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Abstract The customary electrical circuit configuration for estimating mechan-
ical loads with strain gauges uses Wheatstone full- or half-bridges. For each me-
chanical load to be estimated, a dedicated bridge with two or four gauges has to
be mounted, placing the strain gauges in specific configurations along the mea-
sured part. In this paper the strain of individual gauges is measured by means
of quarter-bridges and all the mechanical loads exerted on a shaft are estimated
jointly as different linear combinations of the strains of the gauges. The location
of the gauges on the shaft are determined optimally and the influence of apparent
strain related to temperature variations is avoided. Results show several configura-
tions of reduced sets of gauges capable of optimally estimating the six components
of the mechanical loads exerted on a circular cross-section shaft. The validation
of the approach in a dedicated rig has shown the complexity of its experimental
implementation.

Keywords Optimal Sensor Placement · Strain Gauges · Mechanical Loads ·
Estimation · Condition Monitoring

1 Introduction

Condition monitoring tries to identify changes in certain parameters of machinery
and structures in order to prevent faults [23,24]. Different types of sensors are
placed in suitable locations of the machinery which measure, among others, the
value of the parameters to be controlled, the external loads applied or the strain
suffered by the materials. The type of sensors to be used, their location and the
information reachable by their combination have been research topics in the last
decades in several fields.

Due to their accuracy and low unit cost, strain gauges are one the most used
sensors. They are bonded on the part of interest at locations where the strain is
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expected to be the largest. The gauges are commonly assembled in Wheatstone
bridges which produce a voltage measurement related to the strain of the gauges
[4,14,20].

Strain measurements are used to indirectly determine other properties as loads
or deflections, which may not be directly measurable with a sensor. For example,
Zhang et al. [22] use strain gauges to estimate bearing loads in rotating machinery
with a so-called three section method, considering bending deflection with gauges
located at the top and the bottom of a planar model of the shaft. Strain gauges
have also been used in the design of force-sensors in one or more axis. A recent
reference [19] presents a state-of-art review of multi-axis force sensors based on
different strain sensing technologies, being strain gauges one of them. These force
sensors typically use the strain due to bending loads to measure the loads. An
example can be the dynamometer presented in [15], which uses bending strain in
order to determine the cutting force in a machining process.

There are commonly accepted configurations of gauges used to measure bend-
ing, torsion or axial loads [6]. Fig. 1 illustrates the way gauges are usually placed,
together with their corresponding Wheatstone bridge.
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(a) Axial load measurement.
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(b) Bending load measurement.
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(c) Torsion load measurement. (d) Wheatstone bridge configuration.

Fig. 1: Typical gauge configurations to measure specific loads.

Gauge configurations shown in Fig. 1 are useful since they measure specific
load components while compensating for the other load components and thermal
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strains. In other words, this means that the output of the Wheatstone bridge
provides a voltage proportional to a single load component, regardless of the value
of the other loads and thermal strains. For instance, the configuration in Fig.
1a can measure axial loads compensating for bending loads and torsion. In turn,
the configuration in Fig. 1b measures bending loads compensating for axial and
torsion loads. Finally, the configuration of Fig. 1c is used to measure torsion loads
compensating for axial and bending loads. The three configurations of Fig. 1, when
connected in a full-bridge as shown in Fig. 1d, compensate the thermal strain. This
is a very important property associated with the configuration of the gauges and
the way they are connected in the full bridge.

Despite the use of the configurations of gauges of Fig. 1 is very extended, they
have the disadvantage of needing 4 strain gauges for measuring a single load. One
could think that for measuring a single load a single gauge could be enough, but
usually more than one gauge are needed in order to compensate for other loads
and thermal strains. For example, a single gauge is required to measure bending
loads, as in Fig. 2a, if the strain of the gauge is only produced by a pure bending
moment. If there is also an axial load, the strain of the gauge is a combination
of both bending and axial loads. Hence, in the presence of axial loads, at least
2 gauges are needed in order to measure the bending load compensating for the
axial one. However, it is more common to use the configuration of Fig. 1b with 4
gauges because it improves the estimation sensitivity still compensating thermal
effects.
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(a) A single gauge: when strain is due to a
single bending load.
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(b) Two gauges: when there is also an axial
load.

Fig. 2: Configurations of gauges to measure bending loads.

Summarising, it is expected that a strain gauge which is arbitrarily located in
a beam will be affected by each of the six components of a wrench (the three forces
and three moments). With the customary configurations, a set of gauges is used in
order to estimate a single component of the wrench, suppressing the contribution
of the other components and compensating for thermal strains.

To the best of our knowledge, no one has considered measuring the whole
wrench at the same time using a single set of gauges, in such a way that every
gauge contributes to the measurement of every load. This paper shows a procedure
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to optimise the location of the minimum set of gauges necessary to estimate the six
components of the wrench, optionally compensating for thermal strains too. The
estimation of each load is carried out using the contribution of every gauge and
the optimal location of the gauges is calculated using the D-optimality criterion.

The paper is organised as follows. First, in Section 2 the strain of an arbitrarily
located gauge is calculated, considering it is placed on the perimeter of the cross-
section of a shaft. An explicit expression of the strain of the gauge is obtained
as a function of the force and moment components of the external wrench at
the specific section of the shaft. Section 3 shows how the wrench can be estimated
from the strain measurement of a set of gauges. The location and orientation of the
gauges around the section of the shaft are optimised in order to estimate wrench
components with the minimum possible variance. Since the measurement of the
gauge is affected also by temperature changes, Section 4 shows how temperature
effects can be compensated. The results of the numerical optimisation, concerning
the location of a set of gauges for estimating the external wrench at a section are
presented in Section 5. Optimal results for measuring the wrench at a section with
6 and 8 gauges are also shown. Finally, the conclusions are presented in Section 8.

2 Determination of the strain of an arbitrarily located gauge

This section describes the determination of the strain of a single gauge as a function
of the components of an external wrench. Using a set of bases, parameters and
coordinates, the stress tensor at the location of the strain gauge is calculated first
and then an explicit expression of the strain of the gauge is obtained as a function
of components of the external wrench.

2.1 Measuring approach: full-bridges vs. quarter-bridges

As mentioned in the introduction, a key aspect of this work is that, instead of
dedicating a set of gauges for each measured load component, a bigger set of gauges
is dedicated to measure all wrench components. In the typical configurations, the
strain gauges are assembled in a full- or half-bridge circuit configuration where a
single voltage is measured.

The use of full Wheatstone bridges has some advantages over using half- or
quarter-bridges. For example, as all the strain gauges are bonded to the same
part, they are exposed to the same temperature. Since the Wheatstone bridge
circuit electrically sums the resistance of two of the gauges and subtracts the
resistance of the other two, any temperature effect is automatically compensated
and temperature variations have no influence on the measurement of the loads.

Another advantage of using full Wheatstone bridges is related to the sensitivity.
For example, the sensitivity of the full-bridge configuration of Fig. 1b for measuring
bending moment is twice as sensitive as the half-bridge configuration of Fig. 2b
since there are twice the gauges in the former. Therefore, two half-bridge would
be equivalent to a full-bridge in terms of sensitivity.

Using quarter-bridges it is possible to reach the same result. If each of the
4 strain gauges of a full Wheatstone bridge was connected in a different quarter-
bridge circuit, adding and subtracting the contribution of each of them mathemat-
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ically (and not electrically as in the Wheatstone circuit) the same load results and
sensitivities of the full-bridge would be achieved. This approach has an interesting
advantage: the voltage drop measurement of a gauge in a quarter-bridge can be
used to estimate several load components. That leads to a powerful outcome which
is key in this paper: for a set of gauges, each of them in a quarter bridge, several
load components can be calculated as different linear combinations of the voltage
drops in the output of the quarter bridges.

In order to illustrate this, two ways of measuring torsion and shear will be
explained:

1. Figs. 3a and 3b show the typical configurations in which the strain gauges are
bonded in a shaft in order to measure torsion and shear, respectively. Figs. 3c
and 3d represent their corresponding Wheatstone full-bridges. For these con-
figurations torsion (M1) and shear (F3) are proportional to the corresponding
output voltages, V Tor

out and V Shear
out , respectively. Likewise, these output volt-

ages are proportional to linear combinations of the strains suffered by the
gauges:

G
3

G
4

GGGGGGGGGGGGGG
4

G
4

G
4

G
4

G
4

G
4

GGG
444

G
44444

G
2

GGGGGGG
33

GGG
333333

G
1

(a) Gauge configuration for Torsion.
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(b) Gauge configuration for Shear.

(c) Wheatstone bridge for Torsion. (d) Wheatstone bridge for Shear.

Fig. 3: Typical configurations and Wheatstone bridges for measuring torsion and
shear.
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M1 ∝ V Tor
out ∝ (ε1 − ε2 + ε3 − ε4)

F3 ∝ V Shear
out ∝ (ε5 − ε6 + ε7 − ε8)

(1)

where εi is the strain of the ith gauge. If both shear and torsion estimations
were desired, 2 full-bridges should be mounted using 8 strain gauges and 2
measuring channels.

2. On the other hand, with the 4 gauges of Fig. 3a, it is possible to measure
both torsion and shear if the gauges are used in quarter-bridges, that is, a
Wheatstone bridge for each strain gauge with three constant resistances as
shown in Fig. 4. Considering that the output voltage is proportional to the
deformation of the single gauge of the quarter-bridge, with each of the gauges
of Fig. 3a plugged in an individual quarter-bridge, torsion (M1) and shear
(F3) would be proportional to the linear combinations of the measured strains
shown in Eq. (2):

Fig. 4: Electric circuit of a Wheatstone quarter-bridge.

M1 ∝ (V 1
out − V 2

out + V 3
out − V 4

out) ∝ (ε1 − ε2 + ε3 − ε4)

F3 ∝ (V 1
out − V 2

out − V 3
out + V 4

out) ∝ (ε1 − ε2 − ε3 + ε4)
(2)

With this approach, only 4 gauges are needed to measure torsion and shear,
each of them with its corresponding quarter-bridge circuit.

This paper will follow the second approach. That is, the voltage drop that
occurs in each individual strain gauge will be measured by means of a quarter-
bridge circuit. Consequently, each component of the wrench will be calculated as
a different linear combination of the quarter-bridge measurements.

2.2 Geometric modelling of the gauge location

The objective of this section is to build a geometric model to define the location
and orientation of the strain gauges in the perimeter of a circular shaft as well
as defining the bases used to determine the components of the wrench. For the
sake of simplicity, the wrench will be calculated at the centre of the cross-section.
The strain gauges will be located in a plane perpendicular to the axis of the shaft
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and containing point O (i.e. in the perimeter of the perpendicular cross-section
containing point O). As an optimal location of the strain gauges is desired, their
location is unknown a priori and it will be described with two angular parameters
that will determine the position and orientation of the gauge in the perimeter, as
shown in Fig. 5.
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Fig. 5: Location and orientation of a strain gauge. Figure (a) is seen from 2′.

The cross section of the shaft is supposed to be constant in the vicinity of the
considered section and is loaded with 3 forces and 3 moments that constitute the
wrench with respect to point O. The material of the shaft is supposed to be linear,
elastic and isotropic and Saint Venant’s Principle is supposed to be met with the
strain gauges located sufficiently far from the applied loads.

Four orientation bases, two angular parameters and a coordinate are used to
determine the position and orientation of each strain gauge as described in Fig. 5.
Base xyz is an orientation fixed to the ground and its positive x axis is coincident
with the symmetry axis of the shaft. Angle θ determines the rotation of the shaft
with respect to the ground and angle ϕ determines the position of the strain gauge
at point P and the orientation of base 1′2′3′. Angle δ determines the orientation
of the strain gauge on the surface of the shaft. As the strain gauge is fixed to the
shaft, bases 123, 1′2′3′ and 1′′2′′3′′ are also fixed to the shaft. Bases 1′2′3′ and
1′′2′′3′′ are different for each strain gauge since they depend on their own ϕ and
δ angles. Conversely, bases xyz and 123 are common to all strain gauges.

As any vector or tensor is likely to be expressed in any of the bases defined,
the proper coordinate transformation matrices will be defined. If the coordinates
of vector v in base 123 are known to be {v}123 and its coordinates in base xyz
are desired, {v}xyz, the coordinate transformation matrix [R]123xyz can be used as
follows:

{

v
}

xyz
=





1 0 0
0 cos θ − sin θ
0 sin θ cos θ





123

xyz

{

v
}

123
= [R]123xyz

{

v
}

123
(3)
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Analogously, the next two coordinate transformation matrices can be defined:

{

v
}

123
=





1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ





1′2′3′

123

{

v
}

1′2′3′
= [R]1

′2′3′

123

{

v
}

1′2′3′
(4)

{

v
}

1′2′3′
=





cos δ 0 sin δ
0 1 0

− sin δ 0 cos δ





1′′2′′3′′

1′2′3′

{

v
}

1′′2′′3′′
= [R]1

′′2′′3′′

1′2′3′

{

v
}

1′′2′′3′′
(5)

In what follows these transformation matrices will be used because the strain
of each gauge is measured in its own 1′′2′′3′′ base while the components of the
wrench are desired in bases 123 or xyz.

2.3 Stress tensor components calculation for an arbitrary wrench

The wrench that is to be estimated is the one that the right half of the shaft in
Fig. 5a exerts on the left half. The components of the force and moment of this
wrench in bases 123 and 1′2′3′ are related to each other as:







F ′
1

F ′
2

F ′
3







1′2′3′

=





1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ





123

1′2′3′







F1

F2

F3







123

=







F1

F2 cosϕ+ F3 sinϕ
−F2 sinϕ+ F3 cosϕ







1′2′3′

(6)







M ′
1

M ′
2

M ′
3







1′2′3′

=





1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ





123

1′2′3′







M1

M2

M3







123

=







M1

M2 cosϕ+M3 sinϕ
−M2 sinϕ+M3 cosϕ







1′2′3′

(7)

where F1 denotes axial force, F2 and F3 denote shear forces, M1 denotes torsion
moment and M2 and M3 denote bending moments with respect to point O. Even
if wrench components will be given in base 123, for the stress tensor calculation
the components in base 1′2′3′ will be used first.

Let t′ = (F ′
1, F

′
2, F

′
3,M

′
1,M

′
2,M

′
3)

T be the external wrench at point O. In order
to calculate the stress tensor σ at point P related to the external wrench t′, the
stress tensors related to the individual components of the wrench are determined
first. The compound stress tensor will be calculated by superposition of the indi-
vidual ones. For the solid differential shown in Fig. 6a, the defined wrench is the
one that is applied to the hatched face.

The stress tensor components are established by defining the three mutually
orthogonal surfaces at point P . The normals to each surface will establish, in this
case, the 1′, 2′ and 3′ Cartesian axes. In general, each surface will have a normal
and two shear stresses. The normal stress is labelled σ and the shear stresses acting
on the surface are labelled τ . In the double subscript notation, the first subscript
indicates the direction normal to the surface whereas the second subscript is the
direction of the stress. By convention, the normal stress is positive if its direction
is outwards the differential cube (traction). In a similar manner, the shear stresses
in the positive sides1 of the differential cube will be positive when they point in the
positive direction of base axis. As the stress tensor is symmetric, τij = τji, ∀ i 6= j.

1
Positive sides of the cube are those where the outwards perpendicular vector coincides in

direction with the positive direction of an axis of the base.
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(b) Solid differential in the shaft.

Fig. 6: Stress tensor components in the differential at point P .

• Effect of the axial force: an axial force F ′
1 exerted in the positive direction of

axis 1′ causes a compression stress in the whole section. Therefore, the stress
tensor at point P related to the axial force will be:

[σ
F ′

1

]1′2′3′ =





−
F ′

1

A
0 0
0 0
0





1′2′3′

(8)

where A is the area of the section.
• Effect of the bending moment: a bending moment M ′

3 exerted in the positive
direction of axis 3′ causes a traction stress at point P . Therefore, the stress
tensor related to this bending moment will be:

[σ
M′

3

]1′2′3′ =





M ′

3

w
0 0
0 0
0





1′2′3′

(9)

where w is the sectional modulus.
• Effect of the shear force: according to Timoshenko’s Beam Theory [7], a shear

force F ′
3 exerted in the positive direction of axis 3′ causes a negative shear

stress at point P equal to:

τ ′
13 = −

F ′
3

kA
(10)

where k is the shear coefficient that represents the ratio of the average shear
stress on a section to the shear stress at the centroid. For hollow circle cross
sections k takes the following expression [3]:

k =
6 (1 + ν)(1 +m2)2

(7 + 6ν)(1 +m2)2 + (20 + 12ν)m2
(11)

where ν is Poisson’s modulus, m = r
R
, and r and R are the inner and outer

radii, respectively. This expression is also valid for full circle cross sections
making r = 0 and thin-walled round tube sections making r = R.
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Therefore, the stress tensor related to the shear force can be written as:

[σ
F ′

3

]1′2′3′ =





0 0 −
F ′

3

kA

0 0
0





1′2′3′

(12)

• Effect of the torsion moment: a torsion moment M ′
1 exerted in the positive

direction of axis 1′ causes a negative shear stress at point P . Therefore, the
stress tensor related to the torsion moment will be:

[σ
M′

1

]1′2′3′ =







0 0 −
M ′

1
R

Ip

0 0
0







1′2′3′

(13)

where Ip is the polar moment of inertia of the section.
• Components F ′

2 and M ′
2 do not cause any stress at point P .

The superposition of the 6 stress tensors gives the compound stress tensor for
the wrench, [σ]1′2′3′ , expressed in base 1′2′3′. The stress tensor is symmetric.

[σ(t′)]1′2′3′ =





−
F ′

1

A
+

M ′

3

w
0 −

M ′

1
R

IP
−

F ′

3

kA

0 0
0





1′2′3′

=





σ′
11

τ ′
12

τ ′
13

σ′
22

τ ′
23

σ′
33





1′2′3′

(14)

2.4 Strain calculation for an arbitrarily located gauge and an arbitrary wrench

In order to calculate the strain tensor ε in terms of the stress tensor σ, their
components can be written in column vector form:

σ =
(

σ′
11
, σ′

22
, σ′

33
, τ ′

12
, τ ′

23
, τ ′

13

)T

ε =
(

ε′
11
, ε′

22
, ε′

33
, ε′

12
, ε′

23
, ε′

13

)T
(15)

where the components of the symmetric strain tensor are:

[ε]1′2′3′ =





ε′
11

ε′
12

ε′
13

ε′
22

ε′
23

ε′
33





1′2′3′

(16)

In vector form, the following relation between strain and stress holds:

σ = Dε (17)

Assuming that the material is linear, elastic and isotropic, D can be written as

D =
E

(1 + ν)(1− 2ν)

















1− ν ν ν 0 0 0
1− ν ν 0 0 0

1− ν 0 0 0
1− 2ν 0 0

1− 2ν 0
1− 2ν

















(18)
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where constants E and ν are the Young’s and Poisson’s moduli, respectively.
Since the strain gauge is aligned with axis 1′′, the strain tensor will be expressed

in base 1′′2′′3′′ as follows:

[ε]1′′2′′3′′ = [R]1
′2′3′

1′′2′′3′′ [ε]1′2′3′ [R]1
′′2′′3′′

1′2′3′ (19)

Taking the (1, 1) component, the strain of the gauge, ε, can be obtained.

ε = ε′′11 (20)

Up to now, the stress tensor and the strain of the gauge have been written
in terms of t′. Let us define vector t = (F1, F2, F3,M1,M2,M3)

T . Using the Eqs.
(6) and (7) that relate the components of the wrench in bases 123 and 1′2′3′, the
strain of the gauge is written in terms of t. As ε is linear in t, it can be written
as:

ε =
∂ε

∂t
t = wt (21)

where the explicit expression of the row vector w is:

w(ϕ, δ) =























































(1+ν) sin2δ−1
EA

−2(ν+1) cosδ sinδ sinϕ
kEA

2(ν+1) cosδ sinδ cosϕ
kEA

R(ν+1) sin2δ
EIp

((1+ν) sin2δ−1) sinϕ
Ew

− ((1+ν) sin2δ−1) cosϕ
Ew























































T

(22)

Therefore, for a gauge located at an arbitrary point defined by ϕ and δ, Eq.
(21) provides the strain of the gauge related to an arbitrary wrench t.

3 Optimum estimation of the wrench

In the previous section, it has been shown how to calculate the strain of a gauge
under the action of a wrench. In contrast, this section shows how the wrench can
be estimated from the strain measurements of a set of gauges. Moreover, it will be
shown how to determine the optimal configuration of the gauges to estimate the
wrench. For the sake of simplicity, thermal strain will not be considered in this
section and will be addressed in Section 4.

3.1 Estimation of the wrench in terms of the strain of several gauges

Let us suppose that wrench t has to be estimated from strain measurements. As
the wrench has p = 6 components it will be necessary to use, at least, p strain
gauges in order to estimate each of the individual components. Let n ≥ p be the
number of strain gauges located along the perimeter of a certain cross-section of
the shaft. Let us denote by εi the strain of the ith gauge and let ϕi and δi be
the angles that determine the position and orientation of the ith strain gauge
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(i = 1, . . . , n) as defined in Fig. 5. Then, the following system of equations can be
written:



















ε1
ε2
...
εn



















=











w1

w2

...
wn









































F1

F2

F3

M1

M2

M3































(23)

where wi = w(ϕi, δi). Gathering the n mechanical strains in vector ε and the n
row vectors wi in W, Eq. (23) can be rewritten as:

ε = W(ϑ) t (24)

where ϕ = (ϕ1, ϕ2, . . . , ϕn), δ = (δ1, δ2, . . . , δn) and ϑ = (ϕ, δ). Matrix W =
W(ϑ) represents the n × p observation matrix which has all the information of
the location of the gauges. Measuring the strain of the gauges for an instant and
writing W for the configuration of the gauges, one could solve the linear system
of Eq. (24) to calculate t in terms of ε, assuming W has full rank.

However, in an experimental framework, vector ε will be measured with error
and it will be appropriate to use Linear Regression Theory [5] to get estimates for
t and the variance of t. We will refer to them as t̂ and var(t̂), respectively.

Let us write a typical statistical linear model in which the measured strain
vector, εm, is written as the sum of the true mechanical strain, ε, and the global
measurement uncertainty, e:

εm = Wt+ e (25)

where both εm and e are random variables [10,12] and W is deterministic, i.e.
known without uncertainty. For the sake of simplicity, it will be assumed now that
the expectation of e is null, i.e., E[e] = 0. It is important to emphasise that this
assumption can only be valid if a proper calibration of the gauges is performed
[2]. The results below this point are not useful for a real implementation without
the calibration of the strain gauges. However this issue will not be tackled in this
paper owing to lack of space.

In this situation, the minimum variance Weighted Least Squares Estimator for
t coincides with the Maximum Likelihood Estimator [1,5,12,18]:

t̂ =
(

W
T
Σ

−1
W

)−1
W

T
Σ

−1
εm (26)

where Σ = E[eeT ] is the covariance matrix of e. As εm is a random variable, the
estimation of t, t̂, will also be a random variable. The estimate in Eq. (26) is also
known as the Markov Estimate or the Best Linear Unbiased Estimate [8,12].

From Eqs. (25) and (26) expression (t̂− t) can be written as:

t̂− t =
(

W
T
Σ

−1
W

)−1
W

T
Σ

−1
e (27)

and the estimator will be unbiased (E[t̂− t] = 0) if E[e] = 0.
Likewise, the variance of t̂ can be written as:

var(t̂) = E[(t̂− t)(t̂− t)T ] =
(

W
T
Σ

−1
W

)−1
(28)
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If all the strain gauges are of the same type, it can be assumed that the variance
of their measurement uncertainty will be the same. Therefore,

Σ = var(e) = var(εm) = var(εm) In (29)

where var(εm) is the variance of the individual strain gauges and In is the n× n
identity matrix. Then, the estimator of t given in Eq. (26) simplifies to:

t̂ =
(

W
T
W

)−1
W

T
εm (30)

As the gauges are bonded,W(ϑ) will be a constant matrix. Therefore, if expres-

sion
(

WTW
)−1

WT is computed offline, the real-time estimation of the wrench
will only require a matrix by vector multiplication, making the estimation of the
wrench very efficient.

Assuming Eq. (29) holds, the variance of the estimated wrench simplifies to:

var(t̂) = var(εm)
(

W
T
W

)−1
(31)

and will only have to be computed once.
For n > p, the variance of the measured strains can be estimated as [12]:

̂var(εm) =
(εm −Wt̂)T (εm −Wt̂)

n− p
(32)

Making use of N different measurements of the strain vector, a more precise
estimation of the variance can be calculated:

̂var(εm) =

∑N
k=1(ε

k
m −Wt̂k)T (εkm −Wt̂k)

N(n− p)
(33)

where εkm and t̂k are the kth strain measure and wrench estimation, respectively.

3.2 Optimum estimation of wrench components

The main purpose of the paper is to determine the location of the strain gauges for
an optimal wrench estimation. Thus, an optimality criterion has to be settled in
order to determine that a gauge configuration is better than another. In this con-
text, D-optimality is the best observability index for maximising the observability
of the wrench [17]. Moreover, this criterion is scaling invariant, so it is insensitive
to the different dimensions of the components of the wrench (forces and moments).

D-Optimality has been used in several references such as [9,11,16] in the con-
text of Optimal Sensor Placement. These references describe optimisation proce-
dures based on the Fisher information matrix [8] for optimising different sensor
locations. One of the first works in this context is [21], in which a methodology
for parameter identification is presented optimising the location of the sensors
for different numbers of sensors. In [13] a methodology for optimal sensor place-
ment based on the Fisher information matrix is presented and the effect that the
damage in the structure has in the sensors performance is also investigated.
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Assuming Eq. (29) holds, and dropping the scaling factor var(εm), the cost
function F of the D-optimality criterion can be written as [12,18]:

F(W) = − log(det(WT
W)) (34)

Derivation of Eq. (34) is explained in detail in [18], where Swevers et al. solve the
problem of trajectory optimisation for dynamic parameter estimation in robotics.
The determination of the trajectory parameters in that paper is analogous to the
determination of the gauges location in the present paper.

Finally, once the optimality criterion is established, in order to determine the
optimal location and orientation of the strain gauges, ϑopt, it would suffice to solve
the following minimisation problem:

ϑ
opt = arg

ϑ
min(F(W(ϑ))), subject to c(ϑ) = 0, (35)

where c(ϑ) = 0 are optional non-linear constraints. For example, these constraints
could be used to force two gauges to be bonded in the same ϕ angle and their δ
angles to be shifted 90◦. This would lead to use X Rosettes [6] instead of individual
gauges.

Note that vector ϑopt determines the optimum location and orientation of the
strain gauges for the wrench estimation with the minimum possible variance.

4 Wrench estimation with temperature compensation

If a measurement is performed when the temperature differs from the one present
during the calibration, a temperature induced strain will occur. This temperature
response is reversible and the effects disappear when the gauges are at the cali-
bration temperature. In the literature, this temperature response is often called
apparent strain [6].

There are many factors affecting the temperature response [4,6,14]. Both the
material of the measuring-grid of the strain gauges and the material of the part
where the gauge is bonded, will have their own thermal expansion coefficient. Thus,
when a temperature change occurs, both materials will expand/contract and will
cause a strain not related to mechanical loads. Moreover, the electrical resistance

coefficients of the materials of the gauges and wires also depend on temperature,
leading to an additional contribution to the apparent strain.

In order to minimise these thermal effects, temperature-compensated strain

gauges can be used [14]. This type of strain gauges are designed with a ther-
mal coefficient that compensates (as far as possible) these thermal effects. These
gauges are only useful if bonded on materials with a specific thermal expansion
coefficient. However, complete compensation is not possible with these gauges for
a continuous range of temperatures because the thermal expansion coefficients of
the materials and the temperature coefficient of the electrical resistance of the
material of the gauge both depend on temperature.

One efficient way of compensating the temperature effects relies on using vari-
ous strain gauges. Choosing a suitable configuration, the mechanical loads can be
calculated making the temperature response of the different gauges compensate
each other.
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In order to follow this approach, let us suppose that the gauges will sense
certain strain related to the temperature variations, εT . This strain will be indis-
tinguishable from the strain related to mechanical loads, ε. In order to take into
account the temperature variations, the measured strains, εm, should be written
as:

εm = ε+ εT + e. (36)

Assuming that any possible temperature effect affects the measurement of all
the strain gauges in the same way2, the temperature strain could be written as
εT = 1εT , where 1 represents an n×1 vector of ones and εT is an unknown scalar.
Substituting ε = Wt and εT = 1εT in Eq. (36), one gets:

εm =
[

W 1
]

{

t

εT

}

+ e. (37)

We could refer to Eq. (37) as the extended system of equations where the
temperature strain has been taken into account. This linear system is analogous
to Eq. (25) where matrixW and vector t have been extended with a column and a
row, respectively. Therefore, the estimation and optimisation procedures presented
before can also be applied to the extended system.

5 Results and discussion

In Sections 3 and 4, a procedure to find the optimal location of a set a gauges on
the perimeter of a circular cross-section shaft has been developed. The procedure
can be applied in order to find the optimal location of a set of n ≥ p gauges for
estimating all the components of t, with (p = 7) or without (p = 6) temperature
compensation. This section describes the results obtained from the application of
the developed procedure.

5.1 Estimating t with 6 strain gauges

If no temperature compensation is desired, it is sufficient to use 6 strain gauges in
order to estimate the 6 components of t. The optimisation procedure of Section 3
has been applied for several different values of the geometric (A,w, Ip, R, k) and
material (E, ν) parameters. An analysis of the results reveals that the structure of
the solutions has the following form:

ϕ
opt = (0◦, 0◦, 120◦, 120◦, 240◦, 240◦) + (ϕa, ϕb, ϕa, ϕb, ϕa, ϕb)

δ
opt = ( α,−α, α,−α, α,−α)

(38)

On the one hand, the optimal value of α is observed to be different for different
values of the geometric and material parameters. On the other hand, this solution
is optimal for any value of ϕa and ϕb and a particularly convenient configuration

2 All the gauges are equal (same material properties and geometry) the temperature vari-
ations are the same for all gauges, the wires connecting the gauges are equal (same material
properties and geometry) all the gauges are bonded to the same material, etc. These conditions
are commonly met when measuring with strain gauges.
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is obtained for ϕa = ϕb = 0. In this situation we can consider the optimal config-
uration as three couples of gauges that are bonded along the perimeter with the
same ϕ while the angle between couples is 120◦. Moreover, the orientations of the
gauges of each couple are given by +α and −α.

Evaluating matrix W in this configuration for a symbolic α and symbolic
representations of the geometric and material parameters, the expression for the
optimisation criterion of Eq. (34) can be obtained.

F(W) =− log

(

4 (ν + 1)6 sin62α
(

cos2α− ν sin2α
)6

)

− log

(

36 R4

k4 A6 E12 I2p w4

) (39)

From this expression it is obvious that the optimum α depends only on ν as
the second term in Eq. (39) has no influence on the α that minimises F .

The dependence of αopt (the optimum α) on ν has been analysed and the
outcome is that, for typical values of Poisson’s modulus for commonmetals, namely
from 0.25 to 0.40, the value of αopt varies from 28◦ to 26◦ which can be considered
a small variation.

Fig. 7 represents the optimisation criterion in terms of α for ν = 1
3 where the

optimum gauge orientation is αopt = 26.8◦.
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Fig. 7: Optimisation criterion value in terms of α for ν = 1
3 .

Evaluating matrix W and W−1 with the values of ϕopt and δopt of Eq. (38),
for ϕa = ϕb = 0, the following expressions are obtained:
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W
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(41)

where f(α, ν) and g(α, ν) are given by:

f(α, ν) = cos2α− ν sin2α

g(α, ν) = sin 2α (ν + 1)
(42)

Note that the values of α for which the optimisation criterion tends to infinity
in Fig. 7 are, precisely, the ones that make the columns of W equal zero; i.e. the
values of α that solve for f(α, ν) = 0 or g(α, ν) = 0.

It is also interesting to note that, although it has not been required in the
optimisation, for the configuration of Eq. (38) and for any α, the temperature
is compensated for all the components of the wrench but the axial force. This
statement can be checked adding all the elements of each row of matrix W−1 and
noting that this sum is only different from zero for the first row. Thus,

t̂ = W
−1(εm + εT 1) = W

−1
εm + εT

−AE

f(α, ν)
(1, 0, 0, 0, 0, 0)T (43)

Therefore, it is demonstrated that, for the current configuration, only the estima-
tion of the first component of t (the axial force) is corrupted by a homogeneous
temperature variation.

With the aim of analysing the observability of the wrench for different values
of α, the covariance matrix of the wrench is estimated using Eq. (31). In order
to represent the variance of each wrench component, the elements of the diagonal
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covariance matrix divided by the measurement variance are shown in Eq. (44):

var(F1)

var(ε)
=

A2 E2

6
(

cos2α− ν sin2α
)2

var(F2)

var(ε)
=

var(F3)

var(ε)
=

A2E2k2

3 sin22α (ν + 1)2

var(M1)

var(ε)
=

E2 Ip
2

6R2 sin22α (ν + 1)2

var(M2)

var(ε)
=

var(M3)

var(ε)
=

E2 w2

3
(

cos2α− ν sin2α
)2

(44)

Fig. 8 represents the logarithm of the variance of the components of the wrench
in terms of α for the configuration defined by Eq. (38) for ν = 1

3 . Vertical lines for
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Fig. 8: The logarithm of the variance of the components of the wrench in terms of
α for ν = 1

3 and unitary A, E, k, Ip, w and R.

α equal to 0◦, 26.8◦, 30◦, 45◦, 60◦ and 90◦ have been drawn in order to highlight
the variance of each component for those angles. The figure clearly shows that the
best orientation for the estimation of the axial force and bending moments happens
for α = 0◦, while the best orientation for the estimation of the torsion moment
and the shear forces happens for α = 45◦. The optimum value for measuring the
whole wrench, αopt = 26.8◦, is in between these angles. For the values of α equal
to 0◦, 60◦, and 90◦, the optimisation criterion tends to infinity, together with the
variance of some wrench components.
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5.2 Estimating t with 6 gauges constraining their location

The solutions obtained for the optimum α are not in general integer fractions of
180◦ and it can be difficult to bond the gauges to the shaft precisely for these
orientations. Moreover, gauges are usually gathered in rosettes [6] where couples
of gauges are shifted 90◦ or 60◦. Using these rosettes can be a practical solution
to make the bonding of the gauges easier and more precise, although the configu-
rations will not be optimal any more.

With the objective of using rosettes, the optimisation problem of Eq. (35) can
be solved with the following constraints:

– Three couples of strain gauges must be located at the same position (same ϕ
value for each couple) as they will be part of the same rosette. Mathematically,
the constraint can be written as:

ϕ2 − ϕ1 = ϕ4 − ϕ3 = ϕ6 − ϕ5 = 0 (45)

– The orientations (δi and δj angles) of the gauges in each couple must be shifted
a certain angle 2β (whose value will be set to 60◦ or 90◦). Mathematically the
constraint can be written as:

δ2 − δ1 = δ4 − δ3 = δ6 − δ5 = 2β (46)

With the aim of providing insight into the symmetry of the optimal configu-
rations, an angle γ is defined which establishes the orientation of the rosette by
means of the middle-angle of the couple of gauges, as shown in Fig. 9. Then, the
orientation of the gauges of the couple (i, j) can be written as δ(i,j) = γ ± β.

P

3
′′

i

1
′′

i
3
′′

j

1
′′

j

3
′

1
′

δi

δj

β

β

γ

Fig. 9: Parameters γ and β for defining rosettes orientation.

An interesting result of these constrained optimisations (for 2β = 60◦ and
2β = 90◦) is that the solutions happen to be the configuration described by Eq.
(38) for α = β, γ = 0 and ϕa = ϕb. These results show that it is preferable to
choose the configuration for α = 30◦ over the one for α = 45◦ because the former
solution is much closer to the optimum one (αopt = 26.8◦).
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Therefore, the 6-gauge configuration to be implemented with rosettes that
minimises the constrained optimisation criterion is:

ϕ
opt = (0◦, 0◦, 120◦, 120◦, 240◦, 240◦)

δ
opt = (30◦,−30◦, 30◦,−30◦, 30◦,−30◦)

(47)

The gauges, for the configurations with 2β = 60◦ and 2β = 90◦, would be
bonded in the shaft as shown in Fig. 10.
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(b) 6-gauges configuration for 2β = 90◦.

Fig. 10: Optimal 6-gauges constrained configurations for the estimation of t.

The difference between the optimum and these non-optimum configurations
can be calculated by means of the variance of the estimation of the components
of the wrench. Evaluating Eq. (44) for α = 30◦, the variance of the components of
t are:

var(F1)

var(ε)
=

8A2E2

3(ν − 3)2
,

var(F2)

var(ε)
=

var(F3)

var(ε)
=

4k2A2E2

9(ν + 1)2

var(M1)

var(ε)
=

2E2Ip2

9R2(ν + 1)2
,

var(M2)

var(ε)
=

var(M3)

var(ε)
=

16E2w2

3(ν − 3)2

(48)

For α = 45◦, the variance of the components of t are:

var(F1)

var(ε)
=

2A2E2

3(ν − 1)2
,

var(F2)

var(ε)
=

var(F3)

var(ε)
=

k2A2E2

3(ν + 1)2

var(M1)

var(ε)
=

E2Ip2

6R2(ν + 1)2
,

var(M2)

var(ε)
=

var(M3)

var(ε)
=

4E2w2

3(ν − 1)2

(49)

Comparing the values of Eqs. (48) and (49), the variances for estimating axial
and bending loads (F1,M2,M3) are lower for α = 30◦, while the variances for
torsion and shear forces (M1, F2, F3) are lower for α = 45◦. In any case, the
value of the optimisation criterion defined in Eq. (34) is lower value for the former
configuration.

Finally, let us recall that when solving the optimisation problem for the deter-
mination of these solutions, temperature compensation has not been required. In
the next section more gauges will be used in order to find optimal configurations
in order to estimate t compensating for the temperature variations.
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5.3 Estimating the components of t with 8 strain gauges

In order to obtain a symmetric configuration that compensates for temperature
variations, 2 strain gauges are added to the previous set. With 8 gauges, an optimal
configuration has been found constraining couples of gauges, as in the previous
section, to be bonded together with the same value of ϕ and having a difference
of 2β between their δ angles. The constraints can be mathematically written as:

ϕ2 − ϕ1 = ϕ4 − ϕ3 = ϕ6 − ϕ5 = ϕ8 − ϕ7 = 0 (50)

δ2 − δ1 = δ4 − δ3 = δ6 − δ5 = δ8 − δ7 = 2β (51)

With said constraints, the procedure proposed in Section 4 to obtain configurations
with temperature compensation has been used for 2β = 60◦ and 2β = 90◦.

Running the optimisation procedure for 2β = 60◦, it is observed that the
optimal configurations depend on ν but all the solutions share a common structure
that can be written as follows:

ϕ
opt = (0◦, 0◦, 90◦, 90◦, 180◦, 180◦, 270◦, 270◦)

δ
opt = (γ+β, γ−β,−γ+β,−γ−β, γ+β, γ−β,−γ+β,−γ−β)

(52)

where γ = γ(ν). For a reference value of ν = 1
3 , the following configuration is

obtained:

ϕ
opt = (0◦, 0◦, 90◦, 90◦, 180◦, 180◦, 270◦, 270◦)

δ
opt = (− 9.9◦, 50.1◦, 9.9◦,−50.1◦,−9.9◦, 50.1◦, 9.9◦,−50.1◦)

(53)

while for different values of ν, slightly different values of γ are obtained for the fixed
values of ϕopt. This configuration matches the structure of Eq. (52) for 2β = 60◦

and γ = 20.1◦.
Running the optimisation procedure for 2β = 90◦, the resulting optimum con-

figuration is:

ϕ
opt = (0◦, 0◦, 90◦, 90◦, 180◦, 180◦, 270◦, 270◦)

δ
opt = (60◦,−30◦, 30◦,−60◦, 60◦,−30◦, 30◦,−60◦)

(54)

regardless of the numerical values of the geometric and material parameters. More-
over, this configurationmatches the structure of Eq. (52) for 2β = 90◦ and γ = 15◦.

The configurations defined in Eqs. (53) and (54) are represented in Fig. 11.
They both are remarkable strain gauge configurations since they have the following
desirable properties:

– Rosettes can be used, ensuring an accurate angle between pairs of gauges.
– The rosettes are located 90◦ apart (in azimuth direction) making it easy to

bond the rosettes precisely.
– The configurations compensate temperature variations without the need for

any extra gauge or device.
– The configurations are optimum (given the constraints) which maximises the

measuring sensitivity.
– The configurations are symmetric, which provides symmetric expressions for

the estimation of the two bending moments and the two shear forces.
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(b) 8-gauges configuration for 2β = 90◦.

Fig. 11: Optimal 8-gauges constrained configurations for the estimation of t.

– The variances of the bending moments are equal to each other and the variances
of the shear forces are also equal to each other.

Moreover, these configurations have an additional very interesting property
regarding the robustness of a practical implementation. If a single strain gauge or
a two-gauge rosette was damaged by accident, the 8 strain gauge configurations
would still provide enough information to continue estimating all the components
of the wrench as the rank of theW matrix would still be 6. However, the estimation
with 6 strain gauges would fail to compensate thermal strains. In this situation,
it would suffice to know which gauges have been damaged in order to perform the
calculation of t̂ based on the rows of W related to the healthy strain gauges.

5.4 Table of Results

As a resume, results in Section 5 are shown in Table 1. The first column repre-
sents the number of strain gauges for each configuration; the second represents
their position and orientation. Notice that writing the values of some optimum
δ-s with a decimal point refers to the fact that those numbers are not integer val-
ues (when expressed in degrees) and the actual optimum value is approximated
with one decimal. On the contrary the optimum values represented without the
decimal point are precisely integer values. Continuing with the table, the third
column indicates if the configuration automatically compensates apparent strains
devoted to temperature variations; the fourth column indicates if constraints have
been imposed to get the configuration; the last column indicates if the optimum
configuration depends on the value of Poisson’s modulus ν.

6 Preliminary experimental validation of the approach

In order to show that the presented theoretical approach can be used to measure
the mechanical loads in circular section shafts, a test rig has been designed and
built.
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# ϕopt, δopt T C δopt(ν)

6
ϕopt = (0◦, 0◦, 120◦, 120◦, 240◦, 240◦)

no - yes
δopt = (26.8◦,−26.8◦, 26.8◦,−26.8◦, 26.8◦,−26.8◦)

6
ϕopt = (0◦, 0◦, 120◦, 120◦, 240◦, 240◦)

no 60◦ no
δopt = (30◦,−30◦, 30◦,−30◦, 30◦,−30◦)

6
ϕopt = (0◦, 0◦, 120◦, 120◦, 240◦, 240◦)

no 90◦ no
δopt = (45◦,−45◦, 45◦,−45◦, 45◦,−45◦)

8
ϕopt = (0◦, 0◦, 90◦, 90◦, 180◦, 180◦, 270◦, 270◦)

yes 60◦ yes
δopt = (−9.9◦, 50.1◦, 9.9◦,−50.1◦,−9.9◦, 50.1◦, 9.9◦,−50.1◦)

8
ϕopt = (0◦, 0◦, 90◦, 90◦, 180◦, 180◦, 270◦, 270◦)

yes 90◦ no
δopt = (60◦,−30◦, 30◦,−60◦, 60◦,−30◦, 30◦,−60◦)

Table 1: Optimum configurations for the wrench estimation.

6.1 Description of the test rig

The test rig consist of a shaft supported on bearings. One of the supporting bear-
ings can be translated in order to introduce loads on the shaft. The shaft is rotated
by an electric motor, which uses a variable-frequency drive to set the rotation ve-
locity of the shaft at will. The strain and acceleration signals acquired on the
rotating shaft are transmitted wireless to ground fixed bases. A PC is used to
configure the acquisition system and collect all data. The actual test rig and a
sketch of it are shown in Figures 12 and 13, respectively.

The strain gauges are located in the central part of the test rig, whose length
is L2 + L3 + L4. The lengths that define the shaft are L1 = 47mm, L2 = 90mm,
L3 = 235mm and L4 = 92mm. The hollow cylinder has an outer radius of R =
40mm and an inner radius of r = 38mm. It is made of steel with E = 210GPa and
ν = 0.3. The shaft is simply supported on a couple of bearings at points C1 and
C2 located at one end. Moreover, the shaft is also supported on another bearing
at point Q, which can be translated in the y direction (as depicted in Figure 13)
by means of a leadscrew. This displacement is determined by coordinate y and
introduces a shear force and a bending moment on the shaft. A and B are the
sections perpendicular to the shaft where the strain gauges have been bonded. In
sectionA the 8-gauge configuration defined in Eq. (54) has been bonded. In section
B a full- and a half-bridge have been bonded to measure the bending moments.
These customary Wheatstone bridges are set to compare their outputs with the
estimations of the 8-gauge configuration.

Precisely measuring the azimut of the rotation of the shaft (coordinate θ) is
indispensable to obtain the wrench estimation in base xyz (recall Figure 5 for the
definition of θ and bases xyz and 123). In order to obtain an estimation of θ, a
triaxial wireless capacitive accelerometer has been used, which is fixed to the shaft
and oriented as base 123.

There exist several methods to estimate θ as a function of the measured acceler-
ations. For instance, if the angular velocity of the shaft is constant and sufficiently
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Fig. 12: The experimental test rig.

low, the accelerometers will only measure the gravity vector:

a2 = g sin θ, a3 = g cos θ (55)

where g is the modulus of gravity and a2 and a3 are the accelerations measured
in directions 2 and 3, respectively. Calculating the four-quadrant inverse tangent
of a3 and a2, an estimation of θ is obtained.

If the rotation of the shaft was faster or varied its velocity, the accelerometers
would measure significant normal or tangent accelerations. In such cases more
cumbersome procedures should be used to estimate angle θ.

The experiments performed with this test bed have been performed with a 100
Hz sampling frequency and in time intervals of 30 seconds.

6.2 Calibration of the customary Wheatstone bending bridges

In order to perform the calibration of the customary bending bridges at section B,
the shaft has been released of the leadscrew becoming a rotating cantilever beam.
This way a known point-load has been applied at Q (by means of gravity) which
provides a bending moment with respect to section A. A set of four experiments
have been performed with different known loads (besides the own weight of the
shaft). Making the shaft rotate several rotations a sinusoidal signal is obtained
at the output of the bending bridges with a certain amplitude and offset. These
output signals of the full- and half bridges are provided by the acquisition system
in mV/V .



Optimal strain-gauges placement for mechanical load estimation in circular shafts 25

① ✶ ②✱✷

③ ✸
③✱✸

✶

❆ ❇

❈� ❈✁

❈� ❈✁

✷

r

❘

◗

❋✂

❆ ❇

▲� ▲✁ ▲✄ ▲✹

☎

Fig. 13: Sketch of the shaft.

The calibration of the bending bridges has been performed subtracting these
offsets to the signals and fitting a linear regression model between the amplitude
values of these signals (in mV/V ) and the applied loads (in Nm). Figure 14 shows
the results of the linear regressions. The slope of the half bridge is approximately
twice the slope of the full bridge, as the latter uses twice as many active strain
gauges.

As a result of these experiments, calibrated relations are obtained between
the bending moments at section B in base 123 and the outputs of the full- and
half-bridges.

6.3 Calibration of the 8-gauges configuration

As the Wheatstone bridges, the 8 quarter bridges of the proposed configuration
also need for a proper calibration. As in previous cases the amplitude and offset of
the gauges signal has to be calibrated, but in this case the δ angles of the model
that define the orientation of the strain gauges have to be calibrated too. Thus, the
calibrated model will use calibrated values of δ slightly different from the nominal
ones and the measured signals will be scaled and zeroed as in usual calibrations.

Assembling back the leadscrew for load application, an experiment has been
done for a displacement of y = 9mm, leading to 8 signals (i.e. 8 vectors of 3000
strain measurements) measured in the quarter-bridges. The outputs of the full-
and half-bridges are acquired too. In this experiment it will be assumed that force
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Fig. 14: Linear regressions of the full- and half-bridges.

F1 and torsional moment M1 are null. The calibrated measurements of the full-
and half-bridges will be used to estimate the bending moments at section B in
base 123. Assuming a point-load at Q, the applied forces (F2 and F3) and the
bending moments at A (MA

2 and MA
3 ) are calculated in terms of the measured

bending moments at B (MB
2 and MB

3 ) as:

F2 =
MB

3

L1 + L2 + L3
, MA

3 = F2 (L1 + L2) = MB
3

L1 + L2

L1 + L2 + L3

F3 = −
MB

2

L1 + L2 + L3
, MA

2 = −F3 (L1 + L2) = MB
2

L1 + L2

L1 + L2 + L3

(56)

The intention of the design was that the leadscrew applied a point force at
Q only in the horizontal y direction. However, due to missalignments and other
possible inaccuracies of the test rig, the leadscrew also introduces a vertical com-
ponent. This becomes evident when the moments are expressed in base xyz, which
leads to a non zero MA

y .
Based on the full- and half bridges at B it has been possible to determine the

whole wrench at section A in bases 123 and xyz. As the wrench component in
base xyz are nearly constant over θ, their mean values will be used to calibrate
the quarter-bridges of the 8-gauges configuration. Multiplying the mean wrench
(expressed in base 123) by W (as in Eq. (25)) we get the theoretical strains εt that
one should measure at the 8-gauges configuration for any value of θ in a complete
rotation of the shaft.

εt(θ) = Wt(θ) (57)
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These theoretical strains will be used in the calibration of the 8-gauges config-
uration that will follow the next 7 steps:

1. For i = 1, . . . , 8, fit the ith measured signal εim with the following linear re-
gression model:

ε
i
m = Ai

m cosθ + Bi
m sinθ + Ci

m1 (58)

where Ai
m, Bi

m and Ci
m are the parameters for the ith gauge, 1 is a vector of

ones and vector θ are the azimut values of the shaft for each time instant.
2. Estimate the amplitude Xi

m and phase shift ηim of each signal in terms of the
estimated parameters Ai

m and Bi
m as:

Xi
m =

√

(Ai
m)2 + (Bi

m)2, tan(ηim) =
Bi

m

Ai
m

(59)

so that the strain signals can be rewritten as:

ε
i
m = Xi

m cos(θ − ηim) + Ci
m1 (60)

3. Repeat steps 1 and 2 with the theoretical strains (εt) to get the corresponding
amplitudes Xi

t , phase shifts αi
t and offsets Ci

t .
4. Calibrate the theoretical values of δ of the model to minimise the difference

between ηim and ηit. Let δ
∗ be the calibrated δ vector.

5. Using δ∗ recalculate the theoretical signals as:

εt,cal(θ) = W(δ∗) t(θ) (61)

Since εt,cal are calculated using a calibrated model, they will be named theo-

retical calibrated strains.
6. Recalculate the values of the parameters Xi

t and Ci
t as in step 3 (but using

εt,cal instead of εt) to get Xi
t,cal and Ci

t,cal.
7. Calculate the calibrated measurement signals as:

ε
i
m,cal =

Xi
t,cal

Xi
m

(εim − Ci
m1) + Ci

t,cal1 (62)

Following this calibration procedure using the data of the experiments, the
performance of the customary bridges and the 8-gauges configuration can be com-
pared. Figure 15 compares the theoretical strains (εt) calculated in Eq. (57) and
the theoretical calibrated strains (εt,cal) calculated by the calibrated model in Eq.
(61). This figure shows that small errors bonding the gauges in the nominal ori-
entation could lead to significant errors in strain amplitude. Moreover, Figure 16
compares the calibrated measurement signals (εm,cal) calculated in Eq. (62) and
the theoretical strains calculated by the calibrated model (εt,cal) in Eq. (61). This
figure shows how the calibrated model can represent the measured data.

Using the calibrated measured strains (εm,cal) and the calibrated observation
matrix (W(δ∗)), it is possible to estimate the complete wrench at section A by
means of the 8-gauge configuration as:

t̂ =
(

W(δ∗)TW(δ∗)
)−1

W(δ∗)T εm,cal (63)
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Fig. 15: Theoretical strains calculated with nominal δ and δ∗.

Writing this wrench in the xyz base, it can be compared to the one estimated in
terms of the customary full- and half-bridges. The force applied by the leadscrew
and the bending moment with respect to section A are shown in Figure 17.

It can be observed that the mean values of the bending moments estimated
in terms of the customary bridges (mean(Mcb

z ) = −62.5Nm) and the 8-gauges
configuration (mean(M8g

z ) = −63.7Nm) are very similar to each other, while the
standard deviation of the 8-gauge configuration is higher (std(Mcb

z ) = 4.65Nm
and std(M8g

z ) = 6.64Nm). The mean values of the force estimations are also
similar (mean(F cb

y ) = −454.36N and mean(F 8g
y ) = −443.96N) and the 8-gauges

configuration estimation also shows a higher dispersion (std(F cb
y ) = 33.81N and

std(F 8g
y ) = 51.86N). The reason for this can be that section A is closer to point

Q than section B, which leads to a smaller bending moment at A. Moreover, it
is important to emphasise that while in the customary bridges case the force is
calculated in terms of the bending moment measurements (no shear force bridge
has been used) in the 8-gauges configuration the force is calculated directly.

7 Considerations for a practical implementation

In the previous sections a procedure has been developed in order to get optimal
strain gauge configurations to measure the wrench components with the minimum
possible variance, which has been the objective of this research. However, the
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Fig. 16: Calibrated measured strains (εm,cal) compared to the theoretical cali-
brated strains (εt,cal).

obtained results are far from being practically implementable as-is and further
research would be necessary in the way towards designing a fully functional wrench
measuring device.

One reasonable concern for the practical implementation can be not to know
which is the sensitivity of the approach to the uncertainty of the parameters and
measurement noise. In fact, performing this analysis is mandatory to know a priori

the range of uncertainty in the estimation of the wrench components.

For a complete validation of the approach, at least for some of the optimal con-
figurations obtained in the results, a calibration procedure should also be designed
in order to be able to correct the measurement errors to an acceptable level. As
in this approach all the strain gauges contribute to measure all the wrench com-
ponent, a dedicated calibration procedure should be designed taking into account
the particular characteristics of the measuring device. Although a calibration pro-
cedure has been presented in the previous section, further research would be nec-
essary to obtain a simpler and more robust calibration procedure for the 8-gauges
configuration.

The practical implementation of an experimental set up has brought to light
some practical inconveniences that might compromise the application of the ap-
proach, as the need for a cumbersome calibration procedure. Some other issues
could appear in practical implementations where the axial force and moment
played an important role. These issues are fundamental for the implementation
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Fig. 17: Estimation of Fy and Mz based on the 8-gauge configuration (top) and
the customary bridges (bottom).

of a full functionality measuring device but they have not been tackled in this
paper and remain as future work.

8 Conclusions

In this paper a new approach for mechanical load measurement in circular cross-
section shafts has been presented. The first step has been to write an expression
for the strain of an arbitrarily located gauge in terms of the mechanical loads
(forces and moments) exerted on the shaft. This expression is useful by itself,
providing insight into the relation between the strain of a gauge, its location and
the components of the mechanical loads exerted on the shaft.

While it is customary to measure mechanical loads with Wheatstone full- or
half-bridges, it has been shown that measuring the strain of individual gauges with
quarter-bridges provides the opportunity to use the measured strain of a single
gauge in the estimation of several load components. Using the functional relation
between the strain of a gauge and the load exerted on the shaft, a procedure has
been developed in order to determine the optimal location of a set of strain gauges
to estimate the six components of the wrench. The most innovative characteristic
of the approach is that all the strain gauges contribute to the estimation of each
component. Consequently, each load component is estimated as a different linear
combination of the strains measured in the individual gauges.
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Results show that it is possible to estimate the 6 load components using only 6
strain gauges while the state of the art used 24 gauges (4 for each load component).
This is a remarkable reduction in the number of gauges that can substantially
reduce the cost of applications that require to measure the 6 load components.

As the apparent strain is a common inconvenience in mechanical load estima-
tion with strain gauges, the procedure for strain gauge placement has been ex-
tended in order to take this effect into account and provide robust configurations
that are insensitive to temperature variations.

Additionally, as a precise orientation of the gauges can be difficult when bond-
ing them, the procedure has been further extended to provide configurations where
rosettes of gauges can be used. This approach provides accuracy in the relative
angle between couples of strain gauges and divides by two the number of bonding
operations on the shaft.

With each of the two optimal 8-gauge configurations obtained, it is possible
to optimally estimate, with temperature compensation, the 6 load components
exerted on a circular cross-section shaft, which to best of authors knowledge has
not been reported in the literature.

A preliminary experimental validation of one of the 8-gauge configurations has
been performed. The experiments have shown the effectiveness of the approach.
However, the estimation results show a considerable dispersion which makes evi-
dent the complexity of the experimental implementation of the approach compared
to the simplicity of its theoretical development.

Finally it is important to note that the approach proposed in this paper opens
the possibility to obtain optimal solutions with a bigger number of strain gauges.
Moreover, it is also possible to further extend the presented procedures in order to
address other load measuring problems with different characteristics. For example,
while the procedure has been developed only for circular cross-section shafts, the
formulation could be further developed for other cross-section geometries.
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