traI).

Fig 1. Genome plot and comparison of pSmeLPU88b. A. Schematic plot of pSmeLPU88b. From the inner to the outer circle:

genomic position in kb; GC skew; GC content; predicted protein-coding sequences (CDS). The repA gene was chosen as the first

gene. The plot was made using https://proksee.ca/. B. Structural comparisons of pSmeLPU88b and pMBA9a replication regions. The

arrows indicate genes and the blue rectangle ISRm17.

https://doi.org/10.1371/journal.pone.0285505.g001
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Previously, Giusti et al, [42] characterized the CDS parA-like and mobCZ, and these were

found to be associated with the DNA-transfer-and-replication region (Dtr) of pSmeLPU88b

(Table 2). The other identified CDS encode proteins associated with different metabolic pro-

cesses (CDS18, CDS19, CDS25, CDS26, CDS27) like amino acid metabolism (CDS14, CDS17)

or oxidoreduction (CDS 13, CDS15, CDS19, CDS20), transcriptional regulation (CDS16,

CDS23) and transposition (CDS28, TRm17) (Table 2). Five CDS encoded for hypothetical pro-

teins (CDS4, CDS8, CDS9, CDS21, CDS22) that are also found in other S. meliloti strains, but

for which no other inferences could be made (Table 2).

In silico analysis of the replication and stability modules

The in silico analysis of the obtained sequence data allowed us to identify two plasmid replica-

tion modules: one belonging to the repABC family [13], and the other related to repC family

Table 2. Protein-coding sequences identified in plasmid pSmeLPU88b.

Feature_id Predicted Function COG# Protein Best Match Identity

repA Plasmid partition protein RepA D AAX19273 100%

repB Plasmid partition protein RepB K AAX19274 100%

repC1 Plasmid replication protein RepC K WP_127529104.1 100%

CDS4 hypothetical protein WP_127529192.1 99%

CDS5—xerD Site-specific recombinase XerD L ASQ15018 94%

CDS6—papA Phd antitoxin, type II toxin-antitoxin system Phd/YefM family antitoxin D ASQ15019.1 100%

CDS7—papT plasmid maintenance toxin (PemK-like) WP_127529191.1 100%

CDS8 hypothetical protein WP_127514965.1 100%

CDS9 hypothetical protein S WP_127529194.1 100%

parA-like ATPases involved in chromosome partitioning D AFC88005.1 92%

mobC mobilization protein WP_127529222.1 100%

mobZ putative relaxase U WP_127652933.1 87%

CDS13 Uncharacterized conserved protein, NAD-dependent epimerase/dehydratase family S WP_127529155.1 100%

CDS14 Aminotransferase class I/II-fold pyridoxal phosphate-dependent enzyme H WP_127529156.1 100%

CDS15 Glutamate dehydrogenase/leucine dehydrogenase E WP_127529157.1 97%

CDS16 Transcriptional regulator, GntR family K WP_127529161.1 100%

CDS17 Glutamate-1-semialdehyde aminotransferase (EC 5.4.3.8) H WP_127529162.1 100%

CDS18 putative acetolactate synthase large subunit EH WP_127529158.1 99%

CDS19 3-oxoacyl-[acyl-carrier protein] reductase (EC 1.1.1.100) IQ WP_127529159.1 99%

CDS20 Succinate-semialdehyde dehydrogenase [NAD(P)+] (EC 1.2.1.16) C WP_127652730.1 97%

CDS21 hypothetical protein WP_153499494.1 86%

CDS22 hypothetical protein S WP_127529111.1 100%

CDS23 Response regulator transcription factor. Phosphate regulon transcriptional regulatory protein PhoB (SphR) KT WP_127529110.1

CDS24 hypothetical protein WP_127529109.1 100%

CDS25 ATP-grasp domain-containing protein M WP_127529108.1 100%

CDS26 MFS permease EGP WP_127529107.1 100%

CDS27 ATP-grasp domain-containing protein F WP_127529106.1 100%

CDS28 Mobile element protein. IS110 family transposase L WP_127570297.1 99%

repC2 Plasmid replication protein RepC K WP_127529105.1 99%

traI N-acyl-L-homoserine lactone synthetase TraI QT AAX19272

TRm17 ISNCY family transposase ISRm17 L WP_010970069.1

# COG Categories: C, Energy production and conversion; D, Cell cycle control and mitosis; E, Amino Acid metabolis and transport; F, Nucleotide metabolism and

transport; G, Carbohydrate metabolism and transport; H, Coenzyme metabolism; I, Lipid metabolism; K, Transcription; L, Replication and repair; M, Cell wall/

membrane/envelop biogenesis; P, Inorganic ion transport and metabolism; Q, Secondary Structure; T, Signal Transduction; S, Function Unknown.

https://doi.org/10.1371/journal.pone.0285505.t002

PLOS ONE Characterization of pSmeLPU88b and its two replication-modules

PLOS ONE | https://doi.org/10.1371/journal.pone.0285505 May 18, 2023 7 / 18

https://doi.org/10.1371/journal.pone.0285505.t002
https://doi.org/10.1371/journal.pone.0285505


[32]. The DNA alignment of both regions resulted in nearly identical elements to the ones

present in the plasmid pMBA9a from an S. meliloti isolate from Canada (99% DNA identity)

[56]. However, while the repC and repABC modules present in pMBA9a are contiguous, in the

plasmid pSmeLPU88b are separated by the IS-element ISRm17, which belongs to the group

ISDoll of the ISCNY family (Fig 1B). The presence of more than one type of replication system

in the S. meliloti cryptic plasmids seems to be a common feature since it has also been observed

in other plasmids like pRmeGR4a, pRmeGr4b, pSmeSM11a, pHRC017, and the paccessoryA

of strains HM006, T073 and USDA 1157. This feature is not only limited to S. meliloti species

since pSF45436e from Sinorhizobium fredii CCBAU45436, plasmid A from Sinorhizobium
americanum CCGM7, pRtrCIAT899b from Rhizobium tropici CIAT899 and pAtS4a from

Agrobacterium vitis S4 present two types of replicons. In addition, the presence of two repli-

cons seems to be a common feature in alphaproteobacteria. Bartosik et al. [18] described a

plasmid of Paracoccus versutus UW1 containing repC and repABC systems. Later, the same

authors found several strains of Paracoccus pantotrophus containing four plasmids with both

types of replication machinery [16].

Usually, RepC proteins from repC family (PRK13824 domain) present a size of ca. 400

amino acids long (https://www.ncbi.nlm.nih.gov/Structure/sparcle/archview.html?archid=

11486891), but it is noteworthy that RepC2 from pSmeLPU88b has 611 amino acids. There are

only three entrances in the NCBI database with a RepC protein with the same characteristics,

all of them of S. meliloti strains. Specifically, in pMB9a of strain MB9A, and in DNA contigs

from strains USDA 1027 and USDA 1508, all of them sharing 99% amino acid identity.

A general characteristic of repABC operons is the presence of a conserved intergenic region

between the repB and repC genes. In this region, a gene coding a 55–59 nt small non-translated

RNA (ctRNA) in the opposite orientation to the repABC operon is usually located, which

could generate incompatibility with its parental plasmid if it is introduced in trans [19, 20]. A

similar antisense RNA was described for the repC family [33]. These ctRNA not only play a

role as an incompatibility factor but also as a negative regulator of repC gene expression [33].

We identified in silico ctRNA, upstream of each repC gene. The computer-predicted secondary

structure of both ctRNA presented similar structures as those previously described (S1 Fig)

[19, 20, 22, 33]. An alignment of ctRNAs of other rhizobial plasmids showed that ctRNArepABC

presents a higher sequence conservation than ctRNArepC, and the last one is identical to the

ctRNA present in pMB9a and the contigs from USDA 1027 and USDA 1508 strains (S2 Fig).

The centromere-like DNA sequence parS consist of one or more copies of a 16-bp palin-

dromic consensus sequence GGTNNGNGCNCNNACC close to the repABC genes [13]. The parS
locus could be located downstream from repC [15], within the repA-repB intergenic zone [57],

or upstream from repA [25]. Recently, Czarnecki et al. [26] showed that in the repABC system

of plasmid pAMI4 of Paracoccus aminophilus, in addition of a single parS near the repABC
genes, the plasmid contains three additional parS repeats, 11.5 kb downstream of repC. We

searched for the presence of parS in pSmeLPU88b and found a 16-bp palindrome, 93 bp

downstream of repC1 gene. The palindrome sequence CCTGTCAGCTGACAGG is partially con-

served compared to the consensus sequence.

Downstream of the repABC replication system are located three CDS homologous to

recombinases and toxin-antitoxin (TA) systems. The recombinase (CDS 5, XerD) presents its

maximum amino acid identity (96%) with the protein CDO22_34430 (ASQ15018) of plasmid

accessory A of S. meliloti HM006. The CDS 5 belongs to the Cre-like recombinases, a tyrosine-

based site-specific recombinase. These enzymes are associated with plasmid maintenance by

mediating the recombination site between the repeated sequences of the concatemer. Plasmid

dimers could be formed through homologous recombination and, since a dimer has two ori-

gins of replication, the copy number control system perceives two entities, but only one
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plasmid is available for segregation [58]. In Rhizobium etli CFN42 it was described a recombi-

nase RinQ, which is required to exert incompatibility to pRetCFN42d plasmid. RinQ is also

near to the repABC operon but belongs to the invertase/resolvase family (γδ family) [59]. In

pLPU88b, the TA system is formed by CDS 6 and CDS 7 (designated papA and papT respec-

tively for plasmid addiction protein). PapA shown 100% amino acid identity with the

CDO22_34435 (accessory A plasmid of S. meliloti HM006) and CN144_34000 (contig 185 of

strain USDA 1508). PapT presented 100% amino acid identity to CN144_33995 (contig 185 of

strain USDA 1508). PapA belongs to the type II toxin-antitoxin systems (pfam02604, Anti-

toxin Phd_YefM), members of this family bound to their toxin partners, and they can bind

DNA repressing the expression of TA operons. PapT possesses a conserved putative domain

belonging to the PemK superfamily, which inhibits the growth of host cells. PemK is responsi-

ble for mediating cell death by inhibiting protein synthesis through the cleavage of single-

stranded RNA. This system is completed by the antitoxin PemI that inhibits the action of the

PemK toxin [60]. PemI belongs to the MazE_antitoxin family (pfam04014), a family different

from the PapA antitoxin family.

It is noteworthy that the repABC and the three CDS observed downstream presented the

same genetic structure in pSmeLPU88b and in other rhizobial plasmids. Apparently, this

genetic organization is a common feature in S. meliloti, S. medicae, and there are representa-

tives in S. fredii, S. americanum, S. arboris and Rhizobium favelukesii. In addition, in some plas-

mids, there is also present a repC family replicon (Fig 2). This region could be the so-called

“backbone” of a plasmid, which generally encodes functions involved in replication, mainte-

nance, and in conjugative plasmid transfer. As we mentioned before, plasmids containing

repC and repABC systems could be found in other alphaproteobacteria. The search for com-

plete plasmid sequences in databases showed that plasmids pAK2 of Paracoccus sp. AK26,

pBM151 of P. tegillarcae BM15, pZO2 of P. zhejiangensis J6, plasmid a of Rhodobacter

Fig 2. Comparison of replication regions. Genetic organization of pSmeLPU88b replication region compared with

regions present in other rhizobial plasmids. Relevant orthologs are marked with the same color.

https://doi.org/10.1371/journal.pone.0285505.g002
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sphaeroides MBTLJ-20 and plasmid D of R. sphaeroides 2.4.1, among others, present both

types of replication systems. However, in these plasmids the recombinase and TA systems are

not found in the neighborhood of the repABC system. Furthermore, the two origins of replica-

tion were located further apart from each other compared to the distance in rhizobial

plasmids.

Functional characterization of the two-replication modules of plasmid

pSmeLPU88b

As we mentioned before, rhizobial strains contain several plasmids and each one of them car-

ries genes of the repABC or repC families. The most obvious case of this peculiarity is observed

in R. etli CFN42 and R. leguminosarum 3841, each of which has six plasmids all belonging to

the repABC family. This suggests that different repABC plasmids belong to different incompat-

ibility groups [61, 62]. Furthermore, replicons harboring two repABC operons have also been

found [61, 62]. In other examples, plasmids with one repC and one repABC were observed [56,

63, 64]. This condition has been proposed as beneficial [65], assuming that the presence of

more than one replication module can contribute to the overall stability of the plasmid that

carries them.

To determine the functionality of the repABC and repC replicons present in pSmeLPU88b,

we carried out two strategies: on the one hand, we made site-specific insertional mutagenesis

on each of the replication initiation proteins; in a second approach, each of the replication

modules was cloned separately in vectors that originally are suicide in S. meliloti, but with the

replication module became replicative. In both assays, the ability to maintain replication in

rhizobia was evaluated. We could obtain mutants in both repC genes by insertional mutagene-

sis, demonstrating the functionality of both replicons. After cloning each replication module

in the suicide vectors, the resulting pKrepC and pGrepABC (Table 1) plasmids were trans-

ferred to S. meliloti 2011 and S. meliloti LPU88 strains. To verify the presence of plasmids

pKrepC and pGrepABC in rhizobia, transconjugants were taken randomly and analyzed by

Eckhardt-type gels. The replication functionality of the new build replicons has been first eval-

uated through the presence of the expected plasmid in S. meliloti 2011 (S3 Fig) and in S. meli-
loti LPU88 (S4 Fig).

Another interesting aspect to mention is the incompatibility of the vectors pKrepC and

pGrepABC with respect to the plasmid pSmeLPU88b. Incompatibility between plasmids is the

inability of two plasmids to coexist within the same cell. In general, this situation is the result

of sharing certain elements involved in plasmid replication or segregation, as well as in some

regulatory components of these functions. Strikingly, when plasmids pKrepC and pGrepABC

were transferred independently by conjugation to LPU88 strain, pSmeLPU88b was removed

from the cells (S4 Fig). The analysis by Eckhardt-type gels confirmed that both replicons could

exclude plasmid pSmeLPU88b (S4 Fig). It should be noted that selection pressure with antibi-

otics -Nm (for pKrepC) and Gm (for pGrepABC)-, forces the maintenance of the introduced

plasmids instead of the resident plasmid pSmeLPU88b. This result was surprising because it

was expected that pSmeLPU88b would replicate by the different replication system as the one

introduced. The observed behavior shows the existence of certain interactions between both

replication systems. To corroborate this hypothesis, we transferred the plasmid pGrepABC to

the S. meliloti 2011 derivative previously containing pKrepC, and the plasmid pKrepC to the S.

meliloti 2011 derivative previously containing pGrepABC (S3 Fig). In the S. meliloti 2011 back-

ground, the interaction/interference between the replicons was not observed since they could

replicate independently in most of the cases, but in a few cases a cointegration between

pKrepC and pGrepABC was observed (S3 Fig).
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As we saw that each replication module was functional, the maintenance of the plasmids

was tested. First, the repC mutants were evaluated. S. meliloti LPU88 cells carrying

pSmeLPU88::pKmutC or pSmeLPU88::pKmutABC (mutants in each module) were grown in

serial cultures in a nonselective medium, and plasmid loss rates were measured by plating to

determine the proportion of cells retaining the plasmid (see Materials and Methods). Both

plasmids were stably maintained in progeny cells since 100% of the cells retained the plasmid

after four subculture steps (96 h). However, plasmid loss could be prevented due to the pres-

ence of the TA system in pSmeLPU88b. Thus, the TA could mask the effect of the repC muta-

tions on plasmid replication initiation and/or plasmid segregational stability. To test this

hypothesis, we evaluated the bacterial growth kinetics. The assay showed that generation time

was lower in the wild type (1.83±0.06 h) compared to the mutants (2.38±0.05 h for repABC
mutant and 2.23±0.06 h for repC mutant. P<0,0001 Tukey’s test). The loss of pSmeLPU88b

would induce the elimination of cells by the activity of TA system. These events of cell death

would justify the lower growth rates observed for the mutants. These results suggest that the

insertional mutations destabilize the plasmid replication, and that the TA system could be

active, eliminating the cells without plasmid. Next, the stability of the two cloned replicons was

separately examined in S. meliloti 2011. Plasmid pG18repABC showed similar stability to that

of pSmeLPU88b (100%). In contrast, pKrepC was lost after 4 subcultures (96 h), where only

0.4% of cells retained the plasmid. Similar observations were described by Bartosik et al. [18]

with the replicons of pTAVl plasmid.

To test the function of the identified parS, the plasmid pBBRparS was conjugated to LPU88

(pGrepABC) to determine if this sequence showed any incompatibility with the pGrepABC

present in the strain. The analysis of the transconjugants showed that all clones only carried

the pBBRparS and not the pGrepABC plasmid, confirming the incompatibility between these

two elements. Therefore, this result corroborates that the identified sequence, although diver-

gent with the consensus, is a functional parS site.

Incompatibility of each replication module to other S. meliloti plasmids

In previous work, we analyzed the incompatibility of pSmeLPU88b within a collection of rhi-

zobia isolates, to gain insight into how this phenomenon affects the intraspecific mobilization

Fig 3. Plasmid profiles of isolates exhibiting incompatibility with the incoming plasmid pKrepC or pGrepABC. A.

Profile of plasmids from isolates LPU57, LPU178, LPU121 and LPU122 before and after having received the

replication modules of pSmeLPU88b. B. Plasmid profiles of isolates LPU122 and LPU121 harboring both

pSmeLPU88b replication modules (plasmids pkrepC and pGrepABC).

https://doi.org/10.1371/journal.pone.0285505.g003
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of S. meliloti plasmids [36]. The analysis showed that four isolates, LPU57, LPU178, LPU121,

and LPU122, have lost at least one plasmid in presence of pSmeLPU88b, proving that this plas-

mid is incompatible with some plasmids of the mentioned isolates. To investigate if some of

the replication modules of pSmeLPU88b present incompatibility, plasmids pKrepC and pGre-

pABC were transferred to each isolate and the transconjugants were analyzed by Eckhardt gels

electrophoresis. The results showed that for isolates LPU57 and LPU178 only the pGrepABC

plasmid exerted incompatibility (Fig 3A). However, neither pKrepC nor pGrepABC plasmids

were able to eliminate the resident plasmids in the strains LPU121 and LPU122 (Fig 3A). Per-

haps, the incompatibility only manifests when both replicons are present, thus, we generated

strains with plasmids pKrepC and pGrepABC. As it is shown in Fig 3B, the incorporation of

both plasmids to isolates LPU121 and LPU122 did not produce any change in resident plas-

mids. We concluded that the incompatibility of pSmeLPU88b to the resident plasmids of

strains LPU121 and LPU122 is not because of the replication modules. Thus, three options

arise: both replication modules should be in the same plasmid to exert incompatibility, the

incompatibility could be due to segregation issues or other genes present in pSmeLPU88b may

be involved. In general, plasmid incompatibility occurs when multiple plasmids within one

cell have the same replication and/or partitioning system. In the case of rhizobia, as it was

mentioned before, pRetCFN42d contains, in addition to replication and partitioning genes, a

gene that influences plasmid stability and incompatibility properties that is not encoded by the

repABC operon [59]. In plasmids pTi-SAKURA and pTiC58 of Agrobacterium tumefaciens,
two TA systems were shown to enhance plasmid stability and incompatibility [66, 67]. This

could be the case of pSmeLPU88b since it carries a TA module that might compensate the loss

of TAs present in the plasmids of LPU121 and LPU122 strains, but pKrepC and pGrepABC

were not able to do it.

Analysis of the replication initiator protein belonging to the repC family

Strikingly, as we mentioned before, RepC2 of plasmid pSmeLPU88b has 611 amino acids

when almost all the known replication initiator proteins, RepC and RepABC families are ca.

400 amino acids. A protein alignment of RepC2 with other RepC proteins showed that the first

400 amino acids are conserved and present the typical Rep proteins’ motif. Furthermore, a

BlastX analysis showed an IS4 family transposase (only c-term 44% protein identity) coded in

the complementary strand of repC gene 3’-end. These results support the idea that the addi-

tional 200 C-terminal amino acids of RepC2 could be the consequence of an ancient event of

an IS4 element transposition.

In order to assess if only the first 400 amino acids are enough for replication, a truncated

variant of the RepC was generated by PCR, introducing a stop codon in the reverse primer and

cloned in the pK18mob vector. The obtained plasmid, pKrepCT, was transferred to the strain

S. meliloti 2011 to test functionality. The presence of pKrepCT was confirmed in the plasmid

profiles electrophoresis (S5 Fig), confirming that the first 400 amino acids of RepC2 are able to

perform replication.

Concluding remarks

Rhizobia usually carry plasmid DNA that can reach 45% of the total amount of genetic infor-

mation in that cell [9]. In many cases, the information that is harbored in these replicons con-

tributes to the saprophytic survival or to the development of symbiosis with leguminous

plants. In this work, we presented the sequence of pSmeLPU88b, an accessory mobilizable

plasmid of S. meliloti LPU88 [41]. The sequence analysis showed a genomic structure with

backbone modules for replication/partitioning and mobilization. In addition, a region
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carrying information for metabolic processes that could be useful for adaptation to the envi-

ronment was identified.

Plasmids must replicate within the cells. The most common replication system among rhi-

zobial plasmids is the one based on the repABC family [13], but also repC family of replicons

containing only the repC has been described in other rhizobia [33, 68]. The presence of more

than one replication module is not rare in rhizobial plasmids. Interestingly, the repC family is

always found in plasmids carrying a repABC family cluster. Remarkably, pSmeLPU88b showed

two functional replication modules, one of them belonging to repABC and the other to repC
families. In particular, repC2 of pSmeLPU88b (which belongs to the repC family) showed an

atypical size, being 30% larger than the average RepC proteins. It was identified that an inser-

tion of a mobile genetic element creates a frameshift that increase the protein size. Neverthe-

less, we corroborated that the first 400 amino acids are enough for the functionality of RepC2.

Despite both replicons being able to replicate, it seems that they have a different relevance.

While the repABC remains stable, repC2 was lost in the same period. The low stability shown

by the repC2 type of replication module in rhizobia could explain the reason why repC mod-

ules are always found in plasmids harboring a repABC module in rhizobia. In this way, the

overall stability of the plasmid would be greater. Furthermore, we could speculate that repC
modules are expressed in particular conditions to guarantee the prevalence of the plasmids.

Moreover, the presence of two replicons could be an advantage in the environment since each

replicon could have a different host range giving the plasmid a bigger chance of being horizon-

tally transferred in the bacterial community.
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