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Abstract

The inertial information of a planar mechanical system is characterised
using 4 inertial parameters per solid. Due to the kinematic constraints,
this parametrization turns out be redundant. In order to reduce the com-
putational cost of the model and make it possible to estimate its inertial
parameters, the model is usually written in terms of a minimum set of iner-
tial parameters called base inertial parameters. These parameters completely
determine the dynamics of motion (kinetics) of a mechanism and, since their
contributions are independent to each other, their actual values can be esti-
mated experimentally. The base inertial parameters expressions can be writ-
ten as a linear combination of the inertial parameters and determining their
symbolic expressions provides a deeper insight into their physical meaning.

This paper presents a new algorithm to determine the symbolic expres-
sions of the base inertial parameters of planar mechanisms. The approach is
based on a very well known numerical method to obtain the base inertial pa-
rameters and on the fact that these parameters belong to a class of functions
that lets us search for symbolic expressions matching with them.

Since the symbolic expressions are a function of the geometric constants of
the system, the presented algorithm constitutes a very valuable tool in design
optimisation and it is also very interesting in dynamic parameter estimation,
model reduction and other fields.

Keywords: base parameters, inertial parameters, symbolic, model
reduction
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1. INTRODUCTION

Realistic simulation, optimisation and advanced control schemes of me-
chanical systems are based on accurate Dynamics Models. These models are
dependent on the constant values of the inertial and other dynamic param-
eters of the system such as friction, damping and elastic coefficients. The
inertial information of a single planar solid is provided by 4 parameters: the
mass, the two components of the position vector of the centre of mass and the
second moment of inertia. The Inverse Dynamic Models (IDM) can always
be written in a linear form with respect to them (Shome et al., 1998) as:

Kφ = τ (1)

where K is the observation matrix, φ are the inertial parameters, and τ are
the external forces and torques. It turns out that the observation matrix of
a mechanism generally has not full rank. This is due to the kinematic con-
straints that couple the movement of the solids. As a consequence, the IDM
is better expressed in terms of linear combinations of the inertial parame-
ters. These combinations are called base inertial parameters and represent a
minimum set of inertial parameters whose values can uniquely determine the
kinetics of the mechanism. Accordingly, the actual values of the base inertial
parameters can be uniquely estimated from experimental data, making them
an essential tool for mechanical model identification. Moreover, since they
uniquely determine the kinetics of the mechanism, they are very useful in
fields like design optimisation and model reduction.

The IDM models not only can be written linearly with respect to the
inertial parameters, but also with respect to the base inertial parameters.
Atkeson et al. (1986) were among the firsts to show this and Maes et al.
(1989) demonstrated the linearity of the equations of motion with respect
to the so-called barycentric parameters. See also Shome et al. (1998) for the
construction of a parameter linear model.

The main approaches to obtain the base inertial parameters can be classi-
fied in numerical and symbolic. The numerical methods developed by Gautier
(1991) give a tool to obtain the relationships between the inertial parameters
based on the SVD or QR decompositions (Golub and Loan, 1989) of the ob-
servation matrix. These methods provide expressions in the form of a matrix
β that defines the base parameters, φb, as a linear combination of the iner-
tial parameters, φb = [I,β]φ. However, it should be emphasised that these
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numerical algorithms give the elements of β as numbers, not as symbolic
expressions dependent on the geometric parameters of the mechanism.

The work of Gautier and Khalil (1988, 1989), Mayeda et al. (1990) and
other authors aimed to find symbolic expressions for the base inertial pa-
rameters. However, the methods provided in these early papers were only
valid for open-loop systems or parallelogram closed-loops. Khalil and Bennis
(1995) were the firsts to develop an algorithm to obtain the base inertial
parameters symbolically for any mechanism with closed loops. That method
was certainly more complex than the methods developed for open-loop sys-
tems. Moreover, it did not always find all the base inertial parameters. More
recently, Chen et al. (2002) developed an easier method based on the concept
of mass and moment of inertia transfer for planar mechanisms and Ros et al.
(2012, 2015) generalised and automated the method for spatial mechanisms.

In the last few years, the base inertial parameters and other minimum
inertial parametrisations have been analysed and used in different fields of
mechanical engineering. They have customarily been used for payload (Khalil
et al., 2007) and dynamic parameter estimation (Farhat et al., 2008) in the
identification of industrial manipulators, as well as for identifiability calcu-
lations of the dynamic parameters of parallel robots (Dı́az et al., 2008). Re-
cently, Ebrahimi and Kövecses (2010a,b) developed a procedure for the unit-
homogenisation of the observation matrix in order to normalise the equations
for parameter identification, and characterised the influence of the inertial
parameters on the dynamics of a mechanism. Inertial parameters sensitivity
analyses have also been performed within the recent past (Eberhard et al.,
2007) so as to know how accurate the estimation of the inertia parameters
has to be in order to get reliable simulation results.

In the present paper a new method is proposed to obtain the symbolic
expressions of the base inertial parameters for open- and closed-loop planar
mechanisms. The method can be easily automated and requires very little
effort from the analyst. It uses the method provided by Gautier (1991) to
obtain the numerical base inertial parameters and looks for symbolic expres-
sions that match the numerical values of β. This paper demonstrates that
for optimally parametrised planar mechanisms in which the existing loops
are closed through the ground, the elements of β can be written as products
or quotients of geometric parameters. Therefore, the candidate symbolic ex-
pressions to match are the ones that belong to that class of functions. The
resulting matching expressions are the desired symbolic expressions for the
elements of β.
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Comparing the characteristics of different approaches in the literature, it
is worth noting that the presented approach, as the approach of Chen et al.
(2002), deals with planar mechanisms. A unique characteristic of the pre-
sented approach is that despite being numerical as the approach of Gautier
(1991) it determines the symbolic expressions of the base inertial parameters.
Other approaches as Khalil et al. (1995) and Ros et al. (2012) can determine
the symbolic expressions of the base inertial parameters of spatial mecha-
nisms but the algorithms are very difficult to automate compared to those
of the presented approach. Regarding the modelling of the system, the pre-
sented approach and also the approach of Khalil et al. (1995) require the use
of an optimal parametrisation. However, this requirement does not impose
a practical limitation, as any parametrisation of a planar mechanism can be
recast to the required one.

The paper is organised as follows. In Section 2, the numerical method for
the determination of the base inertial parameters proposed by Gautier (1991)
is presented. Section 3 shows the conditions in which the proposed algorithm
is applicable. Section 4 presents the class of functions for the elements of β
and describes the algorithm for the calculation of the symbolic expressions
for the base inertial parameters. An example application of the algorithm is
shown in Section 5. Finally, some conclusions are drawn in Section 6. In the
Appendix it is demonstrated that the elements of β belong to the referred
class of functions.

2. NUMERICAL DETERMINATION OF THE BASE INERTIAL

PARAMETERS

2.1. The parameter linear inverse dynamic model

In order to write the IDM equations in a parameter linear form, the
inertial parameters of the ith link should be taken as

φi = {mi,mxi,myi, Ji}⊺ (2)

where mi is the mass. Furthermore, mxi and myi are the first moments of
inertia, Ji is the second moment of inertia, and these must be defined with
respect to a certain location in the link frame. Moreover, they cannot be
defined with respect to the centre of gravity.

The inertial parameter vector of the system is defined as the set of the
inertial parameters of the constituent links,
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φ = {φ⊺
1
, . . . ,φ⊺i , . . . ,φ

⊺

N}⊺. (3)

Then, it is possible to write the IDM of a mechanism in a linear form
with respect to the inertial parameters (φ):

K(q, q̇, q̈,λ,Λ)φ = τ (4)

where q, q̇ and q̈ are the generalised coordinates and their first and second
derivatives, and vectors λ and Λ represent the geometric parameters of the
model. There is no restriction on the type of coordinates chosen to model
the mechanism.

2.2. Determination of the base inertial parameters

In this section Gautiers numerical method to obtain the base parameters
of a mechanism is summarised. The reader is referred to the original paper
(Gautier, 1991) for a thorough description of the algorithm.

The algorithm starts from the standard least squares identification prob-
lem, and calculates the parameters that minimise the error from the mea-
surements of the torques τ i and the extended state (q, q̇, q̈)i for a set of time
instants i = 1, . . . , n. ⎡⎢⎢⎢⎢⎢⎢⎢⎣

K(q1, q̇1, q̈1)
K(q

2
, q̇

2
, q̈

2
)

⋯

K(qn, q̇n, q̈n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
φ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ 1

τ 2

⋯

τ n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5)

The above system is usually written in a compact form as

Wφ = χ, (6)

whereW is called the observation or regression matrix for those time instants.
The algorithm of Gautier is an algebraic procedure devoted to reduce the

model of Eq. (6). It takes advantage of the fact that W has not maximum
column rank and selects a set of independent columns of W to form WR so
that,

WRφb = χ, (7)

where WR is the reduced observation matrix, rank(W) = rank(WR) and
φb (the base parameters) are a linear combination of the elements of φ.

As proposed by Gautier (1991) for open-loop mechanisms modelled with
the parametrisation of Denavit and Hartenberg (1955), the matrix W can
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be evaluated using random values for q, q̇ and q̈. However, in order to
ensure that in a more general model, the geometric, velocity and acceleration
constraints are always satisfied, it is customary to evaluate the model with
a sufficiently exciting trajectory (Swevers et al., 1996, 1997) in which the
constraints are implicitly satisfied.

No experimental estimation of the values of φb will be performed. There-
fore, vector χ will play no role in this procedure.

Using the SVD, W can be decomposed as follows:

W =UΣ0V
⊺
=U[Σ 0

0 0
] [V1 V2]⊺ , (8)

being n×m the dimensions of W and b the rank of W. As a consequence, U
is n×n, Σ0 is n×m, V is m×m, Σ is b×b, V1 is m×b and V2 is m×(m−b).
Matrix V is split out into V1 and V2 so that V1 are the first b columns of
V. The columns of V2 happen to be a base for the null space of W. This
fact becomes more evident if Eq. (8) is right-multiplied by V = [V1 V2].
Since V is orthonormal V−1 =V⊺ and it holds that

WV =W [V1 V2] =U[Σ 0

0 0
] Ô⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
WV1 =U

⎡⎢⎢⎢⎢⎣
Σ

0

⎤⎥⎥⎥⎥⎦
WV2 = 0.

(9)

Therefore, for an arbitrary vector φa the following equation is satisfied:

Wφ =W(φ +V2φa). (10)

Then,
φR ≜ φ +V2φa (11)

represents an alternative equivalent parametrisation of the system, where φR

is m × 1 and φa is (m − b) × 1.
Let P be an arbitrary permutation matrix that reorders the rows of V2

so that

P⊺V2 = [V21

V22

] (12)

where V22 is required to be a full rank square matrix2. Reordering the rows
of vectors φR and φ using the same P,

P⊺φR = [φR1

φR2

] , P⊺φ = [φ1

φ
2

] , (13)
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vectors φR1, φR2, φ1 and φ2 are defined. Now it is possible to write Eq. (11)
as follows:

[φR1

φR2

] = [φ1

φ2

] + [V21

V22

]φa. (14)

Eq. (14) is a system of m equations where φR1
(b × 1), φR2

((m − b) × 1)
and φa ((m − b) × 1) are unknowns. Since there are m − b more unknowns
than equations, the value of m−b unknowns can be chosen at will. Choosing
φa so that the maximum number of elements of φR equal zero, the columns
of W multiplying to those elements of φR will disappear from the model,
and it will be possible to write the model equation as in Eq. (7), making φR1

a minimum parametrisation of the system.
Therefore, making φR2 = 0 in Eq. (14) and eliminating φa, it holds:

φR1 = φ1 −V21V
−1

22φ2. (15)

Defining
β ≜ −V21V22

−1 (16)

we obtain the set of base parameters corresponding to the chosen P:

φR1
= φ

1
+βφ

2
. (17)

Since the coefficients of matrix β are the weights that determine the linear
dependence of the base parameters on the inertial parameters, we will refer
to them as the base parameter weights, or simply β weights. Note that the
above algorithm gives the numerical values for the entries of the matrix β.
Moreover, observe that the set of base parameters is uniquely determined by
the choice of the permutation matrix P.

In order to complete the reduced model, the equations of the IDM can
be rewritten as:

Wφ =WφR = (WP)(P⊺φR) = [W1W2]{φR1

φR2

} =W1φR1
. (18)

Note that P−1 = P⊺. Eq. (18) holds since Eq. (10) does. As P reorders the
rows of φR into φR1

and φR2
, it also reorders the columns of W into W1

2There usually exist many different P matrices that fulfil this requirement, each of
them leading to a different set of base parameters.
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and W2 so that W1 are the first b columns of WP. Since φa was chosen so
that φR2

= 0, (m − b) columns of WP (the whole matrix W2) will no longer
be part of the reduced model. Finally, calling WR =W1 and φb = φR1 , the
reduced IDM can be written as in Eq. (7).

3. Conditions for the applicability of the algorithm

Although the algorithm of Gautier can be applied to any mechanism re-
gardless the manner it is parametrised and the number and kind of closed
loops that are present on it, the algorithm proposed in this paper will only
find the symbolic expressions of the base inertial parameters if the parametri-
sation of the links is made in an optimal way (as defined in the next section)
and the existing loops are closed through the ground.

3.1. Conditions on the Parametrisation

Suppose that we have a mechanism for which the existing loops are closed
through the ground, and suppose that at least one of the joints in the closed
loop is not prismatic3. In this situation the closed loop can be opened cutting
it through a R joint, as shown in Fig. 1.

Subsequently, the chain has to be optimally parametrised based on the
open-loop topology obtained after opening the closed loops. The parame-
trisation of an open-loop chain will be considered optimal if the frame of
reference of each link is located at the same point as the R joint joining it
to the next link towards the ground. If no link of the chain is joined to the
ground, any link of the chain connected only to one link can play the role
of the link joined to the ground. For links that are joined to the next link
towards the ground with a P joint, if all the joints with other links are also
prismatic, the origin of the frame of reference can be located at any point.
But if any other joint is R, the origin of the frame of reference will have to
be located at the location of any of those R joints. Fig. 1 exemplifies the
way in which a chain can be opened and parametrised.

The Optimal parametrisation, as defined in this section, is customary
in mechanism analysis and it does not involve a practical limitation in the
applicability of the method. Additionally, the position of the joining points
in a link has to be defined using Cartesian Coordinates (λx,λy) with respect

3If all of them are prismatic, there exists a mechanical redundancy that needs to be
eliminated. This in turn implies that at least one of the joints will not be prismatic.
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leaf

leaf

leaf
bifurcation link

Figure 1: Opening the loop and optimally parametrising an articulated chain. represents
prismatic joints while • represents revolution joints.

to the frame of the link. This is not a limitation because any parametrisation
can be recast to Cartesian Coordinates.

3.2. Some definitions.

For the description of the following conditions and for the accuracy of the
demonstrations given in the Appendix, the next definitions are given:

• A leaf will be any link, excluding the ground, that is joined only to one
link.

• A bifurcation link will be any link, excluding the ground, that is joined
to more than two links.

• A serial chain will be a chain of links including a leaf or bifurcation

link and all the links towards the ground down to a link joined to a
bifurcation link or to the ground.

Whenever the terms leaf, bifurcation link and serial chain are used through-
out this paper, they will refer to these definitions. A graph describing three
serial chains and a bifurcation link is described in Fig. 2.

3.3. Conditions on the selection of the dependent parameters.

Once the model has been parametrised, an IDM can be built. In order to
apply Gautiers algorithm and determine the base parameters as in Eq. (17),
vector φ has to be divided into φ1 and φ2. If rank(Wn×m) = b, then φ2 will
be a (m−b)×1 vector. As each row of V2 in Gautiers algorithm is associated
with a parameter of vector φ, selecting the rows that form V22 is equivalent
to selecting the parameters that will form φ

2
.
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c1

c2c3c4

a1a2a3

bn−2bn−1bn

Serial Chain a

Serial Chain b

Serial Chain c . . .
. . .

Figure 2: Three serial chains (a, b and c) and a bifurcation link (c1).

A necessary condition for the algorithm to success is that the mass pa-
rameter of the closest-to-the-ground link of each serial chain is included in
vector φ

2
.

3.4. Summary of conditions

The conditions that the mechanism has to satisfy for the applicability of
the algorithm can be summarised as follows:

• The loops of the analysed mechanism (if any) have to be closed through
the ground.

• The mechanism has to be optimally parametrised, and the location of
each fixed point in a link has to be expressed in Cartesian coordinates.

• The mass parameter of the link closest to the ground of each serial

chain has to be selected as part of vector φ2 in Gautier’s algorithm.

Although the first condition limits the applicability of the algorithm, for
an important number of practical mechanisms, the ground is part of the
closed loops. Moreover, the second and third conditions only constraint the
way in which the procedure has to be applied: any parametrisation (linear in
the parameters) can be cast in this form and the determined symbolic base
parameters recast back in terms of the original parameters.

4. ALGORITHM DESCRIPTION

The algorithm to obtain the symbolic expressions of the base inertial
parameters is divided into three steps: 1) build the linear-in-the-dynamic-
parameters IDM using an optimal parametrisation, 2) obtain numerical values
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for the β weights, and 3) search for the symbolic expressions that match the
numerical β weights.

The first and second steps are based on Gautier’s numerical algorithm
described in Section 2.

The third step is based on the fact that, under the conditions mentioned
in Section 3, the base parameter weights (β) belong to a specific symbolic
class of functions. The algorithm compares the numerical value of an element
of matrix β with a sequence of symbolic candidates within the corresponding
class until one of the candidates is found to match the current element of β
within the required tolerance. The process is repeated for all the elements of
β.

4.1. Symbolic class of the β weights

As matrix β is constant, the β weights can only depend on the parameters
of the geometric model, i.e. βij = βij(λ,Λ).

As mentioned before, vectors λ and Λ represent the set of geometric
parameters. Vector λ includes the Cartesian coordinates of the joint point
between two links, expressed in the reference frame of one of those, as de-
picted in Fig. 3. Vector Λ includes the squares of the distances between the
joint points and the origin of the reference for all joint points, as depicted in
Fig. 3 as well.

As shown in the Appendix, if the conditions mentioned in Section 3 are
met, the β weights can be written as in Eq. (19).

βij =

2N∏
k=1

λ
aijk
k

N∏
h=1

Λ
bijh
h , aijk, bijh = −1,0,1, (19)

where N is the number of elements of vector Λ. λk and Λh are the kth

and hth elements of λ and Λ respectively, and coefficients aijk and bijh are
the exponents of λk and Λh for the βij base parameter weight. Eq. (19)
represents a Product Function Class (PFC) and if a base parameter weight
belongs to this class, it will be said that it is PFC. Additionally, if the
base parameter weights of a link are PFC, it will also be said that the base
parameters are PFC.

At this point it is known that each βij can be written as in Eq. (19), how-
ever the actual values of the corresponding exponents aijk and bijh for each
βij are still unknown. In order to determine the exponents for a single βij ,
the RHS of Eq. (19) is evaluated for different combinations of the exponents
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λl

λyl

λxl

Pl

Figure 3: Location of joint point Pl in terms of the Cartesian coordinates λxl and λyl.

until it is equal to the given βij . For a certain N , the number of different
possible combinations for a single βij would be 32N ⋅3N = 33N . Checking such
number of combinations could be unmanageable even for small values of N .
Fortunately, as it will be shown next, some simplifications can be done that
dramatically reduce the number of combinations that need to be checked.

4.2. Simplification on the exponents

The dimensions of the β weights can be easily determined by looking at
the expressions for the numerical base inertial parameters. Thus, denoting
the dimensions of βij by [βij], and based on Eq. 17, [βij] can be obtained
as a quotient of the dimensions of the inertial parameters of vectors φ1 and
φ

2
:

[βij] = [φ1,i][φ2,j] (20)

Since the dimensions of the inertial parameters are ML0, ML1 or ML2

(being M and L the dimensions of mass and length respectively) the dimen-
sions of βij will always be Leij with eij = 0,±1,±2. Moreover, as will be
demonstrated in Appendix A.6, all βij will be either equal to 1, equal to an
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element (or its inverse) of vectors λ or Λ, or a product (or quotient) of two
elements of λ or Λ.

Taking into account the dimensional information in the β weights, and the
reduced number of products between the elements of λ and Λ, the proposed
PFC is simplified to:

if [βij] = ∅ βij = 1, or (21a)

βij =
λk

λh

, for certain k and h. (21b)

if [βij] = L, βij = λk, for certain k, or (21c)

βij =
Λk

λh

, for certain k and h. (21d)

if [βij] = L2, βij = Λk, for certain k, or (21e)

βij = λkλh, for certain k and h. (21f)

For [βij] = L−1,L−2, the inverse of βij will be checked for the PFC of
Eqs. (21).

Notice, comparing Eq. (19) with Eq. (21), that the number of possible
combinations has been reduced dramatically. Accordingly, exploring the class
of functions reduces to check all the possible combinations of the elements
of vectors λ and Λ until the matching expression is found. Therefore the
number of possible combinations to check, for Expressions (21a) to (21f),
are: 1, 4N2, 2N , 2N2, N and 4N2, respectively.

4.3. Numerical values for the geometric parameters

Since a one-to-one correspondence is sought between the symbolic geo-
metric parameters and their numerical counterparts, if we select the same
numerical value for two (symbolically) different parameters, the symbolic
searching algorithm will not be able to distinguish which symbolic param-
eter corresponds to a given numerical value. Therefore, it is necessary to
assign different numerical values to each of the lengths in the model. Unit
lengths have to be avoided and we also have to ensure that the product of
two lengths is not equal to any other length. This can be achieved, for in-
stance, assigning to each length a different prime number and multiplying
them by a common factor. To guarantee the assemblability and mobility
of the mechanism, these values should be chosen close enough to the actual
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geometric values. Obviously, the numerical base inertial parameters have to
be calculated using this set of geometric values.

4.4. The algorithm summarised

In order to make the algorithm clearer, it is written here in pseudo-code
form:

Eliminate mechanical redundancies if any;
Open the loops cutting through a R joint;
Parametrise optimally;
Define joint point position in terms of λxl, λyl and λl;
Choose appropriate numerical values for geometric
parameters;
Define the λ, Λ vectors;
Select the inertial parameters to form φ2;
Find numerical matrix β with Gautier’s SVD algorithm;
forall the βij do

Find the dimensions of βij ;
forall the possible candidates A according to

Eq. (21) do
if ∣A −βij ∣ < TOL then

write symbolic equivalent and go to next βij;

end

end

end

Algorithm 1. Pseudo-code for the searching algorithm.

In this algorithm, letter A represents the product combinations of elements
of vectors λ and Λ. TOL represents the numerical tolerance allowed for the
matching.

5. THE FOUR BAR EXAMPLE

In this section it is shown how the symbolic base inertial parameters of
the four bar mechanism represented in Fig. (4) can be calculated using the
proposed algorithm.
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5.1. Parametrisation

Since the four bar is a closed-loop mechanism, it is necessary to cut the
closed loop in a R joint. In this case the chain has been cut in the joint located
at point D (see Fig. 4). Once the loop is open, the optimal parametrisation

has been performed, locating the origins of the reference of each link in the
R joint with the next link towards the ground. Reference 2 has been defined
with a general orientation with respect to vector BC, and for the sake of
simplicity, references 1 and 3 have been aligned to vectors AB and CD,
respectively.

5.2. Generalised coordinates and geometric parameters

λ x
1

λx2

λ
y2

λ
x
3

θ1

θ2
θ3

g

Figure 4: Geometric model of the four bar mechanism

The generalised coordinates used in this case are absolute orientation
angles with respect to the horizontal line (θ1, θ2, θ3). However, there is no
constraint in the selection of coordinates.

As a requirement of the algorithm, the constant lengths λx1, λx2, λy2 and
λx3, are used to define the position of the joint points B, C and D with
respect to the link frames in Cartesian coordinates.
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5.3. Choose appropriate numerical values

The following numerical values are used for the parameters:

λx1 =
3

10
, λx2 =

7

10
, λy2 =

11

10
, λx3 =

13

10
. (22)

Note that since λy2 has been considered a positive length, the position
vector from point B to point C has been given as {BC}Ref2 = {λx2,−λy2}Ref2

when building the IDM.

5.4. The λ and Λ vectors

Following the definitions given in Section 4.1, the λ and Λ vectors are:

λ ={λx1, λx2, λy2, λx3} (23a)

Λ ={λ2

1, λ
2

2, λ
2

3} (23b)

where λ2

i = λ2

xi + λ
2

yi for i = 1,⋯,N . For the current example N = 3 and
λy1 = λy3 = 0.

5.5. Find matrix β with Gautier’s SVD algorithm

The symbolic multibody program 3D MEC (Ros et al., 2005) has been
used to obtain the IDM of the system based on the geometric model data
presented in Fig. (4). The first and second moments of inertia of each link
are defined with respect to the reference frame of the link.

In order to evaluate matrix W, an inverse kinematic simulation has been
performed. The trajectory for the independent coordinate θ1 has been the
one shown in Fig. (5). The trajectory has been built as a finite Fourier Series,
and it has been optimised using 11 harmonics in order to sufficiently excite
the mechanism (Swevers et al., 1996, 1997).

After evaluating W in Eq.(6), the algorithm presented in Section 2 is
applied to obtain the matrix β numerically. Taking the SVD of W, matrices
U, Σ0 and V have been obtained. From the diagonal of Σ0 it is observed
that b = rank(W) = 8, from which it can be deduced that φ1 is a 8×1 vector
and that φ

2
is a 4 × 1 vector. Taking the last 4 columns of V matrix V2 is

obtained. Each of the 12 rows of V2 corresponds to an inertial parameter,
with the order given by the original parametrisation φ. Since the rows of
V2 associated to parameters J1, J2, J3 and m1 are independent4, matrix P

is determined such that it reorders φ making these parameters the last 4
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Figure 5: Independent coordinate θ1 in the inverse dynamic simulation.

elements of P⊺φ. Note that, as explained in Section 3, selecting m1 was
compulsory since link 1 is the closest-to-the-ground link of a serial chain.

Matrix V22 is therefore obtained as the last m − b = 4 rows of P⊺V2.
Accordingly the first b = 8 rows of P⊺V2 give the 8 × 4 matrix V21.

Finally, β is obtained making use of Eq. (16). The numerical base inertial
parameters obtained (omitting the null column of β multiplying to m1) are:

φb = φ1 +βφ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mx1

my1
mx2

my2
m2

mx3

my3
m3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.333 0 0
0 0 0
0 −0.4118 0
0 0.6471 0

11.11 −0.5882 0
0 0 −0.7692
0 0 0
0 0.5882 −0.5917

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩
J1

J2

J3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(24)

4If no independent group of rows of V2 can intuitively be selected, an algorithm to
calculate the reduced row echelon form of a matrix (as rref in Matlab) can be used to
determine a group of m − b rows of V2 that are independent.
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MatrixWR for this example is built with the columns ofW corresponding
to the parameters in φ

1
.

5.6. Searching

The searching phase of the algorithm is performed to find matching ex-
pressions for each βij of β.

According to the dimensions of the inertial parameters of vectors φ
1
and

φ2, it is deduced from Eq. (20) that the β weights have dimensions of L−1

and L−2 as shown in Table 1.

Dimensions βij or βij
−1

[L0] ∅

[L1] ( 1

3.333
, 1

0.4118
, 1

0.6471
, 1

0.7692
)

[L2] ( 1

11.11
, 1

0.5882
, 1

0.5917
)

Table 1: Dimensions of the βij weights.

As described in Eq. (21), depending on the dimensions of each β weight,
two possible expression types can match it. Checking all the possible com-
binations of the elements of λ and Λ, the symbolic equivalent expression
of the given numerical value for the β weight is found. After the search is
completed, the symbolic base inertial parameters obtained for the four bar
model are:

φb =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mx1

my1
mx2

my2
m2

mx3

my3
m3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ−1x1 0 0
0 0 0
0 −λx2/λ2

2
0

0 λy2/λ2

2
0

λ−2
1

−λ−2
2

0
0 0 −λ−1x3
0 0 0
0 λ−2

2
−λ−2

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩
J1

J2

J3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(25)

The tolerance used has been TOL = 10−10 ⋅min(∣βij ∣), ∀βij ≠ 0. Note
that λ1 = λx1 and λ3 = λx3 in this example.
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The expressions of the base parameters obtained in this example have
also been determined using the inertia transfer concept described in Chen et
al. (2002) and Ros et al. (2012), and the same results have been obtained.

6. CONCLUSIONS

In this paper a new method to obtain the symbolic expressions of the
base inertial parameters of open and closed-through-the-ground planar mech-
anisms has been proposed and illustrated with an example. The method is
based on the well known numerical method of Gautier but provides the exact
symbolic expressions of the base inertial parameters as a function of the con-
stant geometric parameters of the system. Therefore, it constitutes a very
valuable tool in design optimisation and it is also very interesting in dynamic
parameter estimation, model reduction and other fields.

The proposed method searches for matches of the values of symbolic can-
didate expressions, with the numerically calculated versions of the β weights.
Therefore, it requires the same level of user intervention as the most common
numerical algorithms, with the advantage of providing symbolic expressions
for the base inertial parameters.

For the defined optimal parametrisation, using the inertia transfer con-
cept, it has been demonstrated that for planar mechanisms where the existing
loops are closed through the ground, the elements of β can always be written
as products of lengths (or their inverses). The conditions on the parametrisa-
tion do not impose a practical limitation, as any parametrisation of a planar
mechanism can be recast to the proposed one.

Appendix A.

Appendix A.1. Introduction

In this Appendix it is shown that for a planar mechanism that is opti-

mally parametrised (as defined in Section 3) and which can have loops closed
through the ground, if the mass property of the last body of each serial

chain (as defined in Section 3) is selected as a parameter to eliminate, then
the resulting base parameter weights belong to the Product Class of Func-
tions (PCF) described by Eq. (19). It is also shown that the PFC described
by Eq. (19) can be simplified to that of Eq. (21).

The demonstrations are based on the mass and inertia transfer concepts
introduced by Chen et al. (2002). As stated in Propositions 1 and 2 of
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that paper, when two links are joined by a revolute joint (see Fig. A.1) an
arbitrary point mass (at R) can be transferred from one link to the other
without changing the kinetics of the kinematic chain. Similarly, when two
links are joined with a prismatic joint, an arbitrary amount of second moment
of inertia can be transferred without changing the kinetics of the chain. The
transferred mass or second moment of inertia are chosen appropriately to
remove the desired parameters. In order to obtain the base parameter set,
the above process is repeated until the maximum number of parameters is
removed.

The algorithm of Gautier (1991), presented in Section 2, is based on the
same idea: a set of inertial parameters is removed from the original parameter
set. It has been shown that this numerical algorithm produces a unique set
of base parameters provided that the permutation matrix (P) is given. This
is equivalent to specify which inertial parameters we want to eliminate from
the original parameter set. Such eliminations can be traced back to the
corresponding mass or second moment of inertia transfers between links. It
follows that the β matrix obtained from the mass transfer concept and that
of Gautier match each other if the same set of original inertial parameters is
removed.

So, it is enough to demonstrate that the elimination process of Chen et
al. (2002) implies that the expressions of the elements of β are PFC.

The demonstration will proceed as follows. In Appendix A.2 the mass
and inertia transfers will be explained. In Appendix A.3 it will be shown
that the base parameters of serial chains are PFC. In Appendix A.4 and
Appendix A.5 it will be shown, respectively, that the base parameters of
tree-like mechanisms and those of mechanisms with closed loops through
the ground are PFC. It will be concluded that the parameters of a general
mechanism will also be PFC. Finally, in Appendix A.6 it will be shown
that the Product Function Class of Eq. (19) can be simplified to the class
described in Eq. (21).

Appendix A.2. Mass and inertia transfers at revolute and prismatic joints

in a serial chain

In this section it is explained in detail how an inertial parameter is elim-
inated from the equations of motion for a pair of links joined by a R or P
joint. The concept of inertia transfer described in Chen et al. (2002) is used
for that purpose. From here on, the base inertial parameter expressions that
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Oj
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Yj
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Yi

Oi

λyj

λxj

Figure A.1: Links i and j joined by a revolute joint. The position of point Oi in reference
(Xj, Yj) is defined in terms of λxj , λyj and λj .

result from a single inertia transfer will be called intermediate base parame-

ters since they are an intermediate step in the process of calculating the base
inertial parameters.

Appendix A.2.1. Mass transfer at a revolute joint

Let links i and j be joined with a revolute joint at point R, as shown in
Fig. (A.1). If a point mass mij is transferred from link i to link j at point R,
the equations that define the expressions of the intermediate base parameters,
denoted by a prime (′), are:

m′j =mj +mij m′i =mi −mij

mx′j =mxj + λxj ⋅mij mx′i =mxi (A.1)

my′j =myj + λyj ⋅mij my′i =myi

J ′j = Jj + λ
2

j ⋅mij J ′i = Ji.

This system of equations consists of eight equations and nine unknowns,
so it is possible to assign a value to mij such that one of the new parameters
is equal to zero. This leads to its removal from the base parameter set. The
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whole set of possible removals by the mass transfer is:

Removed Parameters Transferred mass

m′i = 0 Ô⇒ mij =mi (A.2a)

mx′j = 0 Ô⇒ mij = −
1

λxj

⋅mxj (A.2b)

my′j = 0 Ô⇒ mij = −
1

λyj

⋅myj (A.2c)

J ′j = 0 Ô⇒ mij = −
1

λ2

j

⋅ Jj (A.2d)

m′j = 0 Ô⇒ mij = −mj (A.2e)

It is clear that making any of the primed parameters equal to zero and
substituting back the corresponding mij expression from Eqs. (A.2) into
Eqs. (A.1), the weights of the intermediate base parameters will be PFC.

Appendix A.2.2. Second moment of inertia transfer through a prismatic joint

Now, let links i and j be joined by a prismatic joint. If a given part of
the second moment of inertia, Jij, is transferred from link i to link j, the
equations that define the intermediate base parameters for each link are the
following:

m′j =mj m′i =mi

mx′j =mxj mx′i =mxi (A.3)

my′j =myj my′i =myi

J ′j = Jj + Jij J ′i = Ji − Jij.

In this case, only one of the two intermediate moments of inertia can be
made equal to zero. To that end, the transferred inertia, Jij , should be one
of the following:

Removed Parameters Transferred moment

J ′i = 0 Ô⇒ Jij = Ji (A.4a)

J ′j = 0 Ô⇒ Jij = −Jj (A.4b)

As in the case of mass transfer, it is clear here too that for any of the two
possible cancellations, the weights of the intermediate base parameters will
be PFC.
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Appendix A.3. The base parameters of a serial chain are PFC

Let us first suppose that links i and j might have done a single transfer but
in any case their intermediate base parameters are PFC. Applying Eqs. (A.1)
and (A.2) if joint ij is R (or Eqs. (A.3) and (A.4) if joint ij is P ) it is easy
to see that the resulting new intermediate base parameters of both links are
PFC. Note that a joint participates only once in the inertia transfer process.

Appendix A.4. Extension to tree structure mechanisms

A tree structure mechanism is composed of serial chains that are joined
together in bifurcation links, as it has been described in Section 3. For arbi-
trary inertia transfers between a bifurcation link and the link of each serial

chain joined to it, it is straight forward to see, by application of Eqs. (A.1)
to (A.4), that in general the resulting base inertial parameters are not PFC.
However, if the mass of the links (a) joined to the leaf side of a bifurcation link

(b) are removed through a mass transfer , the intermediate base parameters

become:

m′b =mb +∑
a

m′a m′′a = 0, ∀a.

mx′b =mxb +∑
a

λxa ⋅m
′

a mx′′a =mx′a, ∀a. (A.5)

my′b =myb +∑
a

λya ⋅m
′

a my′′a =my′a, ∀a.

J ′b = Jb +∑
a

λ2

a ⋅m
′

a J ′′a = J
′

a, ∀a.

where m′a, mx′a, my′a and J ′a are the inertia parameters of link a before the
transfer. As m′a is PFC, the intermediate base parameters of the bifurcation

link b (m′b, mx′b, my′b and J ′b) and those of link a (m′′a , mx′′a , my′′a and J ′′a )
will be PFC.

Appendix A.5. Extension to mechanisms with closed loops through the ground

For the purposes of the demonstration, mechanisms with closed loops are
transformed to tree-like mechanisms cutting the different loops by one of
their joints.

It is easy to see that for mechanisms with general closed loops, the result-
ing base inertial parameters will not generally be PFC. When a chain is cut
through a joint to open the closed loop, the transfer that is done makes the
intermediate base parameter expressions of the chains at both sides of the
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cut share a common inertial parameter. As a consequence, when subsequent
transfers are done towards the ground and reach a bifurcation link, a sum
of two expressions that contain a common parameter may occur, and the
intermediate base parameters will not be PFC. Obviously, when the existing
loops are closed through the ground, this recombination of parameters does
not occur and the intermediate base parameters will be PFC.

Appendix A.6. The base parameter weights involve at most two geometric

parameters

From Appendix A.2 to Appendix A.5, it has been demonstrated that
the base parameters are PFC. In this section, it will be demonstrated that
the structure of Eq. (19) can be simplified to that of Eq. (21), where the β

weights can be written as products of, at most, two elements of vectors λ or
Λ.

Let us first suppose that links i and j of Fig. (A.1) could have done one
of their two transfers with another link. Second, let us suppose that as a
consequence of that possible transfer, the β weights of the intermediate base

parameters satisfy the next two conditions:

a) The β weights of the intermediate base parameters m′i and m′j are
functions of, at most, a single geometric parameter.

b) The β weights of the intermediate base parameters mx′i, my′i, J
′

i , mx′j ,
my′j and J ′j are functions of, at most, two geometric parameters.

Analysing all the possible parameter eliminations for the transfer between
links i and j described by Eqs. (A.1) to (A.4), it is easy to see that the inter-
mediate base parameters also satisfy conditions a) and b) after the transfer.
As a consequence, all the β weights will depend on, at most, two elements
of vectors λ and/or Λ. In this step, it is necessary to note that, the first and
second moments of inertia of link j before the transfer with link i has taken
place, will always coincide with those of j before its first transfer, i.e. they
are equal to the inertial parameters of the original link.

Note also that the demonstration holds as well for the case in which j is
a bifurcation link.
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