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Abstract

In this paper age-space-time models based on one and two-dimensional P-splines with
B-spline bases are proposed for smoothing mortality rates, where both fixed relative scale
and scale invariant two-dimensional penalties are examined. Model fitting and inference
are carried out using integrated nested Laplace approximations (INLA), a recent Bayesian
technique that speeds up computations compared to McMC methods. The models will be
illustrated with Spanish breast cancer mortality data during the period 1985-2010, where a
general decline in breast cancer mortality has been observed in Spanish provinces in the last
decades. The results reveal that mortality rates for the oldest age groups do not decrease in
all provinces.
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1 Introduction

Splines and penalized splines have been recently consolidated into the disease mapping toolkit
as an alternative to the widely used conditional autoregressive (CAR) models1 for smoothing
and identifying the overall geographical pattern of risks and/or rates. P-splines have been
popularized by Eilers and Marx,2 who consider B-spline bases and penalties based on finite order
differences of adjacent coefficients. P-splines also have their Bayesian counterparts replacing the
penalties on the coefficients by their stochastic analogs, that is, using a random walk of first or
second order as a prior distribution on the coefficients (see for example Lang and Brezger3).
Spatio-temporal models incorporating splines have been used in space-time disease mapping
either from an empirical Bayes (EB) or a fully Bayes (FB) perspective. Within the EB setting,
B-splines were first used to model temporal components whereas CAR models were adopted for
the spatial effects.4 Later on, Ugarte et al.5,6 use three-dimensional P-spline models to account
for the spatial and the temporal effects. These authors reformulate the P-spline models as
mixed models and used penalized quasi-likelihood (PQL)7 for model fitting and inference. From
a FB approach, MacNab and Gustafson8 consider unpenalized regression B-splines to illustrate
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how region-specific temporal relative risk trends may evolve in either a spatially structured or
spatially unstructured manner. MacNab9 compares unpenalized regression B-splines, smoothing
splines, and P-splines to analyze the connections and differences among them, and also evaluates
their capabilities to smooth risk trends in a disease mapping context. The author considers the
mixed model reformulation of P-splines. This is not the approach followed by Bauer et al.10

consisting in using random walks of different order as prior distributions on the coefficients.
All these models are very complex and closed form expressions for the posterior distributions
of the quantities of interest are intractable. Consequently Markov chain Monte Carlo (McMC)
methods are a common tool for model fitting and inference, yet these methods also present some
inconveniences. For example, algorithms could be tricky and time-consuming when complex
models are handled.11. To avoid these problems, we will adopt a new technique based on
integrated nested Laplace approximations (INLA).12

Studying age-specific spatio-temporal mortality patterns has not been so common in the litera-
ture, yet there is some research including the age groups in the models (see for example Sun et
al.13 and Zhang et al.14). Age-period-cohort models have also been used to study age-specific
spatio-temporal patterns. For example Papoila et al.15 analyze female and male stomach cancer
incidence data in Sourthern Portugal between 1998 and 2006, and Etxeberria et al.16 conduct a
similar study for pancreatic cancer mortality data in Spain during the period 1990-2013. Very
recently, Goicoa et al.17 propose age-specific spatio-temporal CAR models to analyze prostate
cancer mortality in Spain, revealing differences in temporal mortality trends by age groups and
provinces.
The goal of this paper is to propose several age-space-time P-spline models to analyze the
geographical pattern of a disease and the temporal evolution of the mortality rates according
to the age groups. We consider a CAR model for the spatial random effects, and P-splines
for time and age. In particular, one and two-dimensional P-splines will be adopted to capture
space-time, space-age, time-age, and age-space-time interactions.
The reminder of the paper is outlined as follows. Section 2 provides some background on breast
cancer mortality and describes the data at hand. Section 3 introduces time-space-age P-spline
models. Section 4 reviews some aspects of the INLA methodology. In Section 5 we analyze
female breast cancer mortality data in Spanish provinces. Finally, Section 6 provides some
discussion and conclusions.

2 Female breast cancer mortality

Breast cancer mortality corresponds to code C50 of the International Classification of Diseases-
10.18 According to the last cancer mortality estimates for 40 European countries in 2012,19

breast cancer was the leading cause of death by cancer in females in Europe (131,000 deaths,
16.8% of total cancer deaths in females), followed by colorectal (102,000 deaths, 13.0%) and lung
cancer (almost 100,000 deaths, 12.7%). It is also known that breast cancer death rates generally
increase with age.
Temporal trends of female breast cancer mortality rates have been widely analyzed in Europe
and particularly in Spain. In most developed countries, breast cancer mortality rates increased
from the 1950s to the 1980s, and from the 1990s onward they turned around mainly due to
the implementation of screening programmes and improvements in breast cancer care through
new effective treatments.20,21 In 1990, Navarre was the first Spanish region implementing a
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population-based breast cancer screening programme, followed subsequently by other regions.
Nowadays all Spanish screening programmes include women aged 50-69 years in their target
population, although 7 out of 19 regions start at the age of 45.22 Analyses aggregating counts
over age-groups have revealed a decrease in rates after the 1990s, but some authors23 suggest
that this decline is not clear for all age groups in Spain. In particular, Ugarte et al.24 split the
female population into three age groups and use a spatio-temporal P-spline model to run three
independent analyses, one for each age group. They observe that the decline in mortality is
delayed for the oldest age group. However, this analysis does not allow to “borrow strength”
from similar age groups and health professionals are interested in a finer division of age groups.
Consequently, the use of age-space-time models provides a better knowledge about the evolution
of breast cancer mortality.
Our interest here lies in estimating female breast cancer mortality rates by province, year, and
age group to unveil mortality patterns in the 50 Spanish provinces during the period 1985-2010.
In Spain, 96.21% of breast cancer deaths occurred in 40 years old or older women, therefore and
according to experts, the following eleven age-groups are considered: [0, 40), [40, 45), [45, 50),
[50, 55), [55, 60), [60, 65), [65, 70), [70, 75), [75, 80), [80, 85), [+85). Data on population and
deaths were obtained from records of the Spanish Statistical Institute. A total of 145,991 deaths
were identified from 1985 to 2010. A brief summary with the number of deaths and the crude rate
(number of deaths/population at risk by 100,000 female inhabitants) by age-group, province,
and year is displayed in Table 1. As expected, crude rates increase with the age group. They
also increase with time until late 1990s, and from then on, rates decrease slightly remaining
fairly stable in the last years. Differences in crude rates among provinces seem to exist with a
leap of about 17 points between the provinces with the smallest and the highest crude rates.
Crude rates per 100,000 inhabitants by age, province, and year range from 0 to 389.4, with a
mean of 47.61, a median of 58.92, and a standard deviation of 50.88.

Table 1: Breast cancer deaths and crude rates (by 100,000 female inhabitants) by age-group,
province, and year.

age-group cases crude rate province cases crude rate year cases crude rate

[−40) 5530 1.940 Jaén 1660 19.568 1985 4273 21.905
[40, 45) 6644 18.130 Almeŕıa 1373 20.241 1986 4547 23.234
[45, 50) 9357 27.971 Granada 2262 20.718 1987 4880 24.868
[50, 55) 11875 38.083 Córdoba 2298 22.688 1988 5118 26.016
[55, 60) 14035 47.166 Tenerife 2482 23.070 1989 5268 26.717
[60, 65) 15073 53.118 ... ... ... ... ... ...
[65, 70) 15788 60.103 Teruel 590 32.372 2006 5927 26.610
[70, 75) 16556 69.656 Lleida 1575 32.681 2007 5959 26.311
[75, 80) 16992 85.945 Asturias 4867 33.412 2008 6016 26.145
[80, 85) 15310 109.345 Zaragoza 3853 33.502 2009 6089 26.260
[85+) 18831 165.289 Huesca 980 36.083 2010 6264 26.883

Figure 1 displays the temporal evolution of crude rates in Spain. The left plot revels a general
decline of mortality in the youngest age groups in Spain, but the decrease is not clear in the oldest
age groups (right plot). At country level, the crude rates are not too variable, but a look at the
temporal evolution of crude rates by province and age group reveals a high variability. Figure
2 displays the temporal evolution of crude rates by age group in two provinces: Madrid and
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Figure 1: Temporal evolution of Spanish age-specific crude rates by 100,000 females for the
eleven age groups. On the left the youngest age groups, and on the right the oldest age groups.

Huelva. Crude rates are more stable in Madrid, something expected as it is a highly populated
area. It can be observed that trends decrease for the youngest age groups but the temporal trend
for the oldest age group is increasing. On the other hand, Huelva is a low populated province
and crude rates are highly variable making difficult the detection of any clear trend. Then, the
necessity of statistical models to smooth the rates and unveil the underlying trends is beyond
doubt.

3 Age-specific space-time models based on P-splines

In this section, age-space-time models based on P-splines with B-spline bases are proposed
to look into geographical and temporal mortality patterns according to the age groups. The
proposed models comprise simple additive models based on one-dimensional P-splines for time
and age, and more complex models including two-dimensional time-age P-splines. CAR models
are considered to deal with spatial heterogeneity. CAR spatial random effects produce local
smoothing and they are very convenient in Spain where some policies depend on local authorities,
and then inequalities in health among the different provinces are likely to exist. In addition,
Ugarte et al.25 show that a model with CAR spatial random effects outperform a model with a
two-dimensional P-spline to deal with spatial heterogeneity. Here, auxiliary information other
than the province, time period, and age group is not available. The different models are explained
in the following. Let us consider the number of deaths, Ytsa, in a specific time-period t (t =
1, . . . , T ), geographical area or province s (s = 1, . . . , S), and age-group a (a = 1, . . . , A), and
let us denote by ntsa the population at risk corresponding to that time, area, and age group.
Then, conditional on the time-region-age specific rate rtsa, the number of deaths is assumed to
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Figure 2: Temporal evolution of age-specific crude rates by 100,000 females in Madrid and
Huelva for the eleven age groups. On the top row the youngest age groups, and at the bottom
row the oldest age groups.

follow a Poisson distribution

Ytsa|rtsa ∼ Poisson(µtsa = ntsartsa), logµtsa = log ntsa + log rtsa.
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In this work several proposals based on P-splines are given to model log-rates. For simplicity
and to introduce notation, let us consider the following additive P-spline model

M1 log rtsa = γ + φs + f(xt) + f(xa), (1)

where γ is an intercept, φs is the spatial random effect, and f(xt) and f(xa) are smooth functions
of time (xt) and age (xa) respectively, that are common to all geographical areas (provinces).
The spatial random effects are assumed to follow a multivariate normal distribution (see Leroux
et al.26)

φs ∼ N(0, σ2φΣφ), Σφ = (λφQφ + (1− λφ)IS)−1,

where Qφ is a neighborhood matrix (two areas are considered neighbors if they share a common
border), IS is an S × S identity matrix and λφ represents a spatial parameter taking values
between 0 and 1. The prior of the spatial random effect will be denoted LCAR here after in the
paper. The smooth functions can be well approximated using P-splines with B-spline bases

f(xt) ' Btθt, f(xa) ' Baθa,

where Bt and Ba are the B-spline bases for time and age respectively, θt = (θt1 , . . . , θtk)′ and
θa = (θa1 , . . . , θam)′ are vectors of coefficients and tk and am are the number of columns of Bt

and Ba. Model 1 can be expressed in matrix form as

M1 log r ' (1T ⊗ 1S ⊗ 1A)γ + (1T ⊗ IS ⊗ 1A)φs + (Bt ⊗ 1SA)θt + (1TS ⊗Ba)θa,

where r = (r111, . . . , r11A, . . . , r1S1, . . . , r1SA, . . . , rTS1 . . . , rTSA)′, 1T , 1S , 1A, 1SA and 1TS rep-
resent vectors of ones of length T , S, A, S ×A, and T × S respectively, and ⊗ is the Kronecker
product. First and second order random walks priors are assumed for the vector of coefficients
θt and θa,

3 that is

θt|λt ∝ exp (λtθ
′
tPtθt), θa|λa ∝ exp (λaθ

′
aPaθa),

where Pt = D′tDt, Pa = D′aDa, and Dt and Da are first or second order difference matrices, and
λt and λa are precision parameters controlling the amount of smoothness. Prior distribution are
given to the precision parameters λt, λa, and subsequent precision parameters for the different
models proposed in this paper, as indicated in Section 4. The matrices Pt and Pa are just the
precision matrices of a random walk of first (or second) order (see for example Rue and Held,27

pp. 95 and 110). In Model 1, the terms f(xt) and f(xa) “borrow strength” from neighbouring
time points and age groups, and the term φs is specific for each area. The spatial correlation
structure allows to “borrow strength” from neighbouring areas.
Additive models may be rather restrictive in practice as interactions usually occur. That is, the
temporal evolution of rates may be different in each province and age group, or the evolution
of rates with age may differ among provinces or years. Hence, more flexible models including
space-age, space-time, time-age, and space-time-age interactions are considered. In this paper
we propose a collection of models including different types of interactions and a LCAR prior
for the spatial random effect. Every model is expressed for each year, province, and age group,
and in matrix form. We first start with the following interaction models using one-dimensional
P-splines
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M2 log rtsa = γ + φs + f(xt) + fs(xa)
log r ' (1T ⊗ 1S ⊗ 1A)γ + (1T ⊗ IS ⊗ 1A)φs + (Bt ⊗ 1SA)θt + (1T ⊗ IS ⊗Ba)θsa.

Here, Model M2 includes a global temporal trend f(xt) common to all provinces and age groups, and
province-specific age patterns fs(xa) (space-age interactions).

M3 log rtsa = γ + φs + fs(xt) + f(xa)
log r ' (1T ⊗ 1S ⊗ 1A)γ + (1T ⊗ IS ⊗ 1A)φs + (Bt ⊗ IS ⊗ 1A)θst + (1TS ⊗Ba)θa.

Model M3 considers an age pattern f(xa) common to all provinces and years, and province-specific
temporal trends fs(xt) (space-time interactions).

M4 log rtsa = γ + φs + fs(xt) + fs(xa)
log r ' (1T ⊗ 1S ⊗ 1A)γ + (1T ⊗ IS ⊗ 1A)φs + (Bt ⊗ IS ⊗ 1A)θst + (1T ⊗ IS ⊗Ba)θsa.

Finally, Model M4 includes both type of interactions, province-specific temporal trends, and
province-specific age patterns. The terms f(xt) and f(xa) “borrow strength” from neighbouring
time points and age groups, and from all provinces as these terms are the same in the different
provinces. The province-specific terms fs(xt), and fs(xa) “borrow strength” from neighbouring
time points and age groups, respectively.
These models do not include age-time interactions, but we expect different mortality trends for
all age groups (as confirmed by the exploratory data analysis). Then, five additional P-spline
models are proposed to deal with age-time interactions. Some of the models combine one and
two-dimensional P-splines. They are defined as

M5 log rtsa = γ + φs + f(xt, xa)
log r ' (1T ⊗ 1S ⊗ 1A)γ + (1T ⊗ IS ⊗ 1A)φs + (Bt ⊗ 1S ⊗Ba)θta.

In Model M5, the term f(xt, xa) is a smooth time-age surface common to all provinces and it is estimated
using two-dimensional P-splines. It models age-time interactions allowing for different temporal trends
in each age group that are common to all provinces. Through this two-dimensional P-spline, we “borrow
strength” from neighbouring time points and age groups.

M6 log rtsa = γ + φs + fs(xt, xa)
log r ' (1T ⊗ 1S ⊗ 1A)γ + (1T ⊗ IS ⊗ 1A)φs + (Bt ⊗ IS ⊗Ba)θtsa.

Model M6 considers province specific two-dimensional P-splines fs(xt, xa) (space-time-age interaction).
This term captures temporal trends that are specific for each age group and province.

M7 log rtsa = γ + φs + f(xt) + f(xa) + fs(xt, xa)
log r ' (1T ⊗ 1S ⊗ 1A)γ + (1T ⊗ IS ⊗ 1A)φs + (Bt ⊗ 1SA)θt + (1TS ⊗Ba)θa

+ (Bt ⊗ IS ⊗Ba)θtsa.

In Model M7, we combine temporal trends and age patterns common to all provinces (f(xt) and f(xa))
with time-age surfaces specific for each province (fs(xt, xa)).

M8 log rtsa = γ + φs + fs(xt) + fs(xa) + fs(xt, xa)
log r ' (1T ⊗ 1S ⊗ 1A)γ + (1T ⊗ IS ⊗ 1A)φs + (Bt ⊗ IS ⊗ 1A)θst + (1T ⊗ IS ⊗Ba)θsa

+ (Bt ⊗ IS ⊗Ba)θtsa.
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In Model M8, smooth functions for time, age, and the time-age interaction are specific for each province.
This model borrows information from neighbouring areas through the correlation structure of the spatial
random effect. Information from neighbouring time points and age groups is connected through the
respective smooth functions.

M9 log rtsa = γ + φs + f(xt, xa) + fs(xt, xa)
log r ' (1T ⊗ 1S ⊗ 1A)γ + (1T ⊗ IS ⊗ 1A)φs + (Bt ⊗ 1S ⊗Ba)θta

+ (Bt ⊗ IS ⊗Ba)θtsa.

Finally, Model M9 considers both a time-age surface common to all provinces and a time-age
surface specific for each province. This last term can be interpreted as the specific contribution
of time and age in each province.
The smooth function f(xt, xa) can be well approximated with P-splines, that is

f(xt,xa) ' (Bt ⊗Ba)θta,

where (Bt ⊗ Ba) is the two-dimensional B-spline basis obtained as the Kronecker product of
the marginal B-spline bases for time and age, and θta is the vector of coefficients. There are
some details in the matrix expressions for Models M1 to M9 that deserve further comments.
The terms (Bt ⊗ 1SA)θt and (1TS ⊗Ba)θa represent the global temporal trend and the global
age pattern respectively. The Kronecker product gives just a replication of the B-spline bases
for time and age. The expressions (Bt ⊗ IS ⊗ 1A)θst and (1T ⊗ IS ⊗ Ba)θsa represent the
area-specific temporal trend and the area-specific age pattern. Here, the vectors of coefficients
θst and θsa include different sets of coefficients for each area but with the same smoothing
parameter. Finally, (Bt ⊗ 1S ⊗Ba)θta is the time-age surface common to all areas where θta is
the vector of coefficients, and (Bt ⊗ IS ⊗Ba)θtsa is the area-specific time-age smooth surface,
where the vector θtsa includes a set of coefficients for each area. Smoothness on the time-age two-
dimensional surface is achieved by choosing appropriate prior distributions on the coefficients
θta and θtsa. This is the Bayesian counterpart to the penalties on the coefficients in a frequentist
framework. In short, the priors make close coefficients be similar. They are expressed as

θta| . . . ∝ exp (θ′taPtaθta), θtsa| . . . ∝ exp (θ′tsaPtsaθtsa),

where . . . indicates different smoothing/precision parameters, and Pta and Ptsa are penalty
matrices taking different forms according to Table 2. These two-dimensional penalties impose
smoothness on neighboring coefficients. Rearranging the coefficients by rows (time) and columns
(age), the coefficient θta would be influenced by θ(t−1)a, θ(t+1)a, θt(a−1), θt(a+1) when we use
random walks of first order. The penalties on the left have a single precision parameter λta
(top row) or λtsa (bottom row) for time and age, and the relative penalization of variability per
unit change in age and time depends on the scale of the variables. We denote this penalty as
“Fixed Relative Scale (FRS)”. The penalties on the right have two different precision parameters
for time and age, i.e, λ1ta, λ2ta (top row), and λ1tsa, λ2tsa (bottom row), and produce scale
invariant smooths. They will be referred as “Scale Invariant (SI)”. Scale invariant penalties
are recommended when the variables are measured in different scales (see Wood et al.,28 for an
insight about scale invariant smooths).
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Table 2: Two-dimensional penalties.

Fixed relative scale (FRS) Scale invariant (SI)

Pta = λta(Pt ⊗ Iam + Itk ⊗Pa) Pta = (λ1taPt ⊗ Iam + λ2taItk ⊗Pa)

Ptsa = λtsa(Pt ⊗ IS ⊗ Iam + Itk ⊗ IS ⊗Pa) Ptsa = (λ1tsaPt ⊗ IS ⊗ Iam + λ2tsaItk ⊗ IS ⊗Pa)

4 Model fitting via integrated nested Laplace approximations

McMC techniques have been the standard for Bayesian inference for the last decades. In disease
mapping, they are not easy to use as models are complex and they may require large computing
time when samples are highly correlated.29 To avoid this, a new technique relying on integrated
nested Laplace approximations (INLA) has been derived for latent Gaussian fields.12 The tech-
nique is especially attractive for latent Gaussian Markov random fields with sparse precision
matrices and a small number of hyperparameters because the computations are highly speeded
up. The INLA approach is being increasingly used in disease mapping (see for example Schrödle
and Held,11,30 Ugarte et al.31), and one of its advantages is that it can be implemented in the free
software R32 through the R-package R-INLA.33 Basically, to fit models in R-INLA it is necessary
to define a formula object of the type

formula<-response~ f(.., model="",...)+....

where f() is a function R-INLA uses to implement the different terms of the models. These
terms can be defined according to pre-specified latent Gaussian models that should be passed
through the argument model. In this paper we consider the latent models rw1 or rw2 for random
walks of first or second order as prior distributions for one-dimensional P-splines. They are the
Bayesian counterpart to penalties of first and second order. For two-dimensional P-splines, the
INLA options generic0 and generic3 are considered. The option generic0 allows fitting two-
dimensional P-splines with fixed relative scale penalties, and the option generic3 is adopted to
fit two-dimensional P-splines with scale invariant penalties. Full code to fit the selected model
in Section 5 is available in the Appendix.

Hyperprior distributions and model selection

Prior distributions were given to all model parameters. A vague normal distribution with a
precision close to zero was considered for the intercept (η). A Unif(0, 1) prior was given to
the spatial parameter λφ. Uniform prior distributions on the positive real line were given to
the following parameters: σφ, σt = 1/

√
λt, σa = 1/

√
λa, σta = 1/

√
λta, σ1ta = 1/

√
λ1ta,

σ2ta = 1/
√
λ2ta, σtsa = 1/

√
λtsa, σ1tsa = 1/

√
λ1tsa, and σ2tsa = 1/

√
λ2tsa. This is an improper

prior and has been used in the literature providing sensible results (see for example Ugarte et
al.25 and Goicoa et al.34). Gelman35 provides an in-depth discussion about prior distributions
for variance parameters in hierarchical models and he recommends using a non-informative
uniform prior density on standard deviation parameters when fitting hierarchical models. INLA
default logGamma(1,0.00005) prior on the log precision has been also used in the current paper
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obtaining similar results. However, these priors may lead to wrong results,36 and log gamma
priors have been criticized in the literature (see for example Simpson et al.37).
Three different model selection criteria were considered to select the best model: a modified
version of the Deviance Information Criterion (DIC)38 proposed by Plummer,39 the Watanabe-
Akaike Information Criterion (WAIC)40 and the logarithmic score (LS).41

Identifiability constraints

Section 3 models are not identifiable as the intercept is also included in the P-spline smooth
functions. To achieve model identifiability, the P-spline coefficients are centered. The required
sum-to-zero constraints for each model when considering random walks of first order as prior
distributions for the coefficients are given in Table 3.

Table 3: Sum-to-zero constraints to fit the Bayesian P-spline models.

Model Sum-to-zero constraints

Model M1
S∑

s=1
φs = 0;

tk∑
t=1

θt = 0;
am∑
a=1

θa = 0

Model M2
S∑

s=1
φs = 0;

tk∑
t=1

θt = 0;
am∑
a=1

θa = 0;
am∑
a=1

θsa = 0,∀s

Model M3
S∑

s=1
φs = 0;

tk∑
t=1

θt = 0,
am∑
a=1

θa = 0;
tk∑
t=1

θst = 0,∀s

Model M4
S∑

s=1
φs = 0;

tk∑
t=1

θt = 0;
am∑
a=1

θa = 0;
tk∑
t=1

θst = 0,∀s;
am∑
a=1

θsa = 0,∀s

Model M5
S∑

s=1
φs = 0;

tk∑
t=1

am∑
a=1

θta = 0

Model M6
S∑

s=1
φs = 0;

tk∑
t=1

am∑
a=1

θtsa = 0,∀s

Model M7
S∑

s=1
φs = 0;

tk∑
t=1

θt = 0;
am∑
a=1

θa = 0;
tk∑
t=1

am∑
a=1

θtsa = 0,∀s

Model M8
S∑

s=1
φs = 0;

tk∑
t=1

θt = 0;
am∑
a=1

θa = 0;
tk∑
t=1

θst = 0,∀s;
am∑
a=1

θsa = 0,∀s;
tk∑
t=1

am∑
a=1

θtsa = 0,∀s

Model M9
S∑

s=1
φs = 0;

tk∑
t=1

am∑
a=1

θta = 0;
tk∑
t=1

am∑
a=1

θtsa = 0,∀s

Posterior patterns

The main and different interaction effects can be computed from the estimated rates as follows
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γ∗ =
1

TSA

T∑
t=1

S∑
s=1

A∑
a=1

log(r̂tsa), φ∗s =
1

TA

T∑
t=1

A∑
a=1

log(r̂tsa)− γ∗,

f∗t =
1

SA

S∑
s=1

A∑
a=1

log(r̂tsa)− γ∗, f∗a =
1

TS

T∑
t=1

S∑
s=1

log(r̂tsa)− γ∗,

f∗sa =
1

T

T∑
t=1

log(r̂tsa)− φ∗s − f∗a − γ∗, f∗ts =
1

A

A∑
a=1

log(r̂tsa)− φ∗s − f∗t − γ∗

f∗ta =
1

S

S∑
s=1

log(r̂tsa)− f∗t − f∗a − γ∗,

f∗tsa = log(r̂tsa)− φ∗s − f∗t − f∗a − f∗sa − f∗ts − f∗ta − γ∗,

where γ∗ is the log of the overall rate in the whole country, time period and age groups, φ∗s, f
∗
t ,

f∗a are the global spatial, temporal, and age effects, respectively; f∗sa, f
∗
ta, and f∗tsa are space-age,

time-age and space-time-age interactions. The terms f∗sa can be interpreted as spatial patterns
for age groups common to all years, the terms f∗ta are temporal trends for the different age
groups common to all areas, and finally, f∗tsa can be seen as temporal trends for the different
age groups specific for each area. This decomposition is very useful as it allows for comparing
different models term by term.

5 Illustration results

P-spline models are illustrated with female breast cancer mortality in Spain from 1985 to 2010.
In all models, 8 and 4 equidistant internal knots have been considered to construct the marginal
cubic B-spline bases for time, Bt, and age, Ba, respectively. Table 4 displays the values of the
different model selection criteria. To conserve space, only results for first order random walks
are displayed as second order random walks did not lead to an improvement. Models based
on two dimensional P-splines (M5 to M9) have been fitted using both fixed relative scale and
scale invariant penalties (see Table 3). According to all model selection criteria, Model 9-SI
is the best candidate. In addition, and following the suggestion of one reviewer, deviance and
Pearson residuals plots (not shown here to conserve space) have been inspected. Some of the
models (all models except models 6 and 9) exhibit a kind of linear tendency and large values
of the residuals indicating that they may not be appropriate. Residual plots for Model 9-SI do
not show any pattern and we do not observe too many large residuals. Models 9-FRS, 6-FRS,
and 6-SI also lead to residuals plots without any clear pattern. However, as the model selection
criteria points towards Model 9-SI, and scale invariant smooths are preferred, this is the model
we finally use to analyze the data. Fitting Model M9-SI takes 45 minutes in a twin superserver
with four processors Intel Xeon 6C and 96GB RAM using R (version 3.2.2) and the R package
INLA (version 0.0-1455098891, dated 2016-02-10).
Figure 3 displays exp(φ∗s), exp(f

∗
t ), and exp(f∗a ). 95% credible bands, made up of 95% pointwise

credible intervals, are also displayed for the mean posterior temporal pattern (exp(f∗t )) and mean
posterior age pattern (exp(f∗a )). The credible band for the age effect is very narrow. However,
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Table 4: Model selection criteria for the different models. Models based on two-dimensional
P-splines have been fitted using fixed relative scale and scale invariant penalties.

Model DICc WAIC LS

M1 68903.1 68918.2 2.410
M2 68779.0 68832.9 2.407
M3 68711.2 68753.7 2.404
M4 68568.9 68636.5 2.400
M5-FRS (Fixed relative scale) 67819.9 67839.0 2.372
M5-SI (Scale Invariant) 67818.6 67831.5 2.372
M6-FRS (Fixed relative scale) 69927.0 69801.4 2.447
M6-SI (Scale Invariant) 67678.9 67696.1 2.367
M7-FRS (Fixed relative scale) 67511.3 67535.4 2.361
M7-SI (Scale Invariant) 67459.1 67480.9 2.359
M8-FRS (Fixed relative scale) 67686.8 67708.5 2.368
M8-SI (Scale Invariant) 67677.6 67694.7 2.367
M9-FRS (Fixed relative scale) 67313.1 67333.8 2.354
M9-SI (Scale Invariant) 67280.2 67297.9 2.353
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Figure 3: Female breast cancer spatial effects exp(φ∗s) common to all years and age groups
(left), temporal effects exp(f∗t ) (with 95% credible bands) common to all provinces and age
groups(middle), and age pattern exp(f∗a ) (with 95% credible bands) common to all years and
provinces (right). Values greater than one contribute to increase final rates.

this is expected as we have 1,300 observations for each age group. The spatial pattern exp(φ∗s)
is common to all years and age groups and can be interpreted as the base rate associated to
a province. The temporal pattern exp(f∗t ) is common to all areas and age-groups and can be
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seen as a global temporal trend associated to both improvements in treatments (which generally
apply to all provinces and age groups), and common health policies in Spain. The age pattern
exp(f∗a ) is common to all provinces and years and can describe a general evolution of mortality
with age. As the small areas are defined by crossing the geographical units (provinces), the
time period (years), and the age groups, these terms are not small area-specific and can be seen
as a way to “borrow strength”. For example, the spatial effect (φ∗s) borrows information from
neighboring regions, years, and age-groups.

Area−age interaction

[0−40) [40−45) [45−50)

[50−55) [55−60) [60−65)

[65−70) [70−75) [75−80)

[80−85) [85,85+)

0.79

0.84

0.89

0.94

1.00

1.06

1.12

1.19

1.26

Figure 4: Area-age interaction effect in female breast cancer mortality (exp(f∗sa)).

The area-age, age-time, and time-age interaction can be also plotted. Figure 4 displays the
province-age interaction effect (exp(f∗sa)) common to all years revealing that the age-specific
contribution of each province to the total rate is different. For example, the Galician provinces
(North-West) contribute to increase the final rate in the age groups [0, 40), [40, 45), [45, 50),
[50, 55), [55, 60), [60, 65), but they contribute to decrease global rates in the oldest age groups.
It is also interesting to look at the time-age interaction effect (exp(f∗ta)) as it can be interpreted
as the temporal mortality trend specific for each age group and common to all areas. Figure 5
displays the time-age interaction effect revealing decreasing trends for females aged 65 or less,
and increasing trends for females aged 75 or more (credible bands are not shown for a better
inspection of the trends).
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Figure 5: Time-age interaction effect in female breast cancer mortality (exp(f∗ta)).

The complete view of the temporal evolution of female breast cancer mortality rates by age
group and province is displayed in Figure 6 for three provinces: Madrid, Navarra, and Huelva.
In addition, 95% credible bands are also displayed. Madrid is a highly populated province in the
center of the country and, as expected, credible bands for the final rates are narrower. Navarra
is located in the North of Spain, and Huelva in the South. They are both low populated areas
and consequently, 95% credible bands are wider. On one hand decreasing mortality trends are
detected for young age groups (left column in Figure 6) although the decrease in Huelva is not
as steep as in Navarra or Madrid. On the other hand, mortality trends for old age groups (right
column in Figure 6) are not decreasing. In particular, the mortality trend for the oldest age
group is increasing in the three provinces.
Finally, Figure 7 shows the evolution of the geographical pattern of breast cancer mortality rates
for one of the youngest age group ([45, 50)) and one of the oldest ([80, 85)) to see the differences.
In each figure, the cutoff value between orange and blue colors indicates the average rate of Spain
over the entire study period for that particular age group. Regions colored in red (from dark
to light) mean that the rates are between 1.75 and 2, 1.5 and 1.75, 1.25 and 1.5, and 1 and 1.2
times higher than the mean rate of Spain, respectively. Dark and light blue colors indicate that
the rates are 1.75-2, 1.5-1.75, 1.25-1.5 and 1-1.25 times lower than the mean rate of the whole
country. For the age-group [45,50), a clear reduction of mortality is observed from 1999-2000
onwards. This age-group is directly affected by the introduction of early detection programmes
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Figure 6: Temporal evolution of mortality rates and 95% credible bands by age group and
province for three selected provinces: Madrid, Navarra, and Huelva. Young groups are display
in the left column and older age groups are plotted in the right column.
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because since 1990, women aged between 40 and 69 were selected for mammography, and an
early diagnosis is generally translated into better prognosis. Nowadays these programmes have
already attained 100% coverage. This map reflects that the effects of a screening programme
are visible roughly in ten years-ahead. For the age group [80,85), the reduction of mortality is
not as clear as in the previous group. In fact, the geographical pattern does not change that
much with time, and the North-Mediterranean areas and the islands exhibit the highest rates.

6 Discussion

In the last few years, disease mapping research has evolved from spatial to spatio-temporal
modelling due to the availability of high quality registers. Much of the research has been
conducted within a fully Bayes approach, leading to a general acceptance of Bayesian methods
in public health institutes.
It has been common practice in disease mapping to assume that age groups are similarly affected
by a disease, but interactions can occur, and age-space-time models should be considered. Age-
space-time specific rates can be highly variable and sophisticated statistical models are required
to smooth rates and reduce variability. In this paper, the goal is to combine both P-splines for
age and time, and CAR priors for space. CAR spatial random effects produce local smoothing.
This approach may be very convenient in Spain where some policies related to health care and
treatments are within the competence of the Autonomous Regions, and then, inequalities in
health among the different provinces are likely to exist. That is the main reason why we have
considered a CAR prior for the spatial random effect. In addition, Ugarte et al.,25 show that
a model with a CAR prior for the spatial effect outperforms the model with a two-dimensional
P-spline to deal with spatial heterogeneity. Here, age-time interactions are modeled using two-
dimensional P-splines. As far as we we know, this proposal is new in disease mapping, yet it is
common in life table smoothing.42 The final model allows the estimation of mortality temporal
trends by age groups and provinces, providing valuable information to public health institutes,
health researchers, and policy makers in terms of gaining knowledge about the disease, allocating
funds judiciously, and evaluating screening and prevention programmes. The INLA approach
has been followed for model fitting and inference speeding up computations (in comparison to
McMC) and providing the full posterior distribution of the quantities of interest (the age specific
space-time rates in our case). For readers interested in other fitting alternatives, Currie et al.,43

develop an algorithm to fit tensor product models very efficiently by exploiting the grid structure
of the data and provide the R code. In addition the R package mgcv44 can fit models with similar
structure to the ones used here, albeit with different spatial penalties.
The analysis of breast cancer mortality in Spain reveals a decline in breast cancer mortality,
particularly for age groups under 70 years, although the decline is not the same in all provinces.
The decrease is not very clear for the oldest age groups. This is an important point because
the fitted model is flexible enough to capture different time trends according to the age groups.
The differences may be due to screening programs and/or improved treatments which increase
survival and reduce mortality in young age groups. The results are consistent with other studies
analysing the role of the screening programmes and improvements in treatment in European
countries such as France, Italy, Norway, Slovakia, Slovenia, Switzerland, Czech Republic, Den-
mark, or Estonia.21 In these countries a significant decline in breast cancer mortality was found
in the majority of the age-groups except in women older than 65 years. An analysis of age-
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Figure 7: Age-specific breast cancer mortality patterns in Spain (1985-2010) for the age groups
[45− 50) (top), and [80− 85)‘(bottom).

related breast cancer mortality rates for the United States and England-Wales45 reports similar
results concluding that mortality trends for middle-aged women have been declining since the
1990s, whereas mortality rates for women older than 80 are expected to increase or stabilize.
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Our results agree with Holford et al.46 and Clèries et al.,47 where the decrease in mortality rates
in older women is not observed or it is observed later than in youngest age-groups regardless of
screening programes or advances in treatment. This suggests less efficient treatment schemes in
the oldest age groups48.
To sum up, the models presented in this work are very flexible and convenient when different
temporal mortality trends by age groups and regions are likely to occur. The models can be
implemented in R-INLA, but caution is recommended to deal with identifiability constraints. It
is also important to highlight that when variables are measured in different scales, scale invariant
penalties leading to scale invariant smooths are preferred28. The methodology is very useful to
gain a general perspective about the evolution of mortality, and therefore a better evaluation of
prevention programmes implemented in each region.

Acknowledgements

This work has been supported by the Spanish Ministry of Economy and Competitiveness (project
MTM2014-51992-R), and by the Health Department of the Navarre Government (Project 113,
Res.2186/2014). We would like to thank the National Epidemiology Center (area of Environ-
mental Epidemiology and Cancer) for providing the data, originally created by the Spanish
Statistical Office.

References
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Appendix: R-INLA code

The R code to fit the scale invariant model M9 described in Section 3 with INLA is detailed below.
First, the data with the number of deaths (observed), the population at risk (population),
time period, geographical area, and age-group are uploaded. Note that data must be ordered
according to the Kronecker product defined for models M1-M9.

> library(INLA)

> library(splines)

>

> Data <- read.table("...")

>

> T <- "number of time periods"

> S <- "number of geographical areas"

> A <- "number of age-groups"

Then, the marginal B-spline bases for time and age (Bt and Ba respectively) are constructed.
When analyzing breast cancer mortality data in Section 5, cubic B-spline bases with 8 equidistant
internal knots for the time covariate and 4 equidistant internal knots for the age covariate have
been considered.

> p <- 3 ## Cubic B-splines

> q.time <- 7 ## Number of internal intervals for time (knots-1)

> q.age <- 3 ## Number of internal intervals for age (knots-1)

>

> ## Marginal basis for time-periods ##

> xt <- "time covariate"

> xt <- (xt-min(xt))/(max(xt)-min(xt)) ## Scale time to lie in [0,1]

>

> dis.t <- (max(xt)-min(xt))/q.time

> xl.t <- min(xt)-dis.t*0.05

> xr.t <- max(xt)+dis.t*0.05

> dx.t <- (xr.t-xl.t)/q.time

> knots.t <- seq(xl.t-p*dx.t, xr.t+p*dx.t, by=dx.t)

>

> Bt <- spline.des(knots.t,xt,p+1)$design ## B-spline basis for time

> kt <- ncol(Bt)

>

> ## Marginal basis for age-groups ##

> xa <- "age covariate"

> xa <- (xa-min(xa))/(max(xa)-min(xa)) ## Scale age to lie in [0,1]

>

> dis.a <- (max(xa)-min(xa))/q.age

> xl.a <- min(xa)-dis.a*0.05

> xr.a <- max(xa)+dis.a*0.05

> dx.a <- (xr.a-xl.a)/q.age

> knots.a <- seq(xl.a-p*dx.a, xr.a+p*dx.a, by=dx.a)

>

> Ba <- spline.des(knots.a,xa,p+1)$design ## B-spline basis for age

> ka <- ncol(Ba)

The structure matrices for the main random effects must be also defined. The LCAR prior for
the spatial random effect φs = (φ1, . . . , φS)

′
can be implemented in INLA using the "generic1"

model.31
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> g <- inla.read.graph("spatial_nb.inla")

>

> Qs <- matrix(0, g$n, g$n)

> for (i in 1:g$n){

> Qs[i,i]=g$nnbs[[i]]

> Qs[i,g$nbs[[i]]]=-1

> }

> Q.Leroux <- diag(S)-Qs

where "spatial nb.inla" is the inla.graph object containing the neighboring structure of the
geographical areas (S = 50 provinces in the illustration). First order random walk priors have

been considered for the coefficients of the B-spline bases for time θt = (θ1, . . . , θtk)
′

and age

θa = (θa, . . . , θam)
′

covariates.

> Dt <- diff(diag(kt),differences=1)

> Pt <- t(Dt)%*%Dt

>

> Da <- diff(diag(ka),differences=1)

> Pa <- t(Da)%*%Da

Next, the hyperprior distributions described in Section 4 are implemented.

> sdunif="expression:

> logdens=-log_precision/2;

> return(logdens)"

>

> lunif = "expression:

> a = 1;

> b = 1;

> beta = exp(theta)/(1+exp(theta));

> logdens = lgamma(a+b)-lgamma(a)-lgamma(b)+

> (a-1)*log(beta)+(b-1)*log(1-beta);

> log_jacobian = log(beta*(1-beta));

> return(logdens+log_jacobian)"

Model M9 can be expressed in matrix form as

log r ' (1T ⊗ 1S ⊗ 1A)γ + (1T ⊗ IS ⊗ 1A)φs + (Bt ⊗ 1S ⊗Ba)θta + (Bt ⊗ IS ⊗Ba)θtsa,

and the design matrices of the random effects are defined.

> ones.T <- matrix(1,T,1)

> ones.S <- matrix(1,S,1)

> ones.A <- matrix(1,A,1)

>

> Xs <- kronecker(ones.T,kronecker(diag(S),ones.A))

> Xta <- kronecker(Bt,kronecker(ones.S,Ba))

> Xtsa <- kronecker(Bt,kronecker(diag(S),Ba))

Finally, the formula object is defined to be used with a call to the inla() function

## List containing the variables in the model ##

> Data.inla <- list(O=observed, E=population,

> Intercept=c(1,rep(NA,S+kt*ka+kt*S*ka)),

> ID.area=c(NA,1:S,rep(NA,kt*ka+kt*S*ka)),

> ID.year.age=c(rep(NA,1+S),1:(kt*ka),rep(NA,kt*S*ka)),

> ID.year.area.age=c(rep(NA,1+S+kt*ka),1:(kt*S*ka)))
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>

> ## Penalty matrices ##

> R1 <- list(inla.as.sparse(kronecker(Pt,diag(ka))),

> inla.as.sparse(kronecker(diag(kt),Pa)))

>

> R2 <- list(inla.as.sparse(kronecker(Pt,kronecker(diag(S),diag(ka)))),

> inla.as.sparse(kronecker(diag(kt),kronecker(diag(S),Pa))))

>

> ## Sum-to-zero constraints ##

> A.constr <- kronecker(matrix(1,1,kt),kronecker(diag(S),matrix(1,1,ka)))

>

> ## Model formula ##

> M9.SI<- O ~ -1 + Intercept +

> f(ID.area, model="generic1", Cmatrix=Q.Leroux, constr=TRUE,

> hyper=list(prec=list(prior=sdunif),beta=list(prior=lunif))) +

> f(ID.year.age, model="generic3", Cmatrix=R1, constr=TRUE,

> hyper=list(prec1=list(prior=sdunif),prec2=list(prior=sdunif)))+

> f(ID.year.area.age, model="generic3", Cmatrix=R2, constr=TRUE,

> hyper=list(prec1=list(prior=sdunif),prec2=list(prior=sdunif)),

> extraconstr=list(A=A.constr, e=rep(0,S)))

>

> ## Call to the inla() function ##

> inla(M9.SI, family="poisson", data=Data.inla, E=E,

> control.predictor=list(compute=T, A=cBind(rep(1,T*S*A),Xs,Xta,Xtsa)),

> control.compute=list(dic=TRUE, cpo=TRUE, waic=TRUE),

> control.inla=list(strategy="simplified.laplace"))

where R1 and R2 define the scale invariant penalty matrices for the time-age two-dimensional P-
spline coefficients θta and θtsa respectively (see the expressions of Pta and Ptsa in Table 2). The
sum-to-zero constraints that make the model identifiable (see Table 3) are specified through the
constr=TRUE and extraconstr arguments. In model M9, the constraints over the coefficients
θtsa are expressed as

tk∑
t=1

am∑
a=1

θtsa = 0, for s = 1, . . . , S ⇐⇒ (1
′
tk
⊗ IS ⊗ 1

′
am)θtsa = 0,

and are passed through the extraconstr argument.
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