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ABSTRACT (100-150 mots) 12 

Odour taste association has been successfully applied to enhance taste perception in foods with 13 

low sugar or low salt content. Using gas chromatography/olfactometry-associated taste (GC/O-14 

AT), 68 odorant zones have been described with 41 odour descriptors and 4 taste associated 15 

descriptors (sweet, salty, bitter, sour). The relationships between odour and taste descriptors 16 

were analysed using multivariate analyses. A partial least square analysis allowed to visualise 17 

the odours associated with a specific taste, for example fruity, sweet, strawberry, candy, floral 18 

and orange with sweetness. A network representation using Cytoscape allowed visualising the 19 

links between odour and taste descriptors for example the positive association of butter with 20 

both saltiness and sweetness.  Multidimensional scalling projection allowed allocating the 21 

odorant zones to their odour and taste descriptors. Our approach provided a visualisation tool 22 

of the links between odour and taste description and could be used to select odour-active 23 

molecules with a potential taste enhancement effect. 24 

25 

KEYWORDS : odour-taste association, multivariate analysis, sweetness, odorant compound 26 

27 

INTRODUCTION 28 

Considering the rising rate of pathologies such as diabete, obesity, which are related to 29 

unbalanced diets with an excess of consumption of sugar, salt and fat, there is an urgent need 30 

to decrease the content of these ingredients in food while maintaining their sensory acceptability 31 

by consumers. In the present paper, we will focus on sugar reduction. Concerning sugar, a high 32 

consumption of foods rich in free sugar increases the risk of tooth decay.  High intake of sugar-33 

sweetened beverages is highly linked with an unhealthy diet, weight gain and increased risk of 34 

noncommunicable  diseases. The food industry has to integrate these nutritional criteria in the 35 

formulation of food products. Different strategies have been used for sugar reduction in foods 36 
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as reviewed (1, 2). Simple sugars, such as fructose or sucrose, could be replaced by new 37 

molecules, which confer a sweet taste to the product without the added calories, such as 38 

intensive sweeteners (i.e.: acesulfame k, aspartame, neotame, cyclamate, saccharin, sucralose, 39 

thaumatin, steviol, monogroside, brazzein and monatin). However, such molecules with an 40 

intense sweetness are used in very small amount resulting in losses of volume and modification 41 

of the final texture. Alternatively, a part of simple sugars can be replaced by soluble fibres or 42 

carbohydrates, such as polyols (i.e.: sorbitol, mannitol, isomalt maltitol, lactitol, xylitol, and 43 

erythritol) or fructo-oligosaccharides (i.e.: nystose, kestose and fructosylkestose), in order to 44 

use as bulking agent and restore the texture. These two strategies are often combined because 45 

excessive consumption of polyols and fructo-oligosaccharides may cause gastrointestinal 46 

symptoms, such as gas or laxative effects, then maximum levels are regularized and also to 47 

achieve a more pleasant taste. Other strategies are based on modifications of food texture and 48 

structure, which impact on the dynamic of sugar release in the mouth and as a consequence on 49 

taste perception  (3), but the effect on sweetness perception was dependant on both the nature 50 

of the texturing agent and of the taste compound (4). By varying the gel hardness using a 51 

mixture of agar and gelatin, it was observed that the fracture properties of the gels affected the 52 

surface area of the fragments formed during chewing and thus the rate of sugar release (5), soft 53 

gels were perceived sweeter than medium gels, due to the formation of a large number of 54 

fragments during chewing, which facilitated the release of sweet molecules and the stimulation 55 

of the taste receptors. Moreover, in 20% sugar-reduced gelled products, a heterogeneous 56 

distribution a sugar was able to enhance sweetness intensity and thus maintain consumer 57 

acceptability (6). By combining these two strategies, it was observed that hard gels were 58 

perceived sweeter when sugar distribution was heterogeneous due to a long-lasting in-mouth 59 

sucrose concentration, the hard matrix being able to maintain the taste contrast due to different 60 

sucrose concentrations, for a longer time in the mouth during chewing (7). The authors 61 
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concluded that the fracture properties of food can be modulated to enhance sweetness 62 

perception, in association with heterogeneous distribution (5). Another innovative strategy is 63 

the use of aroma-taste interactions and multimodal integration, based on the fact that an odour 64 

may evoke a taste (8, 9) but are not able to activate taste receptors and the metabolisms that 65 

entails.  This strategy has been used with success to develop low-salt food while maintaining 66 

saltiness and consumer acceptability (10), to enhance fat perception in real foods varying in 67 

structure-texture properties (11) and to enhance sweet perception in sugar-reduced fruit juices 68 

(12). Using such an approach needs an adequate selection of odours. As food odours can evoke 69 

a specific taste through mental imagery, it has been possible to select promising odours for 70 

saltiness enhancement based on the expectation taste profiles of food products being evoked by 71 

their names (13). In different volatile compounds databases, such as Flavor-Base (14) or 72 

Volatile Compounds in Foods (15), the word “sweet” is often used as odorant descriptor. 73 

Considering this observation that some odours are described with a “smelled taste”, Stevenson 74 

et al (16) calculated the correlation between odour sweetness and taste sweetness for 10 odorant 75 

molecules and found that the degree to which an odour smelled sweet was a good predictor for 76 

taste tasting. This association was also used to select odorants able to enhance sweetness in fruit 77 

juices, using gas chromatography/olfactometry-associated taste (GC/O-AT) (12), showing that 78 

odorants described with a “smelled sweet taste” were able to enhance the perceived sweetness 79 

odour of a fruit juice. Moreover, other odorants not described with a “smelled sweet taste” were 80 

also found to be good candidates for sweetness enhancement. In the aim to look for volatile 81 

compounds able to enhance some specific taste, we tried to find links between taste descriptors 82 

and odour descriptors, starting from the whole set of data previously obtained using gas 83 

chromatography/olfactometry-associated taste (GC/O-AT) (12). The aim of the present work 84 

was to perform different multivariate analyses to search for the links between odorant 85 

descriptors and taste associated descriptors, starting from a total of 68 odorant zones (identified 86 
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and non-identified), which have been described first with odorant descriptors and second with 87 

taste associated descriptors (sweetness, sourness, saltiness, bitterness). These links could then 88 

be used for a first selection of molecules susceptible to enhance taste perception. 89 

 90 

MATERIALS AND METHODS 91 

Sample preparation 92 

We used the raw data previously obtained after the extraction of volatile compounds from a 93 

commercial multi-fruit juice provided by Eckes Granini (France), following the vacuum 94 

distillation procedure and dichloromethane extraction described by Barba et al. (17). The extract 95 

was then concentrated with a Kuderna-Danish apparatus to a final volume of approximately 96 

200 μL and 1 μL (splitless mode for 0.5 min) submitted to gas-chromatography/mass-97 

spectrometry (GC/MS) for compounds identification and to GC/O-AT for odour description 98 

(12) using the same column (30m x 0.32 mm i.d. fused silica capillary column coated with a 99 

0.5 µm layer of polyethylene glycol, DB-Wax, Agilent, Agilent Technologies, Santa Clara, 100 

CA). GC/O-AT was done with 12 panellists used to GC/O experiments. In a first run (first 101 

injection of the extract), panellists were asked to indicate the detection of an odour using a 102 

buzzer and to give an odorant descriptor. In a second run (second injection of the same extract), 103 

panellists were asked to attribute for each odour, one of the four associated taste descriptors: 104 

sweet, salty, sour or bitter. Detection times, odour descriptors and taste associated descriptors 105 

were recorded using AcquiSniff software (Saint Genès Champanelle, France). The detection 106 

frequency (DF) was calculated for both odour descriptors and taste associated descriptors (18). 107 

Only the odorant zones with a DF higher than 30% were selected, to limit the false detection 108 

risk. For each selected odorant zone, we took into account all the odour descriptors given by 109 

the 12 panellists. For taste associated descriptors, we also calculated the DF for each specific 110 

taste: sweetness (%), sourness (%), saltiness (%), bitterness (%).  111 
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 112 

Data preparations 113 

From the whole set of data, we selected 68 odorant zones, with the name of the corresponding 114 

identified compound if known or mention that this compound is unknown (uki). We identified 115 

70 odorant descriptor, of which 7 are present only in the description of one odorant zone and 116 

are not retained for the analyse. We validated a list of 63 odorant descriptors and 4 taste 117 

associated descriptors. In a second step, odour descriptors only present in 1 or 2 odorant zones 118 

were deleted. The multivariate analyses were done with 45 variables, the 41 remaining odorant 119 

descriptors and the 4 associated taste descriptors. A co-occurrence matrix was built with, for 120 

the 68 odorant zones, the number of occurrences of the 41 odorant descriptors and the DF for 121 

the 4 associated tastes. Additionally, we also use a binary version of this matrix: 1 when the 122 

odour descriptor or the taste associated descriptors appears in the odour description, 0 123 

otherwise.  124 

 125 

Computational analysis and statistical methods 126 

Multivariate statistical analyses were performed using XLStat (Addinsoft). A Partial Least 127 

Square (PLS) analysis was done, on the 68 odorant zones, to explain the taste association 128 

descriptors (Y variables: DF for each associated taste) by the odorant descriptors (X block: 129 

number of occurrence of the 63 odorant descriptors).  130 

 131 

The multidimensional scaling (MDS) approach allows the visualisation of the similarity 132 

between elements of a dataset by disposing them in an N‐dimensional space. MDS is one of the 133 

methods that allow dimensionality reduction and producing meaningful representations of high‐134 

dimensional data into a lower‐dimensional space (usually two or three dimensions space). 135 
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In the present study, we used the Euclidian distance to obtain a similarity matrix between 68 136 

odorant zones on the basis of the frequency of 63 odorant descriptors. Then the MDS was 137 

achieved on the matrix to derive Euclidian coordinates and distances. We used the coordinates 138 

of the first three dimensions to display the odorant zones in a three‐dimensional scatterplot. The 139 

3D graphical visualisation was obtained using Miner3D (version 7). 140 

 141 

Network visualisation 142 

We aimed to explore the associations between odour descriptors and taste descriptors using a 143 

network of odorant and taste descriptors. For that purpose, we first calculated the co‐occurrence 144 

matrix of the odorant and taste descriptors using the binary matrix of 68 odorant zones and 67 145 

descriptors (63 odorant and 4 associated tastes). The co‐occurrence matrix is a square 67x67 146 

matrix in which the off‐diagonal terms are the number of the odorant-taste pairs in the 147 

description of an odorant zone, while the diagonal terms are the number of all occurrences of 148 

each odorant and taste descriptors. 149 

The calculations of MDS and co-occurrence matrix were conducted using R version 3.0.1 (19). 150 

The odorant and taste descriptors were considered to be variables in the context of odorant 151 

zones.  152 

Cytoscape (20) was used to build a network of the links between odour descriptors and taste 153 

associated descriptors. This required the square matrix to be transformed into a twoway data 154 

table, which was performed via Statistica (TIBCO Software Inc. 2017). 155 

 156 

RESULTS AND DISCUSSION 157 

The 68 selected odorant zones with DF odour values higher than 30% are listed in Table 1 with 158 

the name of the corresponding volatile compounds, if identified, or the number of the unknown 159 

compound. For each odorant zone, all the odour descriptors given by the 12 panellists are listed 160 
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with the number of occurrence when higher than the unity. We have deleted from the list the 161 

descriptor “unknown”, which was given by panellist who was not able to describe the odour. 162 

This list of descriptor was used to build the Euclidian matrix. For each odorant zone, 2 values 163 

are given for DF, the detection frequency for the odour (DF odour %) which is the percentage 164 

of panellists having smelled the odour during the first run of GO/O and the detection frequency 165 

for the associated taste descriptor (DF taste %) during the second GC/O-AT run. We then 166 

calculated the DF for each of the four taste attributes, sweetness (%), sourness (%), saltiness 167 

(%), bitterness (%), these values are used for the statistical analyses. The value is in bold for 168 

the main associated taste. A total number of 33 odorant zones are more associated with 169 

sweetness (13 with a value higher than 40%), 16 odorant zones are more associated with 170 

sourness (5 with a value higher than 40%), 10 odorant zones are more associated with saltiness 171 

(3 with a value higher than 40%) and 21 odorant zones are more associated with bitterness (3 172 

with a value higher than 40%). 173 

 174 

Explanation of taste association by odour descriptors using PLS.  175 

The PLS was done on the 68 odorant zones, using the occurrences of each of the 41 odour 176 

descriptors as X variables and the DF for each associated taste as Y variables. We verified that 177 

the representation of the remaining 41 variables is the same as on the PLS realised with the 63 178 

odour descriptors (supplementary files). Figure 1 shows the projection of the variables on the 179 

two main components. The 4 associated tastes are well discriminated in the first plan, the 180 

sweetness on the positive part of component 1, bitterness on the negative part of component 1, 181 

sourness on the positive part of component 2 and saltiness on the negative part of component 182 

2. The odour descriptors fruity, sweet, strawberry, candy, floral, orange are positively correlated 183 

with component 1 and thus contribute to sweetness perception. The odour descriptors sour, 184 

unpleasant, cheese, acid are positively correlated with component 2 and thus contribute to 185 
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sourness. The odour descriptors hot plastic, plastic, spicy are negatively correlated with 186 

component 1 and thus contribute to bitterness. The odour descriptors toasted, potatoe, 187 

mushroom, sulphur are negatively correlated with component 2 and thus contribute to saltiness. 188 

A model has been built to predict the taste association by a linear combination of the odour 189 

descriptors. Table 2 presents the coefficients affected to each odour descriptor to explain one 190 

taste descriptor. The odour descriptors are ranked according to the decreasing number of their 191 

total occurrences. The odours with the highest impact on sweetness are strawberry, red fruits, 192 

sweet, citrus, leather, butter, orange, foot, chemical, candy, fruity, floral and those with the 193 

highest negative impact are sour, sulphur, hot plastic, land, plastic, wood, metallic, toasted, 194 

potatoe, smoky. The odours with the highest impact on sourness are sour, sweaty, hot plastic, 195 

metallic, lemon, land, solvent and those with the highest negative impact are peanut, strawberry, 196 

toasted, leather, foot, chemical, butter. The odours with the highest impact on saltiness are 197 

sulphur, potatoe, toasted, smoky, land, butter, mushroom and those with the highest negative 198 

impact are citrus, animal, peanut, strawberry, dust, metallic, grass, vegetal, unpleasant, plastic, 199 

red fruits, foot, sweet, chemical. The odours with the highest impact on bitterness are animal, 200 

metallic, peanut, plastic, wood, grass, hot plastic, vegetal, dust and those with the highest 201 

negative impact are butter, strawberry, orange, cake, acid, red fruits, leather, lemon.  202 

It can be noticed that most of the odours positively associated with sweetness are negatively 203 

associated with saltiness, except butter, spicy and leather which are positively associated to 204 

both sweetness and saltiness.  205 

Looking at the odorant zones (Figure 2), the compounds with a high positive correlation with 206 

component 1 are the most associated with sweetness, ethyl2-methylbutanoate (E2MB) is 207 

described with fruity, apple, strawberry, candy and sweet odour descriptors (Table 1), methyl- 208 

2-methylbutanoate (M2MB) is  described with fruity and sweet notes, linalool is described with 209 

floral, fruity, sweet and candy notes, (E)-β-ocimene (β-Oci) is described with fruity, floral, 210 
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strawberry notes, phenylmethanol (PhM) is described with floral, fruity, sweet, candy notes, β-211 

damascenone (β-Dam) is described with fruity, floral and sweet notes, γ-decalactone (γ-Dec) is 212 

described with floral, fruity and sweet notes, ethyl butanoate (EB) is described with fruity, floral 213 

and sweet notes. The compounds the most associated with sourness (positive correlation with 214 

component 2) are pentanoic acid (PA), described as acid, sharp, cheese, unpleasant, allo-215 

ocimene (allo-O), described as green, metallic, sour, hexanal (HEXA) described as green, herb, 216 

floral. The compounds the most associated with bitterness (negative correlation with 217 

component 1) are tricosane, described as plastic, petrol, isobutylalcohol (IBA), described as 218 

plastic, hot plastic, spicy, wood. The compounds the most associated with saltiness (negative 219 

correlation with component 2) are furfural, described as potatoe, toasted, sulphur, 2-hexen-1-ol 220 

(2Hexe), described as mushroom, toasted, sulphur, 1-octen-3-one (1o3o), described as 221 

mushroom and n-butanol (Buta), described as toasted, peanut. 222 

 223 

Visualisation of the links between odour descriptors and associated tastes 224 

In order to better understand the associations between odour descriptors and tastes, we build a 225 

network characterized in terms of nodes and edges or links, following the approach used for 226 

odour notes (21). In our case, the nodes are odour and taste descriptors and the edges are the 227 

odorant zones.  We used a total of 45 descriptors (41 odorant descriptors and 4 taste descriptors). 228 

We obtained a list of 2025 pairs of descriptors by stacking the 45x45 co-occurrence matrix. 229 

After excluding the diagonal elements and the pairs zero values link, it remained 1098 pairs. 230 

We considered only the pairs between odour and taste descriptors, and after removing the 231 

entries below the main diagonal (for any X and Y odor notes, the pairs XY and YX are 232 

equivalent), the network displayed 143 odour-taste pairs. 233 

Figure 3 represents the links between the odour and the tastes descriptors. This representation 234 

allows a rapid visualisation of the odour taste associations. 235 
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Many odour descriptors are linked to all tastes, but some are only linked to one, two or three 236 

tastes, as can be seen in Figure 3 by the lines between odour descriptors and tastes. Plain lines 237 

are used for more than 4 occurrences, different types of discrete lines are used for 1, 2, 3 or 4 238 

occurrences as indicated in the legend. The size of each odour descriptor depends on the number 239 

of odorant zones in which they are present. The fill colour of each odour descriptor is that of 240 

the main associated taste and the border colour is that of the second associated taste. In case the 241 

odour is equally associated with every taste, the colour is grey.    242 

One odour descriptor in only linked to one taste, strawberry, which is only linked to sweetness. 243 

This explains its high positive value in the regression to sweetness perception.  244 

Three odour descriptors are only linked to two tastes, they are orange, candy and red fruits 245 

linked mainly to sweetness and then to sourness.  246 

The descriptors linked to three tastes can be discriminated by the taste to which they are not 247 

linked to. Caramel is not linked to bitterness. Butter, mushroom and peanut are not linked to 248 

sourness. Hot plastic, potatoe and sour are not linked to sweetness. Grass, citrus, lemon, metallic 249 

and dust are not linked to saltiness.  250 

The other odour descriptors are linked to all the tastes. Fruity and floral are the most cited 251 

descriptors with respectively 79 and 70 total number of occurrence and present in respectively 252 

35 and 37 odorant zones. They are mainly linked to sweetness, then to the three other tastes 253 

without any distinction. Cake and rose are mainly associated to sweetness but with only few 254 

occurrences. Among the other odour descriptors mainly associated to sweetness, the second 255 

associated taste is sourness for sweet and solvent, bitterness for vegetal, chemical and foot and 256 

saltiness for leather. Only sweaty is first associated to sourness. Green, plastic, herb, wood and 257 

animal are first associated to bitterness, the second associated taste is saltiness for wood, 258 

sourness for animal and both sourness and sweetness for green and herb. Toasted, cheese, 259 

sulphur, smoky and land are first associated to saltiness and toasted, sulphur and land are also 260 
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associated to bitterness. Unpleasant, sharp, spicy and acid do not present any specificity towards 261 

a specific taste.  262 

 263 

Allocation of odorant zones according to their odour descriptors and associated taste 264 

A MDS realised on the dissimilarity matrix obtained using the Euclidian distance allowed to 265 

determine the level of similarity of odorant zones based on their odour descriptors. The 266 

distances and coordinates calculation was performed using the frequency of odour descriptors; 267 

nevertheless, the data used for graph depictions involves also the taste descriptors and the DF 268 

for each of the four taste descriptors. 269 

Figure 4 and 5 present the projection of the MDS 3D space of odorant zones. We decided to 270 

focus only on the links between the different taste attributes and two odorant descriptors, fruity 271 

and floral which have the greater total number of occurrences. The shape of the plots depends 272 

on the associated taste, sphere for sweetness (4A, 4B), cone for sourness (4C, 4D), diamond for 273 

saltiness (5A, 5B) and star for bitterness (5C, 5D), their size depends on the percentage of taste 274 

DF. The fruity odours are represented by a colour gradient depending on their occurrence in the 275 

odorant zone (4A, 4C, 5A, 5D). They are more perceived in the odorant zones present on the 276 

negative part of axis 1. The floral odours are represented by a colour gradient depending on 277 

their occurrence in the odorant zone (4B, 4D, 5B, 5D), they are more perceived in the odorant 278 

zones present on the positive part of axis 3 and negative part of axis 2. The odorant zones with 279 

a high DF for sweetness (4A, 4B) are mainly located on negative part of V1, due to a greater 280 

number of occurrence for fruity and some on the positive part of axis 2, due to the presence of 281 

floral odours, but some are in the middle of the space due to links between sweetness and other 282 

odour descriptors as was highlighted by Cytoscape Network. The odorant zones with a high DF 283 

for sourness (4C, 4D) are located on the negative part of axis 3 and positive part of axis 1. They 284 

have low occurrences for both fruity and floral. However, some odorant zones perceived as 285 
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fruity or floral are also associated to sourness. On Figure 5, it can be noticed that the odorant 286 

zones with a high DF for saltiness and bitterness have low occurrence of fruity and floral odours.  287 

 288 

DISCUSSION AND CONCLUSION 289 

The different tools involved in this study allowed finding links between odour descriptors and 290 

taste descriptors. As the data used in this study are from an extraction of volatile compounds 291 

from a fruit juice, the odour descriptors cover a specific domain. However, we were able to find 292 

links with not only sweetness and sourness, which are the main taste descriptors in fruit juices, 293 

but also with saltiness and bitterness.  294 

A lot of the literature on odour-taste interactions relies on sweetness perception. A review by 295 

Valentin et al (22) presents the different studies reporting an effect of odour on sweet 296 

perception. The most studied aroma is strawberry which has been reported to enhance sweetness 297 

perception for example in model systems (23, 24), in whip cream (25) and in fruit juice (12). 298 

Our results show that the strawberry descriptor is only associated with sweetness and has a high 299 

positive value in the regression to sweetness perception. This can be explained by associative 300 

learning (16), due to simultaneous exposition of strawberry odour and sweet taste in a great 301 

variety of food products such as jams, jellies, marmalades, yogurts, ice creams or candies. Other 302 

odour descriptors are mainly associated with sweetness, such as caramel, which was already 303 

found to increase sweetness perception in model solutions (16) or ciders (26). Fruit odours, 304 

such as orange, redfruits and lemon are potential candidates for sweetness enhancement. They 305 

have a high positive value in the regression to sweetness perception and a negative value for 306 

saltiness and bitterness. A sweetness enhancement has been observed for orange and raspberry 307 

(27). The odour descriptor sweet is, as expected, associated with sweetness but also with 308 

sourness, which can be explained by the fact that fruit products are often perceived sweet and 309 

sour.  310 
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Concerning lemon odour, Schifferstein and Verlegh (24) observed that the sweetness enhancing 311 

effect was lower than with strawberry odour. Our results show that lemon odour was mainly 312 

associated with sweetness but also with sourness. In water solution, a significant enhancement 313 

of both sweetness and sourness was observed by addition of lemon flavour (28), whereas in 314 

acidic solutions, other authors did not found any effect of the addition of lemon odour on 315 

sourness perception (29). These different results are in agreement with other observations, that 316 

the effect of odour on sweetness/saltiness enhancement is higher at low to medium intensities 317 

of the tastes (26, 30, 31). It can be noticed that even if lemon and citrus are both associated with 318 

sweetness, with a positive contribution in the regression, lemon is secondly associated with 319 

sourness with a higher contribution to sourness and a negative contribution to bitterness in the 320 

regression, whereas citrus is secondly associated with bitterness, with a positive contribution to 321 

bitterness in the regression. These results can be explained by the fact that lemon extract are 322 

perceived as sour and sweet (32) and that some citrus fruit drinks such as grapefruit are 323 

perceived sweet and bitter (33). 324 

Only few odours have been mainly associated with sourness. As expected, the odour descriptor 325 

sour is mainly associated with sourness, but not with sweetness. Metallic is also associated with 326 

bitterness and sweaty also associated with sweetness. There is no information in the literature 327 

on the effect of addition of such odours on sourness perception.  328 

Even if the odorant zones were isolated from a fruit extract, which cannot be associated with 329 

saltiness itself, some odorant zones were described with odour descriptors mainly associated 330 

with saltiness, such as toasted, smoky, sulphur, cheese, potatoe, butter, leather and mushroom. 331 

This association was already mentioned for similar odours such as bacon, cheese or peanuts 332 

and were able to enhance saltiness intensity in water solution by orthonasal and retronasal 333 

perception (13). Another study on odour induced saltiness enhancement showed that at least 334 

15% salt reduction can be compensated by addition of either beef or chicken bouillon aroma 335 
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and that the odour descriptors mainly contributing to this enhancement were brothy, meaty and 336 

roasted (34). Soysauce odour was also able to induce salty taste in water solution with a very 337 

amount of sodium chloride, below the detection threshold (35). These observation confirm that 338 

the odour descriptors found in this study associated with saltiness could have an impact on 339 

saltiness enhancement. 340 

The positive association for butter with both sweetness and saltiness can be explained by the 341 

consumption of both fat-sweet and fat-salty foods and for spicy by the consumption of both 342 

spicy-sweet and spicy-salty foods. In fact, the addition of butter aroma was found to enhance 343 

fat perception in model cheeses with an additional small effect on saltiness enhancement (31).  344 

The links we observed between some odours (green, grass, vegetal) and bitterness have already 345 

been used to increase bitterness perception in a model olive oil by addition of cis-3-hexenol, a 346 

cut grass odorant compound (36). Considering our results, other odour descriptors could be 347 

good candidates for bitterness enhancement, such as plastic, wood, herb and animal. In the case 348 

of bitterness reduction in food products, such odours have to be discarded from the product. 349 

However the impact of odours on bitterness has not been the subject of many studies. In the 350 

aim to reduce bitterness in foods, our network representation can allow to select odours which 351 

have no link or only few links with bitterness and then test the effect of the corresponding 352 

odorant compounds.    353 

A focus was done on the present paper on two odour descriptors with the greatest number of 354 

occurrence in our odorant zones, due to the nature of the extract, from a multifruit juice. These 355 

two odours are mainly associated with sweetness on the network representation and then to the 356 

three other tastes. However the MDS projection allowed to differentiate the links between these 357 

two odours and the taste descriptors. Sweetness perception can be linked either with fruity or 358 

with floral. Both odours are negatively correlated with saltiness and bitterness, which means 359 
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that an addition of molecules perceived fruity and/or floral could decrease saltiness and/or 360 

bitterness.  361 

Our results also point out other negative associations. Orange, candy and red fruits are not 362 

linked with saltiness and bitterness, which explains their negative value in the regression for 363 

saltiness and bitterness. Some descriptors are not linked with one specific taste. Caramel is not 364 

linked to bitterness, which explains its negative impact on bitterness. Butter, mushroom and 365 

peanut are not linked to sourness and have all a negative impact on sourness. Hot plastic, potatoe 366 

and sour are not linked to sweetness and have all a high significant negative impact on 367 

sweetness. Grass, citrus, lemon, metallic and dust are not linked to saltiness and have all a high 368 

significant negative impact on saltiness, except lemon, which has a moderate negative impact 369 

on saltiness. These odours could be then tested for an eventual masking effect of undesirable 370 

tastes such as an excess of bitterness or sourness. 371 

 372 

In the present manuscript the descriptors have been generated from a multifruit juice extract, a 373 

generalisation of the approach to other extracts could increase the number of odour descriptors 374 

and their links with taste descriptors. The proposed approach is simple to handle and could be 375 

a good way for the selection of odorant molecules with an impact on taste perception. The links 376 

formalised between odour and taste descriptors could then be used to predict a potential odour-377 

induced taste enhancement in model system or real foods or even an eventual masking effect.  378 
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Table 1: Odorant zones detected by GC/O and GC/O-AT, with the list of odour descriptors, 477 
the detection frequency for odorants and for each associated taste. a: mode of identification, 478 
MS: comparison with mass spectra database and retention index, St: mass spectra and 479 
retention index verified with standard injected in the same condition, refer to Barba et al., (12, 480 
17), n.d. means not detected. 481 

 482 

Table 2: PLS regression to explain the taste descriptors by odour descriptors: for each odour 483 
descriptor the number of total occurrences and the number of odorants zones in which it has 484 
been described are given with the regression coefficients for each associated taste. 485 

 486 

Figure 1: PLS regression with 45 variables and 68 individuals, projection of the 4 taste 487 
descriptors (Y variables) and the 41 odour descriptors (X variables) on components 1 and 2. 488 

Figure 2: PLS regression with 45 variables and 68 individuals, projection of the 68 odorant 489 
zones (individuals) on components 1-2. 490 

Figure 3: Network representation of the links between odour descriptors (circle) and taste 491 
associated descriptors (octagon). The nature of the line varies as a function of the number of 492 
occurrences. The size of each odour descriptor depends on the number of odorant zones in 493 
which it is present. The file colour of the odour descriptors varies as a function of the number 494 
of occurrences with each taste: blue if the odour is mainly associated with sweetness, green 495 
for saltiness, violet for sourness, light brown for bitterness. The border colour is that of the 496 
second associated taste, it is grey if the odour is equally associated to the three other tastes 497 
and dark blue if the second associated taste is equally sourness and sweetness. 498 

Figure 4: Allocation of odorant zones according to their odour descriptors and associated 499 
taste: MDS representation in a 3D space. The colour represents the occurrence of fruity (A, C) 500 
floral (B, D), the shape of the plots represents the associated taste (sphere for sweetness, cone 501 
for sourness and the size depends on the percentage of taste detection frequency in the odorant 502 
zone. 503 

Figure 5: Allocation of odorant zones according to their odour descriptors and associated 504 
taste: MDS representation in a 3D space. The colour represents the occurrence of fruity (A, C) 505 
floral (B, D), the shape of the plots represents the associated taste (diamond for saltiness, star 506 
for bitterness and the size depends on the percentage of taste detection frequency in the 507 
odorant zone. 508 

 509 

Supplementary Figure 1: PLS regression with 67 variables and 68 individuals, projection of 510 
the 4 taste descriptors (Y variables) and the 63 odour descriptors (X variables) on components 511 
1 and 2. 512 

Supplementary Figure 2: PLS regression with 67 variables and 68 individuals, projection of 513 
the 68 odorant zones (individuals) on components 1-2. 514 

 515 




