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a b s t r a c t

Several methods have been proposed in the spatial statistics
literature to analyse big data sets in continuous domains. How-
ever, new methods for analysing high-dimensional areal data
are still scarce. Here, we propose a scalable Bayesian modelling
approach for smoothing mortality (or incidence) risks in high-
dimensional data, that is, when the number of small areas is
very large. The method is implemented in the R add-on package
bigDM and it is based on the idea of ‘‘divide and conquer‘‘.
Although this proposal could possibly be implemented using any
Bayesian fitting technique, we use INLA here (integrated nested
Laplace approximations) as it is now a well-known technique,
computationally efficient, and easy for practitioners to handle.
We analyse the proposal’s empirical performance in a compre-
hensive simulation study that considers two model-free settings.
Finally, the methodology is applied to analyse male colorectal
cancer mortality in Spanish municipalities showing its benefits
with regard to the standard approach in terms of goodness of fit
and computational time.
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1. Introduction

Statistical models are an essential tool to analyse the geographical or spatial distribution of
nvironmental and epidemiological data in small areas. Nowadays, one of the biggest challenges
n the field of spatial statistics is the development of new computationally efficient methods to
btain reliable estimates of the underlying geographical patterns for large data sets. Several modern
ethods have been proposed to analyse massive geostatistical (point-referenced) data, where

raditional estimation of Gaussian processes (GPs) becomes computationally prohibitive. Some of
hese approaches includes low-rank approximations to GPs such as fixed-rank kriging (Cressie
nd Johannesson, 2008), predictive processes (Banerjee et al., 2008), stochastic partial differential
quations (Lindgren et al., 2011), lattice kriging (Nychka et al., 2015), multi-resolution approxima-
ions (Katzfuss, 2017), and Vecchia approximations (Datta et al., 2016; Katzfuss and Guinness, 2021)
mong others, plus several parallel computation algorithmic approaches such as Gramacy and Apley
2015), Paciorek et al. (2015), Guhaniyogi and Banerjee (2018), Katzfuss and Hammerling (2017)
nd Lenzi et al. (2020). Sun et al. (2012) and Banerjee (2017) (and references therein) provide some
ackground and additional recent work on massively scalable spatial processes. However, there is
ot much research on the scalability of statistical models for areal (lattice) count data.
Disease mapping is the field of spatial epidemiology that studies the link between geographic lo-

ations and the occurrence of diseases, focusing on the estimation of the spatial and/or
patio-temporal distribution of disease incidence or mortality patterns (Lawson et al., 2016;
artínez-Beneito and Botella-Rocamora, 2019). In these studies the region of interest is divided

nto non-overlapping irregular areal units (administrative divisions such as states or local health
reas), where epidemiological data are presented as aggregated disease counts for each geographical
nit. The great variability inherent to classical risk estimation measures, such as standardized
ortality/incidence ratios or crude rates, makes it necessary to use statistical models to smooth

he spatial risk surface. Bayesian hierarchical models are typically used for this objective, where
patially structured random effects are included at the second level of the hierarchy.
Most research into spatial disease mapping is based on the conditional autoregressive (CAR)

rior distribution (Besag, 1974), where the spatial correlation between random effects is determined
y the neighbouring structure (represented as an undirected graph) of the areal units. Despite the
normous expansion of modern computers and the development of new software and estimation
echniques for fully Bayesian inference, dealing with high-dimensional spatial random effects is still
omputationally challenging.
As far as we know, there are very few papers in the disease mapping literature proposing com-

utationally efficient methods to analyse very large spatial data sets. Hughes and Haran (2013) give
parameterization of the areal spatial generalized linear mixed model that alleviates spatial con-

ounding when including covariates in the model (see for example Reich et al., 2006 and Hodges and
eich, 2010) while speading computation by greatly reducing the dimension of the spatial random
ffect. To achieve this dimension reduction, they suggest reparameterizing the model by selecting a
ixed number of eigenvectors of the Moran operator (those corresponding to the largest eigenvalues
o include patterns of positive spatial dependence, i.e., attraction, or those corresponding to the
mallest eigenvalues to include patterns of negative spatial dependence, i.e., repulsion). The model
s implemented in the R package ngspatial (Hughes and Cui, 2020). Bradley et al. (2018) introduce
computationally efficient Bayesian model for predicting high-dimensional dependent count data.

n particular, they propose a multivariate log-gamma distribution that leads to computationally
fficient sampling of full conditional distributions within a Gibbs sampler. Very recently, Datta et al.
2019) consider a new way of constructing precision matrices for count data models using a directed
cyclic graph representation derived from the original spatial neighbourhood structure of the areal
nits. Instead of modelling the precision matrix of the spatial random effect directly, they propose
o model its (sparse) Cholesky factor using autoregressive covariance models on a sequence of local
rees created from this directed acyclic graph. Although the model is order-dependent, as stated by
uthors of this paper, the joint density of the spatial random effect will be scalable for large data
ets.
In this paper, we propose a scalable Bayesian modelling approach for smoothing mortality (or

ncidence) risks for high-dimensional spatial disease mapping data, that is, when the number of
2
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small areas is very large. Our method is based on the well-known ‘‘divide and conquer’’ approach.
Instead of considering a global spatial random effect whose correlation structure is based on the
whole neighbourhood graph of the areal units, the spatial domain is divided into D subregions
o that local spatial models can be fitted simultaneously (in parallel). Two different models are
iven based on the partition of the geographical units. The first model assumes that the spatial
omain is divided into D disjoint subregions, according to administrative subdivisions for example.
hen, independent spatial models are fitted to each data subset based on the neighbourhood
tructure of the corresponding subgraphs. Once computations are finished, the area-specific relative
isks are merged to obtain a single spatial risk surface. Clearly, assuming independence between
reas corresponding to different subregions of the partition of the spatial domain could lead
o border effects in risk estimates. To avoid this undesirable issue, we also propose a second
odelling approach where k-order neighbours are added to each subregion of the spatial domain. In
onsequence, the main spatial domain is divided into overlapping partitions. This means that some
real units will have several risk estimates. To obtain a unique posterior distribution for these risks,
e compute the mixture distribution of the estimated posterior probability density functions. In
ddition, approximate values for some model selection criteria are derived to perform Bayesian
odel comparison.
Although the methodology described in this paper could possibly be adapted to other Bayesian

stimation techniques, here we use INLA (Rue et al., 2009) as it has several advantages: it is
ell spread and has been used in several fields (see for example Rue et al., 2017 and references
herein), it is computationally efficient when fitting disease mapping models, and it is fairly easy
or practitioners to handle if they are not experts in statistics.

A simulation study is conducted to compare the new scalable models against the global model
sing the almost 8000 municipalities of continental Spain. This study reveals a competitive per-
ormance of the new models in terms of goodness of fit and computational time, that is reduced
ubstantially. In addition, as we increase the neighbourhood ordering (k parameter) in our second
odelling approach, results are more similar to the global model, but this comes with a loss of
omputational efficiency. The new methodology is used to analyse male colorectal cancer mortality
n the Spanish municipalities.

The rest of the paper is organized as follows. In Section 2 we briefly review some spatial models
n disease mapping and give some details about different Bayesian inferential techniques. Section 3
ntroduces the new scalable models to fit high-dimensional areal count data. In Section 4 a simu-
ation study is conducted to compare the performance of our modelling approach with the usual
patial model for areal count data. Male colorectal cancer mortality data in Spanish municipalities
re analysed in Section 5. The paper concludes with a discussion and some conclusions. The methods
nd algorithms proposed here are implemented in the R package bigDM available at https://github.
om/spatialstatisticsupna/bigDM, which contains a vignette to replicate the data analysis described
n this paper using a simulated colorectal cancer mortality data (modified in order to preserve the
onfidentiality of the original data).

. Spatial models for disease mapping

Let us assume that the spatial domain of interest is divided into n contiguous small areas labelled
s i = 1, . . . , n. For a given area i, Oi will denote the observed number of disease cases and Ni the
opulation at risk. The simplest mortality/incidence indicator is the crude rate, which is usually
efined as the number of cases per 100,000 people, that is, CRi =

Oi
Ni

× 100, 000. When the study
ims to detect which areas exhibit elevated or lowered risk, the number of expected cases in each
mall area are usually computed. For example, if the population is divided into age-groups, the
ndirect standardization method is commonly used to calculate the expected number of cases as
i =

∑J
j=1 Nij

Oj
Nj

for i = 1, . . . , n, where Oj =
∑n

i=1 Oij and Nj =
∑n

i=1 Nij are the number of cases
and the population at risk in the jth age-group, respectively. Note that Ei represents the number
of cases we expect to observe in the ith area if it behaves as the whole study region. Using these
quantities, the standardized mortality/incidence ratio (SMR or SIR) is defined as the ratio of observed
and expected cases for the corresponding areal unit. Although its interpretation is very simple (areas
3

https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM
https://github.com/spatialstatisticsupna/bigDM


E. Orozco-Acosta, A. Adin and M.D. Ugarte Spatial Statistics 41 (2021) 100496

a
i

e
i

a
a
(
r

p

with values higher than 1 will stand for an excess of risk, while values lower than 1 mean a lower
risk for the population in that unit), these measures are extremely variable when analysing rare
diseases or low-populated areas, as is the case of high-dimensional data. To cope with this situation,
it is necessary to use statistical models that stabilize the risks (rates) borrowing information from
neighbouring regions.

Generalized linear mixed models (GLMM) are typically used for the analysis of count data within
hierarchical Bayesian framework. Conditional to the relative risk ri, the number of observed cases

n the ith area is assumed to be Poisson distributed with mean µi = Eiri. That is,

Oi|ri ∼ Poisson(µi = Eiri), i = 1, . . . , n
logµi = log Ei + log ri,

where log Ei is an offset. Depending on the specification of the log-risks different models are defined.
Here we assume that

log ri = α + ξi, (1)

where α is an intercept representing the overall log-risk and ξi is a spatial random effect. Com-
monly, a conditional autoregressive (CAR) prior distribution is assumed for the random effect
ξ = (ξ1, . . . , ξn)′, which is a type of Gaussian Markov random field (GMRF) (Rue and Held, 2005).
A GMRF, with respect to a given graph, is defined on a vector ξ by assuming a multivariate Normal
distribution ξ ∼ N(µ,Σ ), where Σ−1

= Q is a n × n sparse precision matrix corresponding to the
undirected graph of the regions under study. In what follows, we briefly review some of the most
commonly used CAR priors for spatial random effects. Let W = (wij) be a binary n × n adjacency
matrix, whose ijth element is equal to one if areas j and k are defined as neighbours, usually if they
share a common border (denoted as i ∼ j), and it is zero otherwise. The joint distribution of the
intrinsic CAR prior (iCAR) (Besag et al., 1991) is defined as

ξ ∼ N(0,Q−

ξ ), with Qξ = τξ (DW − W)

where DW = diag(w1+, . . . , wn+) and wi+ =
∑

j wij is the ith row sum of W, and τξ = 1/σ 2
ξ is the

precision parameter. The symbol − denotes the Moore–Penrose generalized inverse of a matrix. As
Qξ1n = 0, where 1n is a vector of ones of length n (i.e., 1n is the eigenvector associated to the null
eigenvalue of Qξ ), the precision matrix of the iCAR distribution is singular and therefore, the joint
distribution of ξ is improper. If the spatial graph is fully connected (matrix Qξ has rank-deficiency
qual to 1), a sum-to-zero constraint

∑n
i=1 ξi = 0 is usually imposed to solve the identifiability

ssue between the spatial random effect and the intercept in Model (1).
The iCAR prior distribution only accounts for spatial correlation structures, and hence, it is not

ppropriate if the data variability is not only spatially structured but unstructured heterogeneity is
lso present. A convolution prior was also proposed by Besag et al. (1991) to deal with this situation
usually named as BYM prior) that combines the iCAR prior and an additional set of unstructured
andom effects. The model is given by

ξ = u + v, with
u ∼ N(0, [τu(DW − W)]−),
v ∼ N(0, τ−1

v In).

where In is the n × n identity matrix. The precision parameters of the spatially structured random
effect (τu) and the unstructured random effect (τv) are not identifiable from the data (MacNab,
2011), just the sum ξi = ui + vi is identifiable. Hence, similar to the iCAR prior distribution, the
sum-to-zero constraint

∑n
i=1(ui + vi) = 0 must be imposed to solve identifiability problems with

the intercept.
Leroux et al. (1999) propose an alternative CAR prior (hereafter named as LCAR prior) to model

both spatially structured and unstructured variation in a single set of random effects. It is given by

ξ ∼ N(0,Q−

ξ ), with Qξ = τξ [λξ (DW − W) + (1 − λξ )In]

where τξ is the precision parameter and λξ ∈ [0, 1] is a spatial smoothing parameter. Even the
recision matrix Qξ is of full rank whenever 0 ≤ λξ < 1, a confounding problem still remains and

consequently, a sum-to-zero constraint
∑n

ξ = 0 has to be considered (see Goicoa et al., 2018).
i=1 i

4
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Other conditional autoregressive priors have been also given in the literature, like the proper CAR
rior distribution described in Cressie (1993), or the reparameterization of the BYM model given
y Dean et al. (2001).

.1. Model fitting and inference

The fully Bayesian approach is probably the most-used technique for model fitting and inference
n spatial disease mapping. Under this framework, the posterior probability distribution of the
arameters of interest is obtained. Traditionally, Markov chain Monte Carlo (MCMC) techniques
ave been used for model inference from a fully Bayes perspective, mainly due to the development
nd accessibility of the well-known WinBUGS (Spiegelhalter et al., 2003) software. Over the last
ew years, other software based on MCMC methods has been popularized such as JAGS (Plummer
t al., 2003) or STAN (Carpenter et al., 2017; Team, 2018), as well as other new statistical systems
uch as NIMBLE (de Valpine et al., 2020). An alternative to MCMC simulation methods for Bayesian
nference was proposed by Rue et al. (2009). The method known as INLA is based on integrated
ested Laplace approximations and numerical integration. The main goal of the INLA strategy is
o approximate the marginal posterior distribution of a GMRF using numerical methods for sparse
atrices to speed up computations in comparison with MCMC methods. This technique can be used
asily in the free software R through the R-INLA package (http://www.r-inla.org/). The use of INLA

for Bayesian inference has turned out to be very popular in applied statistics in general (see Rue
et al., 2017), and in the field of spatial statistics in particular (Bakka et al., 2018).

Despite the computational efficiency of INLA for Bayesian inference when fitting spatial and
spatio-temporal disease mapping models for areal data, its use has not been studied in detail
when the number of areas increases considerably. New parallelization strategies have been recently
implemented in INLA through the integration of a special version of the PARDISO (www.pardi
so-project.org) library (van Niekerk et al., 2019). However, the computational resources needed
for analysing massive spatial data could be enormous, something that is not within the reach of
researchers in statistics, epidemiologists or public health professionals. Thus, the main objective of
this paper is to provide an alternative scalable method to perform high-dimensional spatial analysis
for count data with INLA.

3. Scalable Bayesian models for areal count data

In this section, we propose a scalable Bayesian modelling approach for smoothing mortality
(or incidence) risks for high-dimensional spatial disease mapping data. Our proposal is based on
applying the ‘‘divide and conquer’’ approach to the spatial model described in Eq. (1), which will
be named as the Global model. The key idea is to divide the spatial domain into D subregions
o that local spatial models can be simultaneously fitted in parallel reducing the computational
ime substantially. The LCAR prior distribution has been considered for the spatial random effect ξ,
but any other CAR distribution such as those described in Section 2 could be used instead in the
methodology described below.

3.1. Disjoint models

Let consider a partition of the spatial domain D into D subregions, that is D =
⋃D

d=1 Dd where
Di ∩ Dj = ∅ for all i ̸= j. In our disease mapping context, this means that each geographical
unit belongs to a single subregion. A natural choice for this partition could be the administrative
subdivisions of the area of interest (such as for example, provinces or states).

Let Od = {Oi| area i ∈ Dd} and Ed = {Ei| area i ∈ Dd} represent the observed and expected
number of disease cases in each subregion, respectively. It is important to remark that the expected
values are computed using all the data. Then, for d = 1, . . . ,D the log-risks of the Disjoint models
re expressed in matrix form as

log rd = 1ndαd + ξd,(
−1
) (2)
ξd ∼ N 0, [τξd (λξd (DWd − Wd) + (1 − λξd )Ind )]
5
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where rd = (rd1 , . . . , r
d
nd )

′ is the vector of relative risks within the d subregion, 1nd is a column vector
f ones of length nd, αd is an intercept, ξd = (ξ d

1 , . . . , ξ d
nd )

′ is the vector of spatial random effects
ithin each subregion with a LCAR prior distribution, Wd is the neighbourhood subgraph of the
reas belonging to Dd, and Ind is the identity matrix of dimension nd, with

∑D
d=1 nd = n. Note that

his model can be also written as⎛⎜⎜⎜⎜⎝
log r1

...
log rd

...
log rD

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1n1

. . .
1nd

. . .
1nD

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

α1
...

αd
...

αD

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
In1

. . .
Ind

. . .
InD

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ξ1
...
ξd
...
ξD

⎞⎟⎟⎟⎟⎠
here the precision matrix of the multivariate Normal random effect vector ξ = (ξ1, . . . , ξD)′ is
block-diagonal matrix of dimension n × n with blocks corresponding to the precision matrix of

he LCAR prior within each subgraph (sub-domain). Note that the design matrix of the spatially
tructured random effect ξ is just the identity matrix of dimension n × n. Under the formulation
f Model (2), D independent spatial models can be simultaneously fitted giving rise to a clear
omputational gain.
Since we have defined a partition of the spatial domain D, the log-risk surface log r =

log r1, . . . , log rD)′ is just the union of the posterior estimates of each submodel. However, note
hat D specific intercepts are estimated in Model (2). If there were interest in obtaining a single
stimate of an overall log-risk α̃ which would play the role of α in Model (1), we propose to extract
amples from the joint posterior distribution of the linear predictors log rd for d = 1, . . . ,D, using
he inla.posterior.sample() function of R-INLA. This function makes it possible to generate
samples from the approximate joint posterior of a previously fitted inla object, if the argument
ontrol.compute = list(config = TRUE) is provided when calling the inla() function (see
or example, Gomez-Rubio, 2020 and Martino and Riebler, 2019). After joining the samples from
ach partition, we could define

α̃s
=

1
n

n∑
i=1

log ri, for s = 1, . . . , S

and then compute the kernel density estimate of α̃ (Sheather and Jones, 1991). We note here
that this procedure to estimate the posterior distribution of a global overall log-risk is valid as
independence between areas corresponding to different subregions of the partition is assumed.
However, if the k-order neighbourhood model that will be covered in the next section is considered,
only its posterior mean (or median) estimate can be easily computed.

3.2. k-order neighbourhood model

Assuming independence between areas belonging to different subregions could be very restric-
tive and it may lead to border effects in the disease risk estimates. To avoid this undesirable
issue, we also propose a second modelling approach where k-order neighbours are added to each
subregion of the spatial domain. Notice that by doing this, the main spatial domain D is now divided
nto a set of overlapping regions, that is, D =

⋃D
d=1 Dd but Di∩Dj ̸= ∅ for neighbouring subregions.

n consequence, multiple relative risk estimates will be obtained for some areal units. As in the
isjoint Model (2), D submodels will be simultaneously fitted using R-INLA. However, the final
isk surface r = (r1, . . . , rn)′ is no longer the union of the posterior estimates obtained for each
submodel, since

∑D
d=1 nd > n.

To obtain a unique posterior distribution of ri for each areal unit i, we propose to compute
a mixture distribution (see, e.g., Lindsay, 1995; Frühwirth-Schnatter, 2006) using the estimated
posterior probability density function of these risks. Let us assume that area i lies within m(i)
ubregions of the spatial domain D. That is, we have m(i) estimates of the ith area risk. If we
6
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denote f1(x), . . . , fm(i)(x) to the posterior estimates of the probability density functions, the mixture
istribution of ri can be written as the weighted sum of the corresponding densities

f (x) =

m(i)∑
j=1

wjfj(x),

where wj ≥ 0 and
∑m(i)

j=1 wj = 1. The approximate posterior density functions fj(x) are obtained
from the corresponding submodels using the inla.dmarginal() function, which are evaluated at
75 equally spaced points. We propose to use the conditional predictive ordinate (CPO), a diagnostic
measure to detect discrepant observations from a given model (Pettit, 1990), to compute the
weights of the mixture distribution dividing each CPO value by the sum of the m(i) different
stimates. Note that giving the set of observations o = (o1, . . . , on)′, CPOi = Pr(Oi = oi|o−i) values
enotes the cross-validated predictive probability mass at the observed count oi. As described in Rue
t al. (2009), the CPO quantities are computed in R-INLAwithout re-running the model by including
nto the inla() function the argument control.compute=list(cpo=TRUE).

.3. Model selection criteria

In this section we discuss some Bayesian model selection criteria and show how to compute
hem when fitting disjoint and k-order neighbourhood models. Given the data o with likelihood
unction p(o|θ) where θ is the vector of unknown parameters of the model, the Bayesian deviance
s defined as

D(θ) = −2 log(p(o|θ)) + 2 log p(o)

here 2 log p(o) denotes the deviance of the saturated model (a constant that does not depend on
he model parameters). Note that under our model formulation, that is Oi|ri ∼ Poisson(µi = Eiri),
he log-likelihood function is expressed as

log(p(o|θ)) = log

(
n∏

i=1

e−µiµ
oi
i

oi!

)
=

n∑
i=1

log
(
e−µiµ

oi
i

oi!

)
.

enerally, the posterior mean deviance D(θ) is considered as a measure of goodness of fit due to its
obustness. However, more complex models will fit the data better, and consequently lower values
f the mean deviance will be obtained. To avoid selecting models that overfit the data, several
riteria that also take into account the model complexity have been proposed in the literature.
he deviance information criterion (DIC) (Spiegelhalter et al., 2002) and Watanabe–Akaike information
riterion (WAIC) (Watanabe, 2010), are possibly two of the best-known criteria to compare models
n a fully Bayesian setting.

The DIC is computed as the sum of the posterior mean of the deviance and the number of
ffective parameters (a measure of model complexity)

DIC = D(θ) + pD,

where the quantity pD is defined as the posterior mean of the deviance minus the deviance
omputed at the posterior mean of the parameters of interest, thus,

DIC = D(θ) + (D(θ) − D(θ̄)) = 2D(θ) − D(θ̄).

Analogously to the Akaike information criterion (AIC), models with smaller DIC values provide better
trade-off between model fit and complexity. To compute the DIC values in R-INLA for the Global
odel described in Eq. (1), the option control.compute = list(dic = TRUE) inside the inla()

unction is used. As described in Rue et al. (2009), instead of evaluating the deviance at the posterior
ean of all parameters, INLA evaluates the deviance at the posterior mean for the latent fields and
t the posterior mode for the hyperparameters (as the posterior marginal for the hyperparameters
an be severely skewed).
7
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To compare the Global model with the scalable models described in Sections 3.1 and 3.2, we
ompute approximate DIC values for the latter models by drawing samples from the posterior
arginal distributions of the relative risks using the inla.rmarginal() function. If a total of S
amples are drawn, and denoting as θs to the posterior simulations of µi = Eiri for s = 1, . . . , S,
we can compute approximate values of the mean deviance D(θ) and the deviance of the mean D(θ̄)
as

D(θ) ≈
1
S

S∑
s=1

−2 log(p(o|θs)),

D(θ̄) ≈ −2 log(p(o|θ̄)), with θ̄ =
1
S

S∑
s=1

θs.

Similarly, to compute the WAIC values in R-INLA, the option
ontrol.compute = list(waic=TRUE) must be used when fitting the Global model. Follow-
ng Gelman et al. (2014), approximate WAIC values have been also computed for the Disjoint model
nd the k-order neighbourhood model as

WAIC ≈ −2
n∑

i=1

log

(
1
S

S∑
s=1

p(oi|θs)

)
+ 2

n∑
i=1

Var
[
log(p(oi|θs))

]
.

4. Simulation study

In this section, a simulation study is conducted to compare the new scalable models, i.e., the
Disjoint model described in Eq. (2) and the k-order neighbourhood model described in Section 3.2,
against the common spatial LCAR model described in Eq. (1), denoted as Global model. We base our
tudy on the n = 7907 municipalities of continental Spain. To imitate the real case study that is
nalysed in the next section, the D = 15 Autonomous Regions of Spain are used as a partition of
he spatial domain (see Fig. 1).

To fit the models, improper uniform prior distributions are given to all the standard deviations
square root inverse of precision parameters), and a Uniform (0, 1) distribution is considered for
he spatial smoothing parameters of the LCAR prior. Finally, a vague zero mean normal distribution
ith a precision close to zero (0.001) is given to the intercept (α). All the calculations are made
n a twin superserver with four processors, Inter Xeon 6C and 96 GB RAM, using the full Laplace
pproximation strategy in R-INLA (stable) version INLA_19.09.03 of R-3.6.2.
We consider two different scenarios to compare the performance of the models. In the first

cenario, a model-free true risk surface is defined by randomly assigning high and low risk values to
he areas surrounding selected major cities of Spain. Considering these cities as the area centroids,
he relative risks are gradually increased/decreased at different distances to get a smooth surface.
pecifically, relative risks of 1.5, 1.3 and 1.2 are assigned to the municipalities that are at less than
5 km, 30 km, and 45 km respectively from the high-risk centroids. The same criterion has been
sed to assign reciprocal risks of 0.67, 0.77, and 0.83 to the municipalities surrounding low-risk
entroids. In the second scenario, a smooth risk surface is generated by sampling from a two-
imensional isotropic P-spline model with 40 equally spaced knots for longitude and latitude. The
rue risk surfaces for these scenarios are displayed in Fig. 1.

In both scenarios, counts for each municipality are generated using a Poisson distribution with
ean µi = Eiri, where the number of expected cases Ei are fixed at values equal to 1, 5, 10, and 50.
total of 100 simulations have been generated for each of the eight sub-scenarios.

.1. Results

We evaluate the models’ performance in terms of relative risk estimates by computing the mean
bsolute relative bias (MARB) and mean relative root mean square error (MRRMSE), defined as

MARB =
1
n

n∑ 1
100

⏐⏐⏐⏐⏐
100∑ r̂ li − ri

r

⏐⏐⏐⏐⏐ ,

i=1 l=1 i

8
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Fig. 1. True risk surfaces for the simulation study of Scenario 1 (left) and Scenario 2 (right).

MRRMSE =
1
n

n∑
i=1

√ 1
100

100∑
l=1

(
r̂ li − ri

ri

)2

,

here ri is the true generated risk, and r̂ li is the posterior median estimate of the relative risk
or areal unit i in the lth simulation. In addition, coverage probabilities and 95% credible intervals’
engths have been computed.

The average values for the 100 simulated data sets in each of the sub-scenarios are computed in
able 1. The 3rd order neighbourhood model was also considered (not shown in the table), but results
id not improve those obtained with lower neighbourhood orders. Regarding computational times
in seconds), those corresponding to models simultaneously fitted in multiple machines (T1) or in a
ingle machine (T2) are included. The maps with average values of relative risk estimates for each
ub-scenario are shown in the online supplementary material.
When the number of expected cases is very low, as in sub-scenarios with E = 1, both model

election criteria and risk estimation accuracy measures, point to the Global model as the best candi-
ate. However, small differences are observed between this model and the kth order neighbourhood
odels. As the number of expected cases increases, similar values of MARB and better values of
RRMSE are observed for our scalable model proposals in Scenario 1. The 1st order neighbourhood
odel shows better or similar values in terms of model selection criteria (DIC or WAIC) for sub-
cenarios E = 5, 10, and 50. Since in this scenario most of the high/low risk ‘‘clusters’’ are located
nside the frontiers of the autonomous regions (see Fig. 1), the performance of the Disjoint model is
lso pretty good in terms of MRRMSE.
Scenario 2 shows a more gradual risk surface across the whole spatial domain. Then, as expected,

he Disjoint model performs worse than the k-order neighbourhood models, which are able to better
ecover the true risk surface. In sub-scenarios E = 1, 5, and 10 the second-order neighbourhood
odels show slightly smaller values of DIC and WAIC than models with first order neighbourhoods.
owever, MARB and MRRMSE are very similar when E = 5, 10, and 50.
In general, we think that the new modelling proposals are a very competitive alternative to the

lobal model with a significant gain in computational time without a remarkable difference in terms
f bias and variability. Empirical coverages and credible interval lengths are, in general, very similar.

. Data analysis: colorectal cancer mortality in Spain

In this section, male colorectal cancer mortality data in the n = 7907 municipalities of
ontinental Spain (excluding Baleares and Canary Islands and the autonomous cities of Ceuta and
elilla) are analysed using the new model proposals. According to recent studies (Ferlay et al.,
018), colorectal cancer was the second cause of cancer deaths among the male population in
urope (representing 12% of all cancers deaths) and in Spain in 2018 after lung cancer. A total

f 81,934 colorectal cancer deaths (corresponding to International Classification of Diseases-10

9
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Table 1
Average values of deviance information criterion (DIC), Watanabe–Akaike information criterion (WAIC), mean absolute
relative bias (MARB), mean relative root mean square error (MRRMSE), empirical coverage, length of the 95% credible
interval for the risks, and computational times (T1: approximate value of CPU time if all submodels are simultaneously
fitted in multiple machines, T2: CPU time if all submodels are fitted in a single machine) in seconds.

Model selection criteria Risk estimation evaluation Time

Model DIC WAIC MARB MRRMSE Cov (%) Length T1 T2

Scenario 1

E = 1 Global 20800.0 20796.6 0.036 0.068 98.16 0.612 2673 2673
Disjoint 20818.0 20801.7 0.043 0.077 99.24 0.751 178 406
1st order neighb. 20813.2 20798.2 0.043 0.073 99.21 0.743 292 546
2nd order neighb. 20812.2 20798.1 0.043 0.071 99.09 0.733 413 750

E = 5 Global 35113.7 35105.4 0.028 0.058 98.69 0.423 1811 1811
Disjoint 35135.5 35114.1 0.029 0.052 98.60 0.417 189 436
1st order neighb. 35126.4 35106.0 0.029 0.052 98.93 0.428 293 581
2nd order neighb. 35133.6 35114.8 0.029 0.054 98.82 0.441 378 724

E = 10 Global 40846.5 40825.7 0.023 0.052 98.67 0.358 1799 1799
Disjoint 40864.1 40832.0 0.023 0.044 98.49 0.328 182 417
1st order neighb. 40849.4 40817.0 0.023 0.046 99.00 0.347 277 554
2nd order neighb. 40861.6 40831.4 0.023 0.048 98.99 0.362 303 578

E = 50 Global 54166.5 54050.4 0.014 0.039 98.29 0.239 1866 1866
Disjoint 54108.6 54003.7 0.013 0.032 98.33 0.205 155 348
1st order neighb. 54083.9 53970.6 0.013 0.034 98.81 0.219 181 371
2nd order neighb. 54109.6 53997.3 0.013 0.035 98.80 0.228 244 458

Scenario 2

E = 1 Global 19815.1 19810.3 0.048 0.109 99.80 0.811 1609 1609
Disjoint 19894.2 19874.8 0.070 0.127 99.51 0.904 151 340
1st order neighb. 19875.1 19856.4 0.062 0.120 99.78 0.907 215 410
2nd order neighb. 19868.3 19850.4 0.058 0.117 99.89 0.910 284 515

E = 5 Global 34236.2 34193.6 0.028 0.077 99.79 0.535 1922 1922
Disjoint 34279.1 34231.5 0.035 0.080 99.70 0.527 146 327
1st order neighb. 34253.1 34201.7 0.031 0.077 99.85 0.536 187 379
2nd order neighb. 34250.7 34197.9 0.030 0.077 99.87 0.541 254 476

E = 10 Global 40028.0 39942.7 0.022 0.067 99.77 0.439 1915 1915
Disjoint 40055.3 39973.9 0.028 0.067 99.64 0.421 136 303
1st order neighb. 40025.9 39935.9 0.024 0.065 99.83 0.431 166 334
2nd order neighb. 40027.8 39934.5 0.024 0.065 99.85 0.436 231 425

E = 50 Global 53403.9 53086.7 0.013 0.047 99.55 0.269 1885 1885
Disjoint 53376.0 53105.5 0.015 0.044 99.53 0.253 113 247
1st order neighb. 53352.5 53054.5 0.013 0.044 99.64 0.260 152 302
2nd order neighb. 53366.9 53057.9 0.013 0.045 99.66 0.260 219 396

codes C18–C21) were registered for male population in the municipalities of continental Spain
during the 2006–2015 period, which represents an overall crude rate of 38.54 deaths per 100,000
male inhabitants. The indirect age-standardization method has been used to compute the number
of expected cases using 5-years age groups (internal standardization). This method allows us to
compare the relative risk of each municipality with the whole of Spain during the study period. The
expected number of cases ranges from 0 to 6129 (with mean and median values of 1.8 and 10.4,
respectively), while the number of observed cases varies from 0 to 5814 (with mean and median
values of 2.0 and 10.4, respectively).

As in the simulation study, the Global model, the Disjoint model, and k = 1, 2, 3 order neighbour-
hood models have been fitted with R-INLA using the D = 15 Autonomous Regions of Spain as a
partition of the spatial domain. The same hyperprior distributions described in Section 4 have been
also considered here. Results are shown in Table 2. The computational time for the scalable model
proposals are divided into: (1) running time, which corresponds to the maximum time of the D = 15

submodels (that is, assuming that all models have been simultaneously fitted), and (2) merging time,

10
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Table 2
Model selection criteria (D(θ): mean deviance, pD: effective number of parameters, DIC: deviance information criterion,

AIC: Watanaba–Akaike information criterion), computational time (T.run: running time, T.merge: merging time, T.tot:
otal time) in seconds and data size (n =

∑D
d=1 nd).

Model D(θ) pD DIC WAIC T.run T.merge T.total n

Global 26667.6 548.5 27216.1 27237.9 1929 – 1929 7907
Disjoint 26510.7 656.8 27167.5 27166.7 110 26 136 7907
1st order neighbourhood 26533.5 634.2 27167.6 27170.5 132 63 195 8979
2nd order neighbourhood 26557.9 616.5 27174.3 27183.3 166 83 249 10646
3rd order neighbourhood 26586.0 583.0 27169.0 27175.4 219 107 326 12553

Fig. 2. Maps of posterior median estimates for ri of male colorectal cancer mortality data in Spanish municipalities during
he period 2006–2015.

orresponding to the computation of the mixture distribution of the risks and the approximate DIC
nd WAIC values. As expected, the complexity and computational time of the models increase as
igher values of neighbourhood order are considered. The largest values of nd (number of areas for
ach subdivision) correspond to the autonomous region of Castilla and León, located in north-west
pain, with a total of 2245, 2451, 2744 and 3047 municipalities for neighbourhood models with
= 0 (Disjoint model), 1, 2, and 3 respectively.
Besides the significant reduction in the computational time required to fit the models in INLA,

he model selection criteria suggest that the new model proposals outperform the Global model in
his real data analysis. The maps with posterior median estimates of ri, and posterior exceedance
robabilities P(ri > 1|O) of male colorectal cancer mortality risks are shown in Figs. 2 and 3
espectively. In general, very similar spatial patterns are observed for all the models, but 2nd and
3rd order neighbourhood models seem to show a spatial risk surface more similar to the Global
odel. Even though small differences are observed in DIC and WAIC values between the scalable

model proposals, a greater variability in the degree of spatial smoothness among autonomous
regions is observed for the Disjoint model, leading to not very reasonable relative risk estimates in
some regions as Madrid or Aragón. As expected, this effect seems to be corrected when including
neighbouring areas in the spatial sub-domains in the k-order neighbourhood models.
11
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Fig. 3. Maps of posterior exceedance probabilities P(ri > 1|O) of male colorectal cancer mortality data in Spanish
municipalities during the 2006–2015 period.

6. Discussion

The ‘‘divide and conquer’’ strategy has been extensively used to analyse big data in other contexts
such as machine learning, commonly using a Bayesian approach to compute tractable posterior
distributions (posterior samples if MCMC methods are considered). One of the key questions is
how to combine the estimation of the parameters of interest from each subsample to obtain robust
final estimates. Many combination methods have been proposed in the literature, such as the
kernel density product estimation proposed by Neiswanger et al. (2013), the consensus Monte Carlo
algorithm (Scott et al., 2016) where a weighted average of the posterior distributions obtained from
the subsample data are defined, the mixture-based approach proposed by Scott et al. (2017), or the
recently proposed global consensus Monte Carlo algorithm (Rendell et al., 2020), among others.

In this paper we avoid MCMC methods and rely on the INLA technique, as it is relatively simple
for practitioners to use. In particular, we develop scalable Bayesian models for smoothing mortality
or incidence risks in spatial disease mapping when the number of small areas is very large. We
propose to divide the main spatial domain into subregions so that local spatial models can be
simultaneously fitted reducing the computational time substantially. Although the methodology
described in this paper uses the INLA estimation strategy, it could also be adapted to other Bayesian
fitting techniques.

As stated, the new proposals must define a partition of the spatial domain as a first step. The
administrative divisions of the area of interest (such as provinces, states or local health areas)
are a natural choice for this partition. However, if the user has no idea on how to define this
initial partition, a random partition can be also considered by defining a grid over the associated
cartography with a certain number of rows and columns (see the vignette accompanying the bigDM
package for further details). We note here that in the real data analysis performed in Section 5
very similar results are obtained when using a random partition over the municipalities of Spain
instead of the spatial partition defined by the Autonomous Regions, in particular when fitting the
k-order neighbourhood models. The second stage of our proposal is to fit independent hierarchical
Bayesian models including spatially structured and unstructured random effects to smooth the risks
in each subregion. Here, two different modelling approaches are defined: a Disjoint model where
each geographical unit is contained into a single subregion, and a k-order neighbourhood model
12
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where an overlapping set of regions are defined by adding neighbouring areas to those regions
located in the border of the partition. This second approach allows us to eliminate the independence
assumption between areas belonging to different subregions, avoiding border effects. Finally, the
results of the models are merged to obtain a unique risk estimate for each areal unit. For the k-order
eighbourhood model, we compute a mixture distribution of the estimated posterior probability
ensity functions using the CPO’s to calculate the mixture weights. In addition, approximations to
odel selection criteria such as DIC and WAIC are also derived.
Both the simulation study and the real data analysis indicate that the new methodology provides

eliable risk estimates with a substantial reduction in computational time. Moreover, the new
calable models avoid the high RAM/CPU memory usage when analysing massive spatial data.
n cases where small differences in model selection criteria are observed between the Disjoint
nd k-order neighbourhood model, we recommend using the k-order neighbourhood model to avoid
verfitting and border effects.
We would like to highlight that the main objective of this paper is to propose a new Bayesian

omputational strategy to estimate the posterior distribution of relative risks when dealing with
igh-dimensional data as this is the main purpose of disease mapping models (Ugarte et al., 2006).
he scope of this article does not include estimating associations between the response variable
nd certain covariates (via ecological spatial regression). If this were the objective, two important
roblems would have to be tackled: one, the potential spatial confounding between fixed and
andom effects and the other, the need (or not) to estimate a single regression coefficient for each
ariable in all partitions.
Finally, we think that the great potential of this methodology is its extension to the spatio-

emporal setting. The complexity inherent to spatio-temporal interaction models and the even
igher dimensionality associated to this type of data, makes it necessary the use of scalable
echniques for Bayesian inference in small area data. We are currently investigating this issue.

upplementary material

The maps with average values of relative risk estimates for each sub-scenario of the simulation
tudy presented in Section 4 are available at https://emi-sstcdapp.unavarra.es/bigDM/Supplementa
yMaterial.pdf.
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