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Abstract Disease mapping studies the distribution of relative risks or rates
in space and time, and typically relies on generalized linear mixed models
(GLMMs) including fixed effects and spatial, temporal, and spatio-temporal
random effects. These GLMMs are typically not identifiable and constraints
are required to achieve sensible results. However, automatic specification of
constraints can sometimes lead to misleading results. In particular, the penal-
ized quasi-likelihood (PQL) fitting technique automatically centers the random
effects even when this is not necessary. In the Bayesian approach, the recently-
introduced INLA (integrated nested Laplace approximations) computing tech-
nique can also produce wrong results if constraints are not carefully chosen.
In this paper the spatial, temporal, and spatio-temporal interaction random
effects are reparameterized using the spectral decompositions of their precision
matrices to establish the appropriate identifiability constraints. Breast cancer
mortality data from Spain is used to illustrate the ideas.
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1 Introduction

Statistical techniques for disease mapping have developed tremendously in the
last few years. The availability of information from modern registers with high
quality data recorded for many years and regions has brought about new goals
and challenges, which in turn have made possible the development of new and
more flexible statistical models, faster and less computationally demanding
fitting techniques, and new free software to implement these advances. These
methodological developments are now ready for policy makers, epidemiologists,
health researchers, and health professionals to use in a more or less automated
form. However, this abundance of ready-to-use statistical resources can lead
to errors and misleading results when analyzing mortality or incidence data in
space and time due, among other causes, to incorrect specification of identifi-
ability constraints, which standard software usually fixes at default values.

Research into spatial and spatio-temporal disease mapping has been car-
ried out within a Bayesian framework, with generalized linear mixed models
(GLMM) playing a major role. Two main approaches have been followed for
model fitting and inference, the empirical Bayes (EB) and fully Bayes (FB)
approaches. Model fitting and estimation in the EB approach commonly rely
on penalized quasi-likelihood (PQL) (see Breslow and Clayton, 1993), while
the FB approach usually uses Markov chain Monte Carlo (McMC) techniques
(Gilks, 2005). In addition to McMC, a new strategy based on integrated nested
Laplace approximations (INLA) has recently been derived for estimating pos-
terior quantities of interest (Rue et al, 2009). This technique is becoming very
popular in disease mapping because it allows fairly complex space-time models
to be fit much more quickly than McMC.

The GLMMs traditionally used in disease mapping are not identifiable
(Gelfand and Sahu, 1999) and although some identifiability problems have
been dealt with, this matter deserves further attention and needs clarification
for practitioners. For example, one of the first identifiability concerns arose
with the work by Besag et al (1991). They proposed an areal model (the
BYM model) for the log-relative risks of a disease considering two random
area effects: one with an exchangeable distribution and one with an intrin-
sic conditional autoregressive (ICAR) distribution. The ICAR distribution is
specified conditionally and the parameters are uniquely determined up to a
constant, so the overall intercept is implicit in the ICAR specification. Hence,
if the model includes an explicit intercept as well, the model is not identified.
The solution is to omit the explicit intercept or to add sum-to-zero constraints
for the random effects.

Counts in space and time demand more flexible models to unveil the under-
lying geographical patterns and their temporal evolution. However, as terms
are added to the model, identifiability problems arise. The literature in spatio-
temporal disease mapping is abundant, describing different models with para-
metric (see for example Bernardinelli et al, 1995; Ugarte et al, 2009a) as well
as non parametric trends (Knorr-Held and Besag, 1998). A key research paper
is Knorr-Held (2000), which specifies spatio-temporal models including four
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different types of spatio-temporal interactions. In these models, identifiability
problems arise because the overall level can be absorbed by the spatial and
the time main effects, and the interaction terms are confounded with the main
effects. A different type of spatio-temporal model in disease mapping combines
CAR spatial random effects with temporal trends based on B-splines (see, e.g.,
MacNab and Gustafson, 2007; MacNab, 2007). In most of this research, sum-
to-zero constraints are considered as guaranteeing model identifiability but no
clear guidance is given about why these constraints have to be considered.
The foregoing papers took a FB approach using McMC, while other papers
took the EB approach, using PQL for model fitting. For example, Ugarte et al
(2010) consider spatio-temporal CAR models and P-spline models from an
EB perspective to study brain cancer mortality in Spain, and Etxeberria et al
(2014) consider spatio-temporal CAR and P-spline models for smoothing and
forecasting mortality risks. However, identifiability issues have not received
much attention because the PQL method automatically centers the spatial,
temporal, and spatio-temporal random effects, that is, automatically imposes
sum-to-zero constraints.

This paper considers space-time disease mapping models including an over-
all risk level (intercept) and spatial, temporal, and spatio-temporal random ef-
fects. In particular, conditional autoregressive (CAR) spatial random effects,
first- or second-order random walks for time, and the corresponding space-time
interactions are considered. To deal with identifiability problems, models will
be reparameterized using the spectral decomposition of the precision matrices
to remove the combinations of the random effects that are in the span of the
fixed effects (Reich et al, 2006; Hodges and Reich, 2010). These authors treat
the problem as a collinearity issue and restrict the spatial random effects to
the subspace orthogonal to the fixed effects. Using this reparameterization it is
easy to see that deleting repeated columns in certain model matrices is equiv-
alent to specific sum-to-zero constraints. This is important for practitioners
as some statistical software requires the specification of such constraints. In
particular, we will focus on specifying constraints in the R-INLA package for
approximate Bayesian inference, which has become popular because it provides
quick fits of complex models.

The rest of the paper is laid out as follows. Section 2 reviews a simple
spatial model and a more general spatio-temporal model with identifiability
problems. Section 3 considers a reparameterization to make the models iden-
tifiable. Section 4 provides insight into model estimation and the use of linear
constraints with PQL. Section 5 illustrates the previous sections’ results using
a case study. The paper closes with a discussion.

2 Spatial and spatio-temporal models in disease mapping

This section briefly reviews spatial and spatio-temporal disease mapping mod-
els to highlight the identifiability problems arising in this field.
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Consider a large domain (let us say a country) divided into small areas
(for example provinces or counties) that will be labelled by i = 1, . . . , S, and
denote by Yi the number of deaths (or incident cases) in the ith small area.
Then conditional on the relative risk ri, Yi is assumed to be Poisson distributed
with mean µi = eiri, where ei is the number of expected cases. That is

Yi|ri ∼ Pois(µi = eiri), log(µi) = log(ei) + log(ri).

Here log(ei) is an offset and log(ri) is modeled as

log(ri) = η + ξi, (1)

where η is an overall risk and ξi is the spatial random effect. An intrinsic
conditional autoregressive (ICAR) prior is considered for the vector of spatial
effects ξ = (ξ1, . . . , ξS)

′. Namely,

ξ ∼ N(0, σ2
ξQ

−
ξ ),

where − indicates the Moore-Penrose inverse of a matrix, and Qξ is the spatial
neighbourhood matrix with (i, j) element defined as Qξ(ij) = −1 if areas i and

j are neighbours and 0 otherwise. The ith diagonal element equals the number
of neighbours of the ith region. Typically, two regions are neighbours if they
share a common border. Clearly,

∑
j Qξ(ij) = 0, ∀i, that is Qξ1S = 0, where

1S is a vector of ones of length S, and the intercept is implicit in the ICAR
specification as will be shown in Section 3.1. Hence, an identifiability problem
with the intercept arises. The problem can be solved either by deleting the
intercept or by imposing sum-to-zero constraints

∑
i ξi = 0 (see for example,

Eberly et al, 2000).

Other priors for the spatial random effects have been proposed. Leroux et al
(1999) considered the following specification (LCAR hereafter in the paper)
taking account of spatially structured and unstructured variability

ξ ∼ N(0, σ2
ξD

−1), D = (λξQξ + (1− λξ)Iξ), (2)

where λξ ∈ [0, 1] is a spatial smoothing parameter and Iξ is an S × S identity
matrix. If λξ = 1, Model (2) becomes the ICAR distribution. If 0 ≤ λξ < 1,
the matrix D is of full rank, but the identifiability issue still remains, as we
will see in Section 3.

Suppose now that for each small area i, data are available for different
time periods labelled by t = 1, . . . , T . Then, conditional on the relative risk
rit, the count of events in region i at time t, Yit, is assumed to follow a Poisson
distribution with mean µit = eitrit, where eit is the number of expected events.
That is

Yit|rit ∼ Pois(µit = eitrit), log(µit) = log(eit) + log(rit).

The term log(rit) can include spatial and temporal random effects additively,
as well as space-time interactions. Let us focus first on the following spatio-
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temporal additive model

log(rit) = η + ξi + γt, (3)

where here the vector of temporal random effects γ = (γ1, . . . , γT )
′ is assumed

to follow a random walk of first (RW1) or second (RW2) order, that is,

γ ∼ N(0, σ2
γQ

−
γ ),

where the matrix Qγ has rank deficiency equal to 1 or 2 for a RW1 and a
RW2 respectively (see Rue and Held, 2005, chap. 3). If the temporal random
effect is assumed to follow a RW1 distribution, then Qγ1T = 0, where 1T is
a vector of ones of length T , and the intercept is implicit in the RW1, lead-
ing to an identifiability problem. As in the spatial case, the problem can be
solved either by deleting the intercept or by imposing the sum-to-zero con-
straint

∑
t γt = 0. If the spatial random effect follows an ICAR distribution,

we can delete the intercept and impose sum-to-zero constraints on the spatial
or the temporal random effects, or leave the intercept and impose sum-to-zero
constraints on both the spatial and the temporal random effects. If the tem-
poral random effect is distributed as RW2, then Qγ1T = 0, Qγt

∗ = 0, where
t∗ = (1, 2, . . . , T )′, and the slope in time is implicit in the RW2 specification.
As the model does not include a linear trend, no extra constraints are needed.

Spatio-temporal models including area and time effects additively may be
very restrictive in practice, so interaction terms are usually added to Model
(3). Knorr-Held (2000) proposes four types of interactions, namely Type I
(interaction random effects with any spatial or temporal structure), Type II
(interaction random effects spatially unstructured but temporally correlated),
Type III (interaction random effects spatially correlated but with no temporal
structure), and finally Type IV (interaction random effects spatially and tem-
porally correlated). Here we focus on Type IV interactions, the most complex
type (constraints for Type I, Type II and Type III interactions can be found
in Appendix B). Then Model (3) becomes

log(rit) = η + ξi + γt + δit, (4)

where the vector of spatio-temporal random effects δ =
(δ11, . . . , δS1, . . . , δ1T , . . . , δST )

′ is assumed to follow the multivariate
normal distribution

δ ∼ N(0, σ2
δ (Qγ ⊗Qξ)

−).

The rank of the matrix Qγ ⊗Qξ is (T − 1) × (S − 1) or (T − 2) × (S − 1) if
γ follows a RW1 or a RW2 respectively. Consequently, the rank deficiency is
T+S−1 (RW1) or T+2S−2 (RW2). Note that (Qγ⊗Qξ)1TS = 0, where 1TS

is a vector of ones of length TS, leading to an identifiability problem with the
intercept. In addition, the interaction term is confounded with the main effects,
creating further identifiability issues. In the next section, we reparameterize
the models using the spectral decomposition of the precision matrices of the
random effects to solve these identifiability problems.
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3 Model reparameterization

In this section, the random effects are transformed using appropriate matrices
to express them as independent Gaussian random effects. Deleting repeated
columns in the design matrices circumvents the identifiability issues, which
implies suitable constraints.

3.1 Spatial model

Consider again the spatial Model (1)

log(ri) = η + ξi,

or in matrix form

log(r) = (1S)η + Iξξ, ξ ∼ N(0, σ2
ξQ

−
ξ ), (5)

where r = (r1, . . . , rS)
′. The neighbourhood matrix Qξ has rank deficiency 1

assuming the spatial domain is connected. Consider the spectral decomposition
of Qξ,

Qξ = UξΣξU
′

ξ = [Uξn : Uξr]

(
0 0

0 Σ̃ξ

)[
U

′

ξn

U
′

ξr

]
, (6)

whereUξ = [Uξn : Uξr] is an orthogonal matrix with columns the eigenvectors
of Qξ, Uξn = 1S (up to a normalizing constant) and Uξr are the matrices of

eigenvectors having null and non-null eigenvalues respectively, and Σ̃ξ is a
diagonal matrix with the non-null eigenvalues of Qξ in the main diagonal.
Then, as Uξ is orthogonal,

ξ = UξU
′

ξξ = [Uξn : Uξr]

[
U

′

ξn

U
′

ξr

]
ξ.

If we define
X = Uξn = 1S , βξ = U

′

ξnξ = 1
′

Sξ

Z = Uξr, αξ = U
′

ξrξ,
,

then
ξ = Xβξ + Zαξ,

where βξ plays the role of a fixed effect and the spatial Model (5) can be
reformulated as

log(r) = (1S)η + (1S)βξ +Uξrαξ, αξ ∼ N(0, σ2
ξΣ̃

−1

ξ ). (7)

Note that the reparameterized Model (7) has two intercepts, revealing the
identifiability problem. Consequently, removing or setting to zero the inter-
cept βξ makes the model identifiable, and now the precision matrix of the
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reparameterized random effect has full rank. Setting βξ to zero leads to the

usual sum-to-zero constraint
∑S

i=1 ξi = 0, as βξ = 1
′

Sξ =
∑S

i=1 ξi. The iden-
tifiable spatial model is then

log(r) = (1S)η +Uξrαξ, α ∼ N(0, σ2
ξΣ̃

−1

ξ ).

If the prior for the spatial random effect is the LCAR given in Equation (2),
the covariance matrix is of full rank whenever 0 ≤ λξ < 1, but identifiability
problems still remain. In particular, the matrix D has spectral decomposition

D = (λξQξ + (1− λξ)Iξ) = (λξUξΣξU
′

ξ + (1− λξ)Iξ)

= Uξ(λξΣξ + (1− λξ)Iξ)U
′

ξ,

because Uξ is orthogonal, so that D has the same eigenvectors as Qξ but

different eigenvalues. Defining X = Uξn = 1S , βξ = U
′

ξnξ = 1
′

Sξ, Z = Uξr,

and α = U
′

ξrξ as before, the spatial random effect can be expressed as ξ =
Xβξ + Zα and again we have a redundant intercept. Setting βξ = 0 leads to

the usual sum-to-zero constraint
∑S

i=1 ξi = 0.

3.2 Spatio-temporal model

In the following we consider the spatio-temporal Model (4), with the LCAR
prior (2) for the spatial random effect. We consider this prior as it takes account
of both structured and unstructured variability. The matrix form of this model
is

log(r) = (1TS)η + (1T ⊗ Iξ)ξ + (Iγ ⊗ 1S)γ + Iδδ, (8)

where r = (r11, . . . , rS1, . . . , r1T , . . . , rST )
′, and Iγ and Iδ are T ×T and TS×

TS identity matrices respectively. The temporal main effect γ is assumed to
follow a RW1 or a RW2, and the interaction random effect is assumed to be
completely structured in space and time, that is, δ ∼ N(0, σ2

δ (Qγ ⊗ Qξ)
−).

Now consider the spectral decomposition of Qξ given by (6), and the spectral
decomposition of Qγ

Qγ = UγΣγU
′

γ = [Uγn : Uγr]

(
0 0

0 Σ̃γ

)[
U

′

γn

U
′

γr

]
,

where Uγ = [Uγn : Uγr] is the matrix of eigenvectors, Uγn is the matrix of
eigenvectors having null eigenvalue, Uγr is the matrix of eigenvectors having

non-null eigenvalues, and Σ̃γ is a diagonal matrix with the non-null eigenvalues
in the main diagonal. If the distribution of the temporal random effect is a
RW1, then the rank deficiency of Qγ is 1, and Uγn = 1T (up to a normalizing
constant). If the temporal random effect is distributed according to a RW2,
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the rank deficiency of Qγ is 2, and Uγn = [1T : t∗], where t∗ = (1, 2, . . . , T )′

up to a normalizing constant. The spectral decomposition of Qγ ⊗Qξ can be
expressed as

Qδ = Qγ ⊗Qξ = UδΣδU
′

δ = [Uδn : Uδr]

(
0 0

0 Σ̃δ

)[
U

′

δn

U
′

δr

]
,

where Uδ = [Uδn : Uδr] is the matrix of eigenvectors, Uδn is the matrix of
eigenvectors having null eigenvalue, Uδr is the matrix of eigenvectors having
non-null eigenvalues, and Σ̃δ = Σ̃γ ⊗ Σ̃ξ is a diagonal matrix with the non-
null eigenvalues in the main diagonal. The matrix with eigenvectors spanning
the null space can be expressed in terms of the eigenvectors spanning the null
space of Qγ and Qξ, that is

Uδn = [Uγn ⊗Uξn : Uγn ⊗Uξr : Uγr ⊗Uξn].

Similarly,
Uδr = [Uγr ⊗Uξr].

The key now is to define transformations so that the spatio-temporal Model (8)
is reformulated to achieve identifiability. Define the transformation matrices
as Uγ and Uδ such that

(Iγ ⊗ 1S)γ = (Iγ ⊗ 1S)UγU
′

γγ = (Iγ ⊗ 1S) [Uγn : Uγr]

[
U

′

γn

U
′

γr

]
γ

= [Xγ : Zγ ]

[
βγ

αγ

]
= Xγβγ + Zγαγ

and

Iδδ = UδU
′

δδ = [Uδn : Uδr]

[
U

′

δn

U
′

δr

]
δ = [Xδ : Zδ]

[
βδ

αδ

]
= Xδβδ + Zδαδ.

If the temporal random effect follows a RW1, then

Xγ = (Iγ ⊗ 1S)Uγn = 1TS , βγ = U
′

γnγ = 1
′

Tγ,

Zγ = (Iγ ⊗ 1S)Uγr = Uγr ⊗ 1S , αγ = U
′

γrγ,

Xδ = Uδn = [1TS : 1T ⊗Uξr : Uγr ⊗ 1S ], βδ = U
′

δnδ,

Zδ = Uδr = [Uγr ⊗Uξr], αδ = U
′

δrδ.

Consequently, Model (8) can be expressed as

log(r) = (1TS)η + (1TS)βξ + (1T ⊗Uξr)αξ + (1TS)βγ + (Uγr ⊗ 1S)αγ

+[1TS : 1T ⊗Uξr : Uγr ⊗ 1S ]βδ + (Uγr ⊗Uξr)αδ, (9)
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where αξ ∼ N(0, σ2
ξ (λξΣ̃ξ + (1 − λξ)Iξ−1)

−1), Iξ−1 is an identity matrix of

dimension (S − 1), αγ ∼ N(0, σ2
γΣ̃

−1

γ ), and αδ ∼ N(0, σ2
δΣ̃

−1

δ ). If we remove
the repeated columns 1TS (corresponding to βξ, βγ , and βδ), 1T ⊗Uξr, and
Uγr ⊗ 1S (corresponding to βδ), this leaves the following model

log(r) = (1TS)η + (1T ⊗Uξr)αξ + (Uγr ⊗ 1S)αγ + (Uγr ⊗Uξr)αδ. (10)

Removing the repeated columns leads to the linear constraints
∑S

i=1 ξi = 0,∑T
t=1 γt = 0,

∑S
i=1 δit = 0, ∀t and

∑T
t=1 δit = 0, ∀i. Note that if the ICAR

prior is considered for the spatial random effect, then (1T ⊗Iξ)ξ is transformed
into 1TSβξ + (1T ⊗Uξr)αξ, and the identifiable model takes the same form

as Model (10), where now αξ ∼ N(0, Σ̃
−1

ξ ). For details about the derivation
of these sum-to-zero constraints see Appendix A.

If the temporal random effect follows a RW2, then

Xγ = (Iγ ⊗ 1S)Uγn = [1TS : t∗ ⊗ 1S ], βγ = U
′

γnγ = [1T : t∗]
′
γ,

Zγ = (Iγ ⊗ 1S)Uγr = Uγr ⊗ 1S , αγ = U
′

γrγ,

Xδ = Uδn = [1TS : 1T ⊗Uξr : Uγr ⊗ 1S : t∗ ⊗ 1S : t∗ ⊗Uξr], βδ = U
′

δnδ,

Zδ = Uδr = [Uγr ⊗Uξr], αδ = U
′

δrδ.

Consequently, Model (8) can be expressed as

log(r) = (1TS)η + (1TS)βξ + (1T ⊗Uξr)αξ + [1TS : t∗ ⊗ 1S ]βγ + (Uγr ⊗ 1S)αγ

+[1TS : 1T ⊗Uξr : Uγr ⊗ 1S : t∗ ⊗ 1S : t∗ ⊗Uξr]βδ + (Uγr ⊗Uξr)αδ.

(11)

where αξ ∼ N(0, σ2
ξ (λξΣ̃ξ + (1− λξ)Iξ−1)

−1), αγ ∼ N(0, σ2
γΣ̃

−1

γ ), and αδ ∼
N(0, σ2

δΣ̃
−1

δ ). If we remove the repeated columns 1TS (corresponding to βξ,
βγ , and βδ), 1T ⊗ Uξr, t

∗ ⊗ 1S and Uγr ⊗ 1S (corresponding to βδ), this
leaves the following model

log(r) = (1TS)η + (1T ⊗Uξr)αξ + (t∗ ⊗ 1S)βγ + (Uγr ⊗ 1S)αγ

+[t∗ ⊗Uξr]βδ + (Uγr ⊗Uξr)αδ. (12)

If the ICAR prior were considered for the spatial random effect the identifiable

model would be (12), but then αξ ∼ N(0, Σ̃
−1

ξ ). The equivalent linear con-
straints are the same as in the RW1 case because the model does not include
a linear trend and no additional identifiability issue arises. See Appendix A
for more details about the derivation of these sum-to-zero constraints.

It is important to highlight that in Models (9) and (11) we have deleted
the repeated terms (1T ⊗Uξr) and (Uγr ⊗ 1S) from the fixed effects arising
from the reparameterization of the interaction random effect δ. We could have
deleted the same terms in the reparameterization of the main spatial and
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temporal random effect ξ and γ respectively, but if so this would imply that
the spatial and temporal main effects were fixed instead of random, as (1T ⊗
Uξr) and (Uγr ⊗ 1S) would only appear in the fixed part arising from the
reparameterization of the interaction random effect δ. In particular, treating
the spatial and temporal main effects as fixed effects would imply that they
are not smoothed at all.

4 Model fitting

Model fitting and inference with spatial and spatio-temporal disease mapping
models have usually been done using either an empirical Bayes (EB) or fully
Bayes (FB) approach. In the EB approach, penalized quasi-likelihood (PQL)
has been widely used (see for example MacNab and Dean, 2001; Dean et al,
2004; Ugarte et al, 2008, 2009b, 2010, 2012). From a FB perspective, Markov
chain Monte Carlo (McMC) techniques have been used because the poste-
rior distributions usually cannot be obtained in closed form (see, for example
Bernardinelli et al, 1995; Knorr-Held and Besag, 1998; Knorr-Held, 2000; Best
et al, 2005; Ainsworth and Dean, 2006; Mart́ınez-Beneito et al, 2008; Ugarte
et al, 2009a). Although these techniques have been widely used, the imple-
mentation may not be easy for practitioners as algorithms have to be carefully
chosen (Knorr-Held and Rue, 2002; Schmid and Held, 2004), and difficulties
such as long computing times and large Monte Carlo errors usually appear with
complex models (Schrödle et al, 2011). An alternative to McMC for Bayesian
inference based on integrated nested Laplace approximations and known as
INLA has been recently proposed (Rue et al, 2009). This technique can be
easily used in the free software R using the package R-INLA. In this section
we show how the PQL technique naturally applies linear constraints and we
provide guidelines to include constraints in INLA. Linear constraints when
the temporal random effect follows RW1 are easy to deal with. However, if the
distribution of the temporal random effect is RW2, constraints are a bit more
difficult to specify and place.

Consider the spatio-temporal Model (8). PQL requires a working vector
and the restricted maximum likelihood equations Harville (1977). The com-
ponents of the working vector are

Y∗ = Xη + Z1ξ + Z2γ + Z3δ + (Y − µ)g′(µ),

where X is the fixed effects matrix (here a column of ones), Z1 = 1T ⊗Iξ is the
design matrix of the main spatial random effect ξ, Z2 = Iγ ⊗ 1S is the design
matrix of the main temporal random effect γ, Z3 = Iδ is the design matrix of
the interaction term δ, µ is the vector of means of the Poisson distribution, g
is the link function (here the logarithmic function), and g′(µ) = 1/µ. Then a
correspondence with a normal mixed model is attained as

Y∗ = Xη + Z1ξ + Z2γ + Z3δ + ϵ,
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where ϵ = (Y − µ)g′(µ) ∼ N(0,W−1), and W = diag(µit). The fixed effect

estimator is obtained as η̂ = (X′V̂−1X)−1X′V̂−1Y∗, where V = W−1 +
Z1G1Z

′

1 + Z2G2Z
′

2 + Z3G3Z
′

3, and G1 = σ2
ξD

−1 or G1 = σ2
ξQ

−
ξ depending

on whether the spatial effect follows the LCAR prior (2) or the ICAR prior
respectively, G2 = σ2

γQ
−
γ , and G3 = σ2

δQ
−
δ (see for example Ugarte et al, 2010

for details). The random effects are predicted as

ξ̂ = Ĝ1Z
′

1V̂
−1(Y∗ −Xη̂),

γ̂ = Ĝ2Z
′

2V̂
−1(Y∗ −Xη̂),

δ̂ = Ĝ3Z
′

3V̂
−1(Y∗ −Xη̂).

If G1 = σ2
ξQ

−
ξ , then, the PQL technique automatically imposes the usual

sum-to-zero constraint
∑S

i=1 ξi = 0. This is clear as Qξ1S = 0, and hence∑S
i=1 ξ̂i = σ̂2

ξ (Q
−
ξ Z

′

1V̂
−1(Y∗ − Xη̂))

′
1S = σ̂2

ξ (Y
∗ − Xη̂)

′
V̂−1Z1Q

−
ξ 1S = 0.

Note that if x is an eigenvector of Qξ that has zero eigenvalue, then x is an
eigenvector of Q−

ξ that has zero eigenvalue (see for example Harville, 2008,

chap. 21, p. 546). Consequently, Q−
ξ 1S = 0. Similarly, the sum-to-zero con-

straint is automatically imposed for the temporal random effects. Further-
more, if the LCAR prior is used for the spatial effect, i.e., if G1 = σ2

ξD
−1 =

σ2
ξ (λξQξ + (1− λξ)Iξ)

−1, then the PQL technique also automatically imposes

the sum-to-zero constraint
∑S

i=1 ξi = 0 when the intercept is included in
the model. Note that in general, if x is an eigenvector of A that has non-
zero eigenvalue λ, then x is an eigenvector of A−1 that has non-zero eigen-
value 1/λ (see for example Harville, 2008 chap 21, p. 527). Consequently, as
Qξ1S = 0 and Iξ1S = 1S , D1S = (λξQξ + (1 − λξ)Iξ)1S = (1 − λξ)1S , and

then D−11S = 1
(1−λξ)

1S . Hence,
∑S

i=1 ξ̂i = σ̂2
ξ (D̂

−1Z
′

1V̂
−1(Y∗ −Xη̂))

′
1S =

σ̂2
ξ (Y

∗ − Xη̂)
′
V̂−1Z1D̂

−11S =
σ̂2
ξ

(1−λ̂ξ)
(Y∗ − Xη̂)

′
V̂−11TS = 0 taking into

account that

(Y∗ −Xη̂)
′
V̂−1X = (Y∗ −X(X′V̂−1X)−1X′V̂−1Y∗)

′
V̂−1X =

= Y∗′
(I− V̂−1X(X′V̂−1X)−1X

′
)V̂−1X =

= Y∗′
(V̂−1X− V̂−1X(X′V̂−1X)−1X

′
V̂−1X) = 0.

Then if the intercept is included in the model, the vector 1TS is one of the
columns of X and therefore (Y∗ −Xη̂)

′
V̂−11TS = 0.

PQL also automatically imposes sum-to-zero constraints
∑S

i=1 δit = 0, ∀t
and

∑T
t=1 δit = 0, ∀i if the temporal random effect follows a RW1. This is also

easy to see. If we define ei, i = 1 . . . , S, to be a vector of length S with a one
in the i-th position and zero elsewhere, and ut, t = 1 . . . , T , to be a vector of
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length T with a one in the t-th position and zero elsewhere, then

S∑
i=1

δ̂it = σ̂2
δ (Q

−
δ Z

′

3V̂
−1(Y∗ −Xη̂))′(ut ⊗ 1S)

= σ̂2
δ (Y

∗ −Xη̂)′V̂−1Z3Q
−
δ (ut ⊗ 1S)

= σ̂2
δ (Y

∗ −Xη̂)′V̂−1Z3(Qγ ⊗Qξ)
−(ut ⊗ 1S)

= σ̂2
δ (Y

∗ −Xη̂)′V̂−1Z3((Q
−
γ ut)⊗ (Q−

ξ 1S)) = 0,

and

T∑
t=1

δ̂it = σ̂2
δ (Q

−
δ Z

′

3V̂
−1(Y∗ −Xη̂))′(1T ⊗ ei)

= σ̂2
δ (Y

∗ −Xη̂)′V̂−1Z3Q
−
δ (1T ⊗ ei)

= σ̂2
δ (Y

∗ −Xη̂)′V̂−1Z3(Qγ ⊗Qξ)
−(1T ⊗ ei)

= σ̂2
δ (Y

∗ −Xη̂)′V̂−1Z3((Q
−
γ 1T )⊗ (Q−

ξ ei)) = 0.

Hence, if the distribution of the temporal random effect is RW1, PQL automat-
ically places correct constraints. However, if the distribution of the temporal
random effect is RW2, then PQL imposes more restrictions than needed unless
extra terms — a common linear trend or linear trends for each area — are
added to the model. A RW2 prior for the temporal random effect implies that
PQL automatically imposes the constraint Qγt

∗ = 0, so that
∑T

t=1 tγ̂t = 0,
but this constraint is not needed unless a linear trend is present in the model.
Similarly (Qγ⊗Qξ)(t

∗⊗ei) = 0, so that PQL automatically imposes the con-

straint
∑T

t=1 tδ̂it = 0, ∀i. Consequently, PQL places more constraints than are
needed unless we explicitly consider the model reformulation given in Equation
(12). Using the reformulated Model (10), we avoid an additional inconvenience
because if the full Model (8) is fitted placing the appropriate sum-to-zero con-
straints, the variance of the intercept is larger than the one obtained by fitting
the reformulated Model (10). The reason is that when we use the LCAR prior
for the spatial effect, the eigenvalue corresponding to the eigenvector 1S is not
null and hence it contributes to the variance of the intercept (see Appendix
C). This does not happen if the ICAR prior is considered because the eigen-
value associated with the eigenvector 1S is equal to zero, so that it does not
contribute to the variance of the intercept. When we consider the reformulated
model, the redundant intercepts disappear from the model and the variance is
not inflated.

Recently, a new approximate technique called INLA, based on integrated
nested Laplace approximations, has been proposed for Bayesian inference in
models using latent Gaussian Markov random fields (Rue et al, 2009), which
includes the models described in this paper. An attractive feature of INLA is
that it can easily be used in the free software R (R Core Team, 2016), with the
package R-INLA (Martino and Rue, 2009). R code to fit some of these models
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in INLA can be found in Ugarte et al (2014). Details about how to place
constraints in disease mapping models using INLA can be found in Schrödle
and Held (2011). We recommend a careful reading of this paper to avoid
misunderstandings. According to the authors, “. . . the identifiability of δ can
be ensured by computing the null space of the respective structure matrix R
and using the obtained eigenvectors as linear constraints for the estimation
of δ. As a consequence, the number of linear constraints which are necessary
is always equal to the rank deficiency of R [emphasis added]”. This is true if
the model includes an intercept and the temporal effect is modeled as a RW1.
However, if a RW2 prior is used for the temporal random effect, constraints are
not in fact needed for all the eigenvectors corresponding to the null eigenvalues
of the precision matrix unless a common linear trend and area specific linear
trends are included in the model, as shown in Section 3.2. Section 5 below
shows the consequences of adding these needless constraints in a model with
a RW2 prior for the temporal random effect. Appendices A and B show the
appropriate constraints.

5 Illustration

This section uses female breast cancer mortality data (ICD-10 code 50) in
Spanish provinces during the period 1990-2010 to illustrate how estimates
can change if unnecessary linear constraints are unintentionally included in
the model. The models are fitted in an EB approach using PQL and in a
FB approach using INLA. In all of the models, a global intercept η has been
included in estimating the log-risks, so we must center the spatial random
effects by including the constraint

∑S
i=1 ξi = 0. Regarding estimation of the

intercept using PQL, if a RW1 prior is used for time and the LCAR prior
is used for the spatial random effect, the estimated standard error of the the
intercept is inflated when we fit the complete Model (8) with appropriate sum-
to-zero constraints. In this case, η̂ = −0.034 and s.e.(η̂) = 0.036. However, if
we fit the reparameterized Model (10), η̂ = −0.034 and s.e.(η̂) = 0.0039. If
an ICAR prior is used for the spatial random effect, the same estimates are
obtained from the full Model (8) with appropriate sum-to-zero constraints and
from the reparameterized Model (10), i.e., the estimate and the standard error
for the intercept are η̂ = −0.034 and s.e.(η̂) = 0.0039 respectively. Using INLA
(placing uniform distributions on the standard deviations), the estimate of the
intercept (η̂ = −0.035) and its standard error (s.e.(η̂) = 0.004) are identical
for the complete Model (8) and the the reduced Model (10) regardless of we
use the ICAR or the LCAR prior for the spatial random effect.

We now focus on the estimated temporal pattern γ̂t common to all small
areas. As shown in Section 4, if a RW2 prior is used for the temporal random
effect, PQL automatically sets the constraints

∑T
t=1 γt = 0 and

∑T
t=1 tγt = 0,

the latter being unnecessary because no explicit linear trend is included in
the model. Figure 1 on the upper-left shows the estimated temporal patterns
obtained with a RW1 and a RW2 using PQL with Model (8). If we compare



14 Goicoa et al.
−

0
.2

−
0
.1

0
.0

0
.1

0
.2

1990 1994 1998 2002 2006 2010

●

●

●

●

● ●

●

●
●

● ●
● ●

●
●

● ● ●
●

●

●

●

Model (8) with RW1

Model (8) with RW2

−
0
.2

−
0
.1

0
.0

0
.1

0
.2

1990 1994 1998 2002 2006 2010

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

Model (10) − RW1

Model (12) − RW2

−
0
.2

−
0
.1

0
.0

0
.1

0
.2

1990 1994 1998 2002 2006 2010

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ● ●

●

Model (8) with RW1

Model (8) with RW2
−

0
.2

−
0
.1

0
.0

0
.1

0
.2

1990 1994 1998 2002 2006 2010

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ● ●

●

Model (10) − RW1

Model (12) − RW2

Fig. 1 Estimated temporal trend γ̂t with PQL (top) and INLA (bottom)

the fits, we see a different trend for the RW2 due to the unnecessary con-
straint

∑T
t=1 tγt = 0, instead of the expected smoother version of the RW1

fit. However, if the reparameterized Models (10) and (12) are fitted (upper-
right hand in Figure 1), where the repeated (or linearly dependent) columns
of the fixed effect matrix are deleted, the results of the two fits are much more
consistent. Because only the repeated columns are removed, the unnecessary
constraint

∑T
t=1 tγt = 0 is not placed on the fit. If the models are fitted using

INLA, once the appropriate constraints are specified for the temporal effect
γt, the temporal pattern estimated for the original Model (8) (Figure 1 on the
bottom-left) and the reparameterized Models (10) and (12) (Figure 1 on the
bottom-right) are almost identical, indicating that INLA does not inherently
place unnecessary constraints on the temporal effects.

Now consider the estimates of the spatio-temporal random effect δ ∼
N(0, σ2

δ (Qγ ⊗ Qξ)
−). If a RW2 prior is considered for the temporal random

effect and the model is fitted using PQL, the following linear constraints are
automatically imposed:

∑S
i=1 δit = 0, ∀t,

∑T
t=1 δit = 0, ∀i and

∑T
t=1 tδit = 0,

∀i. The latter constraints are unnecessary and force the area-specific risk evo-
lution to have a very restricted shape. Figure 2 shows the estimated interaction
effects for three selected provinces using PQL. The top row in Figure 2 shows
the estimates when both RW1 and RW2 are considered in the original Model
(8). Clearly the unnecessary constraints for a RW2 make the fit very different
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Fig. 2 Space-time interaction random effect δ̂it estimated with PQL
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Fig. 3 Space-time interaction random effect δ̂it estimated with INLA

from that obtained with a RW1: the linear component of the RW1 fit is ab-
sent in the RW2 fit. The bottom row in Figure 2 shows the estimates using
the reparameterized Models (10) and (12). The results seem to be more sensi-
ble as similar fits are obtained with RW1 and RW2, with the RW2 fits being
smoother, as expected.
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The results obtained with INLA are also interesting. Proceeding as sug-
gested in Schrödle and Held (2011), with all eigenvectors in the null space of
Qδ = Qγ ⊗Qξ used as constraints to identify δ, when the RW2 prior is used
the interaction fit given by INLA is very similar to the restricted interaction fit
using PQL (top row of Figure 3). This problem is solved if the reparameterized
Models (10) and (12) are used instead (bottom row of Figure 3). If instead of
reparameterizing the model, we fit the original model using INLA and apply
only the appropriate sum-to-zero constraints to δ, the resulting fit is similar
to those from the re-paramterized models with slight differences in some areas
with low populations. Figure 4 shows the estimated interaction random effect
in two low-population provinces when fitting Model (8) using INLA with a
RW1 (solid line) and with a RW2 and appropriate sum-to-zero constraints
(dashed line), and fitting the reparameterized Model (12) (dotted line). The
estimates with the correct sum-to-zero constraints and with the reparameter-
ized model differ, the latter being similar to estimates using PQL. However,
these differences do not have a great impact on the final risk estimates.

Finally, to see the effects of unnecessary constraints on the final risk esti-
mates, Figure 5 displays the estimated relative risks with PQL and INLA for
two provinces, Guipuzcoa (left column) and Barcelona (right column). Top row
corresponds to the PQL fit and bottom row displays the INLA fit. If model (8)
is fitted using PQL, the estimated relative risk (black continuos line with grey
confidence band) do not track the SMR’s trend (red line). On the other hand,
if the reparameterized model 12 is fitted, the estimated relative risks (blue
line with blue confidence band) track the SMR’s very well. The confidence
band for the estimated relative risks has been constructed using the estimated
mean squared error of the logrisk and the delta method (see Ugarte et al,
2008, 2010; Adin et al, 2016). The same effect is also observed in the INLA
fit (bottom row). If model (8) is fitted using as many constraints in the inter-
action as eigenvectors expanding the null space of the interaction covariance
matrix, the estimated relative risks (black continuos line with grey credibility
band) are wrong. However, if model (8) with appropriate constraints or the
reparameterized model (12) are fitted, the estimated relative risks (blue line
with blue credibility band) are correct. It should be noticed that PQL is plac-
ing unnecessary constraints in the main temporal effect and in the interaction
effect, whereas INLA only uses extra constraints in the interaction term. Con-
sequently, the effect of the unnecessary constraints is stronger in the PQL fit.
Nevertheless, the effect of unnecessary constraints in the final risk is serious
enough to be taken into account.

To compare models with constraints versus reparameterized models, we
computed AIC (PQL fitting) and DIC (INLA fitting). Table 1 shows AIC for
models fit using PQL and DIC for models fit using INLA. Regarding PQL,
the two models have similar AICs when the temporal distribution is a RW1,
showing equivalent results using constraints in the original model or fitting
the reparameterised model. However, when the temporal random effect is a
RW2, the high AIC for the original model indicates that PQL imposes more
constraints than needed. Results with INLA are similar to those from PQL.
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Fig. 4 Space-time interaction random effect δ̂it estimated with INLA for Model (8) with
RW1 (solid line), Model (8) with RW2 and appropriate sum-to-zero constraints (dashed
line) and the reparameterized Model (12) (dotted line)

Table 1 Model comparisons in the analysis of female breast cancer mortality data in Spain

PQL

RW1 RW2

Deviance Df AIC Time Deviance Df AIC Time

ICAR models Model 8 7410.9 145.6 7702.1 75 8802.3 66.1 8934.6 100
Model 10/12 7411.8 145.2 7702.1 240 7494.5 110.8 7716.1 400

LCAR models Model 8 7409.9 146.0 7701.8 95 8801.3 66.5 8934.3 125
Model 10/12 7411.1 145.4 7701.8 170 7493.7 111.1 7716.0 240

INLA

D̄ p.eff DIC Time D̄ p.eff DIC Time

ICAR models Model 8 7555.0 149.7 7704.8 60 7798.1 71.5 7869.6 120
Model 8∗ 7601.9 120.4 7722.4 55

Model 10/12 7555.0 149.7 7704.8 1030 7601.7 117.2 7718.9 705

LCAR models Model 8 7554.2 150.3 7704.5 100 7797.5 71.7 7869.2 235
Model 8∗ 7601.2 120.9 7722.1 95

Model 10/12 7554.2 150.3 7704.5 1640 7600.9 117.9 7718.8 1215

For RW1, the recommended constraints are appropriate, but for RW2 using
more constraints than needed leads to poor fits. Table 1 uses “Model 8∗” to
denote Model (8) fitted in INLA with the appropriate sum-to-zero constraints.
The DICs obtained with Model 8∗ are slightly higher than the analogous DICs
from the reparameterized model. This may reflect the effect shown in Figure
4. Finally, Table 1 also displays computing time (in seconds) required to fit the
models. The PQL fits were run in a personal computer LENOVO with 3.1 GHz
Intel Core i5 processor and 6GB RAM using R (version 3.2.2). The INLA fits
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Fig. 5 Standardized mortality ratios (red lines), and estimated relative risks with PQL (top
row) and INLA (bottom row) for the provinces of Guipuzcoa (left column) and Barcelona
(right column). Black lines corresponds to model (8) with unnecessary constraints, and blue
lines represents the estimates from the reparameterized model (12)

were run in a twin superserver with four processors Intel Xeon 6C and 96GB
RAM using R (version 3.2.2) and the R package INLA (version 0.0-1455098891,
dated 2016-02-10). Computing time is higher for the reparameterized models.
Consequently, if INLA is used to fit the spatio-temporal model (8) with a RW2
prior for the temporal component, it is recommended to place appropriate
constraints instead of reparameterizing the model.

6 Discussion

Statistical models used in spatial and spatio-temporal disease mapping have
become more and more sophisticated to allow proper analyses of real data. This
complexity has brought some challenges, model identifiability being one of the
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most important. There are plenty of papers on spatial and spatio-temporal dis-
ease mapping; most consider sum-to-zero constraints to achieve identifiability
but do not clearly establish why and how the constraints should be imposed.

The main objective of this paper was to clarify this issue, providing prac-
tical guidelines when spatio-temporal disease mapping models are fitted using
PQL or INLA. In both approaches (empirical or fully Bayes), one of the more
widely used priors for spatial random effects is the intrinsic CAR (ICAR).
Recently, certain disadvantages of this prior have been reported, for example,
it produces negative correlations among regions located far apart. These lim-
itations have led some authors to use the Leroux prior (LCAR) as a possible
alternative to the ICAR. The LCAR prior does not produce such negative
correlations and it has the advantage of including a parameter that quanti-
fies spatial dependence as well as unstructured heterogeneity. However, if the
LCAR prior is used and Model (8) (a spatio-temporal model with a RW1
prior for the main temporal effect) is fitted using PQL, an undesired variance
inflation of the intercept estimate occurs even if adequate restrictions on the
spatial effects are used. In addition, if a RW2 prior is used for the tempo-
ral random effects, PQL automatically places unnecessary constraints on the
estimates, which leads to an erroneous estimate of the temporal trend. Both
problems can be fixed with a reparameterization of the model based on the
spectral decomposition of the precision matrices of the spatial, temporal, and
spatio-temporal random effects, as shown in this paper. If additional spatially
varying fixed effects were included in the model, collinearity problems with the
spatial main effect could appear (see Reich et al, 2006) affecting the standard
error of the estimates. However, this is beyond the scope of this paper and de-
serves further research. Here, our focus is on putting adequate restrictions in
disease mapping models commonly used for map production in vital agencies,
public health institutions, and research centers.

For Bayesian inference, model fitting can be done using McMC or INLA;
INLA is popular nowadays and we have focused on it. In this paper, we pro-
vided details on how to specify appropriate constraints in INLA when fit-
ting the more common spatio-temporal models, including four types of spatio-
temporal interactions (Knorr-Held, 2000; see Appendices A and B). Previous
papers have not clarified this aspect of using INLA in enough detail and proper
constraint specification is crucial for practitioners. In particular it is not the
case that the number of linear constraints needed to identify the interaction ef-
fect is always equal to the rank deficiency of the precision matrix (Schrödle and
Held, 2011). Placing more restrictions than needed again leads to erroneous
estimates.

Summing up, when using PQL for fitting spatio-temporal disease mapping
models, our recommendation is to reparameterize the model using the spectral
decomposition of the precision matrices of the random effects before fitting. If
model fitting is carried out using INLA, the appropriate constraints must be
identified and used. Doing so gives correct results without incurring the extra
computing time required to fit the reparameterized model in R-INLA.
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Appendix A

Appendix A shows how the usual sum-to-zero constraints are derived.

Appendix A.1

Given the spatio-temporal model of Equation (8)

log(r) = (1TS)η + (1T ⊗ Iξ)ξ + (Iγ ⊗ 1S)γ + Iδδ,

where η is the log of the global risk, the spatial random effect ξ ∼ N(0, σ2
ξQ

−
ξ )

follows an ICAR distribution, the temporal random effect γ ∼ N(0, σ2
γQ

−
γ ) fol-

lows a RW1 distribution, and the interaction random effect δ ∼ N(0, σ2
δ (Qγ ⊗

Qξ)
−) is completely structured (Type IV interaction) in space and time, the

linear constraints that make this model identifiable are

S∑
i=1

ξi = 0,

T∑
t=1

γt = 0 and

T∑
t=1

δit = 0, for i = 1, . . . , S

S∑
i=1

δit = 0, for t = 1, . . . , T

As shown in Section 3.2, the random effects of Equation (8) can be repa-
rameterized using the spectral decomposition of their covariance matrices, so
this model becomes

log(r) = (1TS)η + [Xξ : Zξ]

[
βξ

αξ

]
+ [Xγ : Zγ ]

[
βγ

αγ

]
+ [Xδ : Zδ]

[
βδ

αδ

]
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where

Xξ = (1T ⊗ Iξ)Uξn = 1TS , βξ = U
′

ξnξ = 1
′

Sξ

Zξ = (1T ⊗ Iξ)Uξr = 1T ⊗Uξr, αξ = U
′

ξrξ,

Xγ = (Iγ ⊗ 1S)Uγn = 1TS , βγ = U
′

γnγ = 1
′

Tγ

Zγ = (Iγ ⊗ 1S)Uγr = Uγr ⊗ 1S , αγ = U
′

γrγ,

Xδ = Uδn = [1TS : 1T ⊗Uξr : Uγr ⊗ 1S ], βδ = U
′

δnδ

Zδ = Uδr = [Uγr ⊗Uξr], αδ = U
′

δrδ.

Consequently, the model can be re-expressed as

log(r) = (1TS)η + (1TS)βξ + (1T ⊗Uξr)αξ + (1TS)βγ + (Uγr ⊗ 1S)αγ

+[1TS : 1T ⊗Uξr : Uγr ⊗ 1S ]βδ + (Uγr ⊗Uξr)αδ.

where αξ ∼ N(0, σ2
ξΣ̃

−1

ξ ), αγ ∼ N(0, σ2
γΣ̃

−1

γ ) and αδ ∼ N(0, σ2
δΣ̃

−1

δ ).
To obtain the identifiable model of Equation (10), the repeated columns 1TS ,
1T ⊗Uξr and Uγr ⊗ 1S must be removed, which is equivalent to set βξ = 0,
βγ = 0 and βδ = 0. For the first two constraints, it is straightforward that

βξ = 0 ⇐⇒ 1
′

Sξ = 0 ⇐⇒
S∑

i=1

ξi = 0 and βγ = 0 ⇐⇒ 1
′

Tγ = 0 ⇐⇒
T∑

t=1

γt = 0.

Now decompose the constraint βδ = 0 into its three terms:

– As in the previous case, 1
′

TSδ = 0 ⇐⇒
S∑

i=1

T∑
t=1

δit = 0.

– Denoting δ = (δ11, . . . , δS1, . . . , δ1T , . . . , δST )
′
it can be shown that

(1T⊗Uξr)
′
δ = [U

′

ξr : · · · : U
′

ξr]

 δ11
...

δST

 = U
′

ξr[Iξ : · · · : Iξ]

 δ11
...

δST

 = U
′

ξr


T∑

t=1
δ1t

...
T∑

t=1
δSt

 ,

and

(1T ⊗Uξr)
′
δ = 0 ⇐⇒ U

′

ξr


T∑

t=1
δ1t

...
T∑

t=1
δSt

 =

0
...
0

 .
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U
′

ξr is a (S − 1) × S matrix with rank S − 1 and the previous homoge-
nous linear system has an infinite number of solutions. However, as the
S∑

i=1

T∑
t=1

δit = 0 sum-to-zero constraint is satisfied, adding this constraint to

the linear system:

[
U

′

ξr

1
′

S

]
T∑

t=1
δ1t

...
T∑

t=1
δSt

 =

0
...
0

 ⇐⇒


T∑

t=1
δ1t

...
T∑

t=1
δSt

 =

 0
...
0

 ⇐⇒
T∑

t=1

δit = 0, ∀i.

– In a similar way, it can be shown that

(Uγr ⊗ 1S)
′
δ = U

′

γr

1
′

S . . . 0

0
. . . 0

0 0 1
′

S

 δ = U
′

γr(Iγ ⊗ 1
′

S)δ = U
′

γr


S∑

i=1

δi1

...
S∑

i=1

δiT


and consequently,

(Uγr ⊗ 1S)
′
δ = 0 ⇐⇒ U

′

γr


S∑

i=1

δi1

...
S∑

i=1

δiT

 =

 0
...
0



U
′

γr is a (T − 1) × T matrix with rank T − 1, and the previous homoge-
nous linear system has an infinite number of solutions. However, as the
S∑

i=1

T∑
t=1

δit = 0 sum-to-zero constraint is satisfied, adding this constraint to

the linear system

[
U

′

γr

1
′

T

]


S∑
i=1

δi1

...
S∑

i=1

δiT

 =

 0
...
0

 ⇐⇒


S∑

i=1

δi1

...
S∑

i=1

δiT

 =

 0
...
0

 ⇐⇒
S∑

i=1

δit = 0, ∀t.

Appendix A.2

Given the spatio-temporal model of Equation (8)

log(r) = (1TS)η + (1T ⊗ Iξ)ξ + (Iγ ⊗ 1S)γ + Iδδ,
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where η is the log of the global risk, the spatial random effect ξ ∼ N(0, σ2
ξQ

−
ξ )

follows an ICAR distribution, the temporal random effect γ ∼ N(0, σ2
γQ

−
γ ) fol-

lows a RW2 distribution, and the interaction random effects δ ∼ N(0, σ2
δ (Qγ⊗

Qξ)
−) are completely structured (Type IV interaction) in space and time, the

linear constraints that make this model identifiable are

S∑
i=1

ξi = 0,

T∑
t=1

γt = 0 and

T∑
t=1

δit = 0, for i = 1, . . . , S

S∑
i=1

δit = 0, for t = 1, . . . , T

Additionally, the constraints
T∑

t=1

S∑
i=1

tδit = 0 have to be considered, but they

are automatically placed with
S∑

i=1

δit = 0, as
T∑

t=1

S∑
i=1

tδit =
T∑

t=1
t

S∑
i=1

δit = 0.

If the temporal random effect γ follows a RW2 distribution, the random ef-
fects of Equation (8) can be reparameterized using the spectral decomposition
of the covariance matrix, so this model becomes

log(r) = (1TS)η + [Xξ : Zξ]

[
βξ

αξ

]
+ [Xγ : Zγ ]

[
βγ

αγ

]
+ [Xδ : Zδ]

[
βδ

αδ

]
where

Xξ = (1T ⊗ Iξ)Uξn = 1TS , βξ = U
′

ξnξ = 1
′

Sξ

Zξ = (1T ⊗ Iξ)Uξr = 1T ⊗Uξr, αξ = U
′

ξrξ,

Xγ = (Iγ ⊗ 1S)Uγn = [1TS : t∗ ⊗ 1S ], βγ = U
′

γnγ = [1T : t∗]
′
γ,

Zγ = (Iγ ⊗ 1S)Uγr = Uγr ⊗ 1S , αγ = U
′

γrγ,

Xδ = Uδn = [1TS : 1T ⊗Uξr : Uγr ⊗ 1S : t∗ ⊗ 1S : t∗ ⊗Uξr], βδ = U
′

δnδ,

Zδ = Uδr = [Uγr ⊗Uξr], αδ = U
′

δrδ.

Consequently, this model can be re-expressed as

log(r) = (1TS)η + (1TS)βξ + (1T ⊗Uξr)αξ + [1TS : t∗ ⊗ 1S ]βγ + (Uγr ⊗ 1S)αγ

+[1TS : 1T ⊗Uξr : Uγr ⊗ 1S : t∗ ⊗ 1S : t∗ ⊗Uξr]βδ + (Uγr ⊗Uξr)αδ.

where αξ ∼ N(0, σ2
ξΣ̃

−1

ξ ), αγ ∼ N(0, σ2
γΣ̃

−1

γ ) and αδ ∼ N(0, σ2
δΣ̃

−1

δ ).

To obtain the identifiable model of Equation (12), the repeated columns
1TS (corresponding to βγ), 1T ⊗Uξr, Uγr ⊗ 1S and t∗ ⊗ 1S (corresponding
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to βδ) must be removed, which is equivalent to set 1
′

Sξ = 0, 1
′

Tγ = 0 and

[1TS : 1T ⊗Uξr : Uγr ⊗ 1S : t∗ ⊗ 1S ]
′
δ = 0.

Similar to the RW1 case, it can be shown that:

– 1
′

Sξ = 0 ⇐⇒
S∑

i=1

ξi = 0, 1
′

Tγ = 0 ⇐⇒
T∑

t=1
γt = 0 and 1

′

TSδ = 0 ⇐⇒
S∑

i=1

T∑
t=1

δit = 0.

– (t∗ ⊗ 1S)
′
δ = 0 ⇐⇒ (1

′

S , 21
′

S , . . . , T1
′

S)δ = 0 ⇐⇒
S∑

i=1

T∑
t=1

tδit = 0.

– (1T ⊗Uξr)
′
δ = 0 ⇐⇒ U

′

ξr


T∑

t=1
δ1t

...
T∑

t=1
δSt

 = 0 ⇐⇒
T∑

t=1
δit = 0, ∀i.

– Finally,

(Uγr ⊗ 1S)
′
δ = 0 ⇐⇒ U

′

γr


S∑

i=1

δ1i

...
S∑

i=1

δTi

 = 0,

U
′

γr is a (T −2)×T matrix with rank T −2, and the previous homogenous
linear system has an infinite number of solutions. However, adding both
S∑

i=1

T∑
t=1

δit = 0 and
S∑

i=1

T∑
t=1

tδit = 0 sum-to-zero constraints to the linear

system

U
′

γr

1
′

T

t∗
′




S∑
i=1

δi1

...
S∑

i=1

δiT

 =

 0
...
0

 ⇐⇒


S∑

i=1

δi1

...
S∑

i=1

δiT

 =

0
...
0

 ⇐⇒
S∑

i=1

δit = 0, ∀t.

The reader should note that if the Leroux et al. (1999) reparameterization
is used, the same sum-to-zero constraints have to be considered because the
linear combination

∑S
i=1 ξi is in the span of the intercept.

Appendix B

In this section we provide the constraints for interactions of Type I, II, and
III.
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Appendix B1: RW1

Given the spatio-temporal model of Equation (8)

log(r) = (1TS)η + (1T ⊗ Iξ)ξ + (Iγ ⊗ 1S)γ + Iδδ,

where η is the log of the global risk, the spatial random effect ξ ∼ N(0, σ2
ξQ

−
ξ )

follows an ICAR distribution, the temporal random effect γ ∼ N(0, σ2
γQ

−
γ )

follows a RW1 distribution.

1. If the interaction effects are unstructured in space and time, that is, the
interaction is of Type I with δ ∼ N(0, σ2

δIδ), the linear constraints that
make this model identifiable are

S∑
i=1

ξi = 0,

T∑
t=1

γt = 0 and

T∑
t=1

S∑
i=1

δit = 0

2. If the interaction effects are unstructured in space and structured in time,
that is, the interaction is of Type II with δ ∼ N(0, σ2

δ (Qγ ⊗ Iξ)
−), the

linear constraints that make this model identifiable are

S∑
i=1

ξi = 0,

T∑
t=1

γt = 0 and

T∑
t=1

δit = 0, i = 1, . . . , S.

3. If the interaction effects are structured in space and unstructured in time,
that is, the interaction is of Type III with δ ∼ N(0, σ2

δ (Iγ ⊗ Qξ)
−), the

linear constraints that make this model identifiable are

S∑
i=1

ξi = 0,

T∑
t=1

γt = 0 and

S∑
i=1

δit = 0, t = 1, . . . , T.

Appendix B2: RW2

Given the spatio-temporal model of Equation (8)

log(r) = (1TS)η + (1T ⊗ Iξ)ξ + (Iγ ⊗ 1S)γ + Iδδ,

where η is the log of the global risk, the spatial random effect ξ ∼ N(0, σ2
ξQ

−
ξ )

follows an ICAR distribution, the temporal random effect γ ∼ N(0, σ2
γQ

−
γ )

follows a RW2 distribution.

1. If the interaction effects are unstructured in space and time, that is, the
interaction is of Type I with δ ∼ N(0, σ2

δIδ), the linear constraints that
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make this model identifiable are

S∑
i=1

ξi = 0,

T∑
t=1

γt = 0, and

T∑
t=1

S∑
i=1

δit = 0,

T∑
t=1

S∑
i=1

tδit = 0.

2. If the interaction effects are unstructured in space and structured in time,
that is, the interaction is of Type II with δ ∼ N(0, σ2

δ (Qγ ⊗ Iξ)
−), the

linear constraints that make this model identifiable are

S∑
i=1

ξi = 0,

T∑
t=1

γt = 0,

T∑
t=1

tγt = 0 and
T∑

t=1
δit = 0, for i = 1, . . . , S.

3. If the interaction effects are structured in space and unstructured in time,
that is, the interaction is of Type III with δ ∼ N(0, σ2

δ (Iγ ⊗ Qξ)
−), the

linear constraints that make this model identifiable are

S∑
i=1

ξi = 0,

T∑
t=1

γt = 0 and

S∑
i=1

δit = 0, for t = 1, . . . , T.

Appendix C

This section shows that the variance of the intercept is inflated if the LCAR
prior is used for the spatial random effect and the model is fitted using PQL
with appropriate constraints. If the model is reparameterized, the variance is
not inflated. It also shows that the ICAR prior does not present this problem.
We consider this spatial linear mixed model:

Y = (1S)η + ξ + ϵ. (13)

Appendix C: ICAR prior

Assume an ICAR prior for the spatial random effect ξ, that is, ξ ∼
N(0, σ2

ξQ
−
ξ ), and ϵ ∼ N(0, σ2

ϵ I). Then

var(Y ) = V = σ2
ϵ IS + σ2

ξQ
−
ξ = σ2

ϵ (IS + kUξΣ
−
ξ U

′
ξ)
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where IS is an S×S identity matrix, Uξ = [Uξn : Uξr] = [1S/
√
S : Uξr], and

k = σ2
ξ/σ

2
ϵ . Clearly

V−1 =
1

σ2
ϵ

(IS + kUξΣ
−
ξ U

′
ξ)

−1 =
1

σ2
ϵ

Uξ(IS + kΣ−
ξ )

−1U′
ξ.

Then

(X′V−1X) =
1

σ2
ϵ

1′
SUξ(IS + kΣ−

ξ )
−1U′

ξ1S

=
1

σ2
ϵ

[
S/

√
S, 0, . . . , 0

]
diag(1, 1 + k/d2, . . . , 1 + k/dS)

−1
[
S/

√
S, 0, . . . , 0

]′
=

S

σ2
ϵ

whereX = 1S , d2, . . . , dS are the non-null eigenvalues ofQξ (note that d1 = 0),
and finally

var(η̂) = (X′V−1X)−1 =
σ2
ϵ

S
.

Now reparameterize Model (13). Then

Y = (1S)η +Uξrαξ + ϵ,

where α ∼ N(0, σ2
ξΣ̃

−1

ξ ). Then,

var(Y ) = V = σ2
ϵ (IS + kUξrΣ̃

−1

ξ U′
ξr).

Using matrix inversion formulas and noting that U′
ξrUξr = IS−1, it follows

that

V−1 =
[
σ2
ϵ (IS + kUξrΣ̃

−1

ξ U′
ξr)

]−1

=
1

σ2
ϵ

[
IS − ISUξr(U

′
ξrISUξr + k−1Σ̃ξ)

−1U′
ξrIS

]
=

1

σ2
ϵ

[
IS −Uξr(IS−1 + k−1Σ̃ξ)

−1U′
ξr

]
,

and

(X′V−1X) =
1

σ2
ϵ

1′
S

[
IS −Uξr(IS−1 + k−1Σ̃ξ)

−1U′
ξr

]
1S

=
1

σ2
ϵ

[
1′
S1S − 1′

SUξr(IS−1 + k−1Σ̃ξ)
−1U′

ξr1S

]
.

=
1

σ2
ϵ

(S − 0) =
S

σ2
ϵ

,
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because 1S and the columns of Uξr are orthogonal. Consequently,

var(η̂) = (X′V−1X)−1 =
σ2
ϵ

S
,

and the variance is the same if the model is fitted with appropriate sum-to-zero
constraints or in the reparameterized version.

Appendix C: LCAR prior

Assume an LCAR prior for the spatial random effect ξ, that is ξ ∼
N(0, σ2

ξD
−1
ξ ), D = λξQξ + (1− λξ)IS . Then

var(Y ) = V = σ2
ϵ IS + σ2

ξD
−1
ξ = σ2

ϵ (IS + kD−1)

= σ2
ϵ

[
IS + kUξ((1− λξ)IS + λξΣξ)

−1U′
ξ

]
where as before, IS is an S×S identity matrix, Uξ = [Uξn : Uξr] = [1S/

√
S :

Uξr], and k = σ2
ξ/σ

2
ϵ . Clearly

V−1 =
1

σ2
ϵ

[
IS + kUξ((1− λξ)IS + λξΣξ)

−1U′
ξ

]−1

=
1

σ2
ϵ

Uξ

[
IS + k((1− λξ)IS + λξΣξ)

−1
]−1

U′
ξ

=
1

σ2
ϵ

Uξdiag

(
1 +

k

λξd1 + (1− λξ)
, . . . , 1 +

k

λξdS + (1− λξ)

)−1

U′
ξ

Note that the eigenvalues of the precision matrix λξQξ + (1 − λξIS) are all
positive whenever λξ < 1. They take the form λξdi + (1 − λξ), i = 1, . . . , S,
where d1 = 0 and di > 0, i = 2, . . . , S are the eigenvalues of Qξ. Then

(X′V−1X) =
1

σ2
ϵ

1′
SUξdiag

(
1 +

k

(1− λξ)
, . . . , 1 +

k

λξdS + (1− λξ)

)−1

1S

=
1

σ2
ϵ

[
S/

√
S, 0, . . . , 0

]
diag

(
1 +

k

(1− λξ)
, . . . , 1 +

k

λξdS + (1− λξ)

)−1 [
S/

√
S, 0, . . . , 0

]′
=

S

σ2
ϵ

(
1 +

k

(1− λξ)

)−1

.

Finally

var(η̂) = (X′V−1X)−1 =
σ2
ϵ

S

(
1 +

k

(1− λξ)

)
.
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Now reparameterize Model (13). Then

Y = (1S)η +Uξrαξ + ϵ,

where αξ ∼ N(0, σ2
ξ (λξΣ̃ξ +(1−λξ)IS−1)

−1). Denoting by D̃ = λξΣ̃ξ +(1−
λξ)IS−1,

var(Y ) = V = σ2
ϵ (IS + kUξrD̃

−1U′
ξr).

Using matrix inversion formulas and taking into account that U′
ξrUξr =

IS−1,

V−1 =
[
σ2
ϵ (IS + kUξrD̃

−1U′
ξr)

]−1

=
1

σ2
ϵ

[
IS − ISUξr(U

′
ξrISUξr + k−1D̃)−1U′

ξrIS

]
=

1

σ2
ϵ

[
IS −Uξr(IS−1 + k−1D̃)−1U′

ξr

]
,

and

(X′V−1X) =
1

σ2
ϵ

1′
S

[
IS −Uξr(IS−1 + k−1D̃)−1U′

ξr

]
1S

=
1

σ2
ϵ

[
1′
S1S − 1′

SUξr(IS−1 + k−1D̃)−1U′
ξr1S

]
.

=
1

σ2
ϵ

(S − 0) =
S

σ2
ϵ

Consequently,

var(η̂) = (X′V−1X)−1 =
σ2
ϵ

S
.

Thus it is clear that if the model is fitted with sum-to-zero constraints the vari-
ance of the intercept estimator is inflated. This is avoided by reparameterizing
the model.
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