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Abstract— Simulation techniques based on deterministic 

methods such as Ray Tracing and Ray Launching, are widely 

used to perform radioplanning tasks. However, the quality of the 

simulations depends on the number of rays and the angular 

resolution. The computational cost of these simulations in High 

Definition prevents their use in complex environments and their 

Low Definition counterparts are used instead. In this article we 

propose a technique based on collaborative filtering to lessen the 

poor quality problems of Low Definition simulations. We show 

that our approach obtains results very similar to those of High 

Definition in much less time. Also, we compare our approach 

with other well-known techniques and we show that it performs 

better in terms of accuracy and precision. The use of combined 

deterministic/collaborative filtering techniques allows the 

estimation of radioplanning tasks in large, complex scenarios 

with a potentially large amount of transceivers. 
 

Index Terms—3D-Ray Launching, Collaborative Filtering. 

I. INTRODUCTION 

he use of wireless systems has increased in the last 

decade, given the popularity of mobile networks, wireless 

LAN and wireless sensor networks. The advent of Context-

Aware environments, mainly driven by the trend in Smart 

City/Smart Region development, will increase further more 

the deployment of 4G mobile networks, Internet of Things and 

the overall evolution towards high capacity and capillarity of 

5G systems. This will have a decisive impact on many areas 

from Smart Transportation and sustainability to e-participation 

and Smart Healthcare [1]. In order to achieve this goal, 

multiple wireless systems will operate in complex 

environments, thanks to HetNet architectures.  

One of the main considerations is to control interference 

precisely, in order to increase coverage/capacity ratios. In this 

sense, given the wide variety of wireless systems under 

consideration and the inherent complexity of large, dense 

urban scenarios, radioplanning tasks are compulsory in order 

to account for useful server signals as well as intra-system and 

inter-system interference sources. Several techniques can be 

employed, from semi-empirical regressive methods, which 

exhibit large errors and measurement dependent models, to 

deterministic based techniques such as full wave 

electromagnetic simulation. As a midpoint between precision 

and computational cost, Ray Launching (RL) methods offer a 

good trade-off between precision and computational cost. 

However, when large, complex scenarios in which many 

potential transceivers can be located, RL exhibits high 

computational cost and convergence constraints [2,3]. In order 

to minimise computational cost for certain scenarios, in this 

article we propose the combination of in-house 3D RL code 

with Collaborative Filtering (CF), a set of techniques used by 

Recommender Systems (RS). RS [4] evolve from the field of 

knowledge discovery in databases ‘KDD’ [5]. Systems for 

KDD are used to mine understandable patterns within large 

collections of data. CF [6] is a kind of recommender system 

that comprises a large family of recommendation methods. 

The aim of CF is to make suggestions on a set of items I (e.g. 

books or films) based on the preferences of a set of users U 

that have already acquired and/or rated some of those items. 

Recommendations provided by CF methods are based on the 

premise that similar users are interested in similar items (i.e. 

they share similar patterns). Hence, items well rated by user ua 

might be recommended to user ub, if ua and ub are similar. In 

order to predict whether an item would interest a given user, 

most CF methods rely on matrices M of n users (rows) and p 

items (columns), where each matrix cell mi,j stores the rate of 

user i on item j [7]. The main idea is to use the ability of CF 

methods to predict rates and infer the values of empty cells in 

matrices obtained in Low Definition (LD) simulations, by 

implementing a knowledge database employing HD 

simulation results. The proposed methodology has been 

applied to received power levels, within the complete 

simulation volume represented in matrix form, although it can 

be extended to other parameters if required. 

II. HYBRID CF AND 3D RAY LAUNCHING 

The proposed method, which comprises two steps: (i) database 

creation and (ii) values prediction, has been validated on 

scenarios representing rooms with different sizes and a variety 

of obstacles and materials.  

A. Database creation: 

A knowledge database, that will be used to predict missing 

values in LD simulations, is created. Each scenario, modelled 

by a matrix 𝑀𝑛×𝑝, is managed differently depending on the 

approach used, (i.e., 1D- or 2D-approach):  
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1) Database creation: 1D-Approach 

The matrix 𝑀𝑛×𝑝 is serialised into a vector 𝑉 =

(𝑣1, 𝑣2, … … . , 𝑣𝐿𝑣), i.e. a point in ℝ𝐿𝑣, where 𝐿𝑣 = 𝑛 × 𝑝. 

From this vector we create a set of vectors 𝑆𝑉 =
{𝑠𝑣1, 𝑠𝑣2, … … . , 𝑠𝑣𝐿𝑣−𝐿𝑠𝑣+1}. Each vector in 𝑆𝑉 has length 𝐿𝑆𝑉 

and can be represented as a point in a subspace ℝ𝐿𝑆𝑉. Note 

that each vector 𝑠𝑣𝑖 = (𝑣𝑖 , 𝑣𝑖+1, … … . , 𝑣𝑖+𝐿𝑆𝑉−1), ∀𝑖 ∈

[1, 𝐿𝑉 − 𝐿𝑆𝑉 + 1]. Figure 1 shows an example of the creation 

of the knowledge database consisting of vectors in a subspace 

ℝ3, i.e. with 𝐿𝑆𝑉 = 3. 

 
Fig. 1. Database creation example. 𝐿𝑆𝑉 = 3. 

 

Databases might contain information from multiple scenarios. 

However, note that each knowledge database contains vectors 

𝑠𝑣𝑖 ∈ ℝ𝐿𝑆𝑉only (i.e. vectors from the same subspace). For 

different subspaces, different databases have to be created. 

Moreover, it is important to emphasise that databases are 

created in pairs: 𝐷𝐵𝐿𝐷 and 𝐷𝐵𝐻𝐷. 𝐷𝐵𝐿𝐷 is the database created 

with scenarios simulated in LD, whilst 𝐷𝐵𝐻𝐷 is the database 

created with the same scenarios simulated in HD. This way, it 

is possible to keep a relation between patterns in LD and HD. 
 

2) Database creation: 2D-Approach 

In the two-dimensional approach, the scenario represented by 

the matrix 

𝑀𝑛×𝑝 = (

𝑚1,1 𝑚1,2 ⋯ 𝑚1,𝑝

𝑚2,1 𝑚2,2 ⋯ 𝑚2,𝑝

⋮ ⋮ ⋱ ⋮
𝑚𝑛,1 𝑚𝑛,2 ⋯ 𝑚𝑛,𝑝

) 

is divided into a set  𝑆𝑀 of sub-matrices 𝑆𝑀 =
{𝑠𝑚1,1, 𝑠𝑚1,2, … , 𝑠𝑚1,(𝑝−𝑞+1), … , 𝑠𝑚(𝑛−𝑞+1),1, 𝑠𝑚(𝑛−𝑞+1),2, … ,

, 𝑠𝑚(𝑛−𝑞+1),(𝑝−𝑞+1)}, where each sub-matrix 𝑠𝑚𝑖,𝑗 is a squared 

matrix of size 𝑞 × 𝑞, so that,  

𝑠𝑚𝑖,𝑗 = (

𝑚𝑖,𝑗 ⋯ 𝑚𝑖,(𝑗+𝑞−1)

⋮ ⋱ ⋮
𝑚(𝑖+𝑞−1),𝑗 ⋯ 𝑚(𝑖+𝑞−1),

(𝑗+𝑞−1)

) , ∀𝑖 ∈ [1, 𝑛 − 𝑞], ∀𝑗 ∈ [1, 𝑝 − 𝑞] 

Figure 2 shows an example of the creation of the knowledge 

database with 3 × 3 sub-matrices. Note that 2D databases 

contain less entries than 1D databases. However, such entries 

will contain more values than one-dimensional vectors. Like 

in the 1D-approach, knowledge databases are created in pairs. 

B. Values prediction: 

Once the knowledge database is created, given an LD 

simulation S with missing values (i.e. empty cells resulting 

from low angular resolution) our aim is to predict them so that 

the resulting values are as similar as possible to those obtained 

in HD simulations.  

 
Fig. 2. Database creation example with 3 × 3 sub-matrices. 

 

1) Values prediction: 1D-Approach 

For the one-dimensional approach, we assume that the values 

in S are normalised (i.e. to be comparable with those in the 

knowledge database) and that a pair of knowledge databases 

𝐷𝐵𝐿𝐷 and 𝐷𝐵𝐻𝐷 with LD and HD patterns in a given subspace 

ℝ𝐿𝑆𝑉 have been selected. Then, for every vector 𝑣𝑗 ∈ ℝ𝐿𝑆𝑉 

from S containing missing values, the k closest patterns               

𝐶𝑃𝐿𝐷 = {𝑐𝑝1, 𝑐𝑝2 , … , 𝑐𝑝𝑘} in 𝐷𝐵𝐿𝐷  are found. Next, their 

corresponding HD patterns 𝐶𝑃𝐻𝐷 = {𝑐𝑝1
´ , 𝑐𝑝2

´ , … , 𝑐𝑝𝑘
´ } in 

𝐷𝐵𝐻𝐷 are determined and its average is computed as 𝑐𝑝´̅̅ ̅̅ =
1

𝑘
∑ 𝑐𝑝𝑖

´𝑘
𝑖=1 . The values of the average pattern 𝑐𝑝´̅̅ ̅̅  are used as 

the prediction of the missing values. Without loss of 

generality, the closest patterns are determined using the 

Euclidean distance over non-missing values of the vectors. In 

order to optimise the search process, we group patterns 

depending on the value of the sum of its elements. Therefore, 

given a vector 𝑠𝑣𝑖  with length 𝐿𝑆𝑉, we sum its values and 

compute distances only with patterns that have a similar sum, 

according to a threshold, as depicted in Figure 3. In order to 

increase the quality of the predictions, we only consider 

vectors having, at most, one missing value. This procedure is 

iteratively applied until all missing values are determined and, 

if necessary, knowledge databases with patterns in lower 

dimensionality subspaces are used. 

 
Fig. 3. Missing values prediction: 1) The most similar patterns are found in 

the LD Database, 2) The corresponding HD patterns are determined, 3) The 

average of those values is computed and used to replace the missing value. 

 

2) Values prediction: 2D-Approach 

For the two-dimensional approach, we assume that the values 

in S are normalised and that a pair of knowledge databases 

𝐷𝐵𝐿𝐷 and 𝐷𝐵𝐻𝐷 with LD and HD patterns represented by 

matrices of size 𝑞 × 𝑞 have been selected. Then, similarly to 

the 1D-approach, for every sub-matrix 𝑠𝑚𝑖,𝑗 of size 𝑞 × 𝑞 
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from S containing missing values, the k closest sub-matrices 

𝐶𝑆𝑀𝐿𝐷 = {𝑐𝑠𝑚1, 𝑐𝑠𝑚2, … , 𝑐𝑠𝑚𝑘} in 𝐷𝐵𝐿𝐷 are found. Next, 

their corresponding HD sub-matrices 𝐶𝑆𝑀𝐻𝐷 =

{𝑐𝑠𝑚1
´ , 𝑐𝑠𝑚2

´ , … , 𝑐𝑠𝑚𝑘
´ } in 𝐷𝐵𝐻𝐷 are determined and its 

average is computed as 𝑐𝑠𝑚´̅̅ ̅̅ ̅̅ =
1

𝑘
∑ 𝑐𝑠𝑚𝑖

´𝑘
𝑖=1 . The values of the 

average sub-matrix 𝑐𝑠𝑚´̅̅ ̅̅ ̅̅  are used as the prediction of the 

missing values. Like in the 1D-approach, the closest sub-

matrices are determined using the Euclidean distance over 

non-missing values and the search process is also optimised. 

This procedure is similar to the one showed in Figure 3, this 

time using sub-matrices instead of one-dimensional vectors. 

The proposed CF techniques are coupled to a 3D Ray 

Launching code implemented at UPNA. The algorithm is 

based on Geometric Optics + Uniform Theory of Diffraction, 

with rays launched by predefined sources within a solid angle 

definition, interacting with the simulation scenario as a 

function of obstacle geometry and dispersive material 

characterization. The values of angular resolution and number 

of reflections have been applied following previous 

convergence analysis studies [2,3]. 

III. SIMULATION EXAMPLES AND VERIFICATION OF THE 

ALGORITHM 

 

To assess our solution we have simulated 12 diverse scenarios 

with 30 to 40 layers, each containing a variety of features (i.e. 

corridors, columns, walls, doors and furniture). Each scenario 

has been simulated in LD and HD. With these simulations we 

have created two sets of databases. First, three 1D LD 

knowledge databases with vector lengths 𝐿𝑆𝑉 = 3, 5, and 7 

and their three HD counterparts. Second, three two-

dimensional LD databases with 𝑞 = 2, 3 and 4 and the 

corresponding HD ones. Each knowledge database contains 

more than half a million patterns/vectors in their 

corresponding subspaces. We have applied our solution on 4 

LD simulations (not included in the knowledge database) with 

diverse dimensions, density (i.e. percentage of occupied 

space) and sparseness (i.e. percentage of missing values), as 

depicted in Table I. In each one of the scenarios the 

transmitter is placed in different locations, in order to obtain 

generalizable results independent of antenna location. The 

specific location for each scenario is given in column 

Row/Column/Layer in Table I. 

With the aim to analyse the versatility, accuracy and 

performance of our approach, we have tested two different 

types of prediction strategies, shown in Table 2. The first 

family (i.e. Strategies from 1D.1 to 1D.3) corresponds to the 

1D-approach. The second, which includes strategies from 

2D.1 to 2D.3, corresponds to the two-dimensional method. For 

instance, in Strategy 1D.1 we first predict the missing values 

with the LD knowledge database of vectors with 𝐿𝑆𝑉 = 7. If 

all missing values are not filled, we next apply the LD 

knowledge database with 𝐿𝑆𝑉 = 5, and if there remain missing 

values we apply the LD knowledge database with 𝐿𝑆𝑉 = 3. In 

Strategy 2D.1, we use sub-matrices with 𝑞 = 2 to compute 

predictions. Obviously, each family of strategies uses their 

corresponding 1D or 2D knowledge databases. In all cases we 

consider an aggregator value (i.e., number of closest patterns 

that will be used to compute the prediction) k=100. Thus, for 

each missing value, we find the most similar hundred vectors 

in the corresponding subspace and compute their average. 
 

TABLE I 

TEST SIMULATIONS FEATURES.  
 

 

Rows Cols Layers 

Source 

position 

(R,C,L) 

Time 

(s) HD 

Time 

(s) 

LD 

Density 

% 

Spars. 

% 

Sim-1 130 70 42 95,45,6 110137 2087 2.60 13.93 

Sim-2 126 182 38 82,56,35 25360 2981 3.72 43.14 

Sim-3 124 273 32 70,212,23 37236 3765 3.06 43.71 

Sim-4 58 62 35 18,31,11 81509 1390 3.78 0.77 

Sim-5 36 60 38 35,5,30 30637 1112 4.74 1.34 

Sim-6 30 30 35 3,20,11 55711 637 4.02 0 

Sim-7 30 30 35 10,3,10 36112 712 8.63 0 

Sim-8 50 50 35 40,20,13 43628 1088 2.98 0.24 

Sim-9 40 30 35 38,15,11 90288 954 3.45 0.02 

Sim-10 40 30 35 6,5,16 77479 1008 2.29 0.01 

Sim-11 36 60 38 21,50,9 112405 1406 4.74 0.84 

Sim-12 32 64 32 10,30,9 47578 918 0.52 0 

Sim-A 70 50 30 10,42,21 64139 1040 4.98 2.203 

Sim-B 90 60 30 10,42,13 80004 1228 6.10 7.092 

Sim-C 175 80 40 46,50,14 52583 1765 6.69 17.051 

Sim-D 196 136 38 20,80,5 48910 2037 1.04 37.636 

 
TABLE II 

SUMMARY OF PREDICTION STRATEGIES 
 

Strategy Prediction strategy 

1D.1 𝐿𝑆𝑉 = 7 →  𝐿𝑆𝑉 = 5 → 𝐿𝑆𝑉 = 3 , (𝑘 = 100)  

1D.2 𝐿𝑆𝑉 = 5 →  𝐿𝑆𝑉 = 3, (𝑘 = 100) 

1D.3 𝐿𝑆𝑉 = 3 , (𝑘 = 100) 

2D.1 𝑞 = 2 , (𝑘 = 100) 

2D.2 𝑞 = 3 , (𝑘 = 100) 

2D.3 𝑞 = 4 , (𝑘 = 100) 
 

We compare the prediction quality of our collaborative 

filtering prediction strategies with other four well-known 

methods, namely linear interpolation, average simulation 

value per layer, average simulation value per row, and average 

simulation value per column. We compute the error between 

the real values of the HD simulation and the predicted values 

determined by the above methods. To compute this error we 

apply the mean absolute error ‘MAE’, defined as follows: 

                      𝑀𝐴𝐸 =  
∑ |𝑝𝑖−𝑟𝑖|𝑛

𝑖=1

𝑛
                        (1) 

where n is the number of missing values predicted, pi is the 

predicted value for missing element i, and ri is the real value of 

i in the HD simulation. Note that the HD simulation is only 

used to compute the error but it is not involved in the 

prediction process. In Table 3 and Table 4 we show the MAE 

results and times, respectively, of the aforementioned methods 

for each simulation. Since our method could be applied to 

each layer independently, the overall procedure could be 

easily parallelised. Hence, Table 4 shows the worst layer 

prediction time, which is the actual total cost of our method. 

As an example, one of the implemented indoor test scenarios, 

as well as simulation results for the estimation of received 

power at all locations is depicted in Figure 4. The different 

results correspond to different simulation techniques, from 

High Definition, to Low Definition + CF and finally only LD. 

Our LD+CF solution offers qualitatively an adequate result in 

terms of received power level estimation. 
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Fig. 4. Received power level estimation when employing HD (top), LD+CF 
(middle) and LD (bottom). The scenario corresponds to Sim B.  

 

TABLE 3: MAE RESULTS (IN DB).  
 

 
Sim-A Sim-B Sim-C Sim-D All 

Method MAE σ MAE σ MAE σ MAE σ MAE σ 

Strategy 1D.1 6.47 0.75 9.91 0.79 6.99 0.52 10.70 1.40 9.25 1.05 

Strategy 1D.2 6.48 0.79 10.14 0.92 7.06 0.60 11.14 1.31 9.53 1.04 

Strategy 1D.3 6.21 0.86 8.16 1.02 7.16 0.56 13.38 1.09 10.62 0.90 

Strategy 2D.1 5.88 1.58 6.85 0.48 8.42 0.96 15.11 1.06 11.82 1.01 

Strategy 2D.2 5.69 1.56 7.01 0.55 7.19 0.56 11.02 0.59 9.19 0.84 

Strategy 2D.3 5.82 1.89 7.05 0.59 6.84 0.49 9.78 0.58 8.52 0.79 

Linear Interpolation 23.03 4.36 22.88 3.14 24.08 2.83 24.91 2.21 23.98 2.60 

Layer mean value 8.84 4.11 5.31 0.46 9.31 1.46 16.37 1.27 12.76 1.42 

Column mean value 7.86 3.48 5.11 0.52 9.83 1.62 16.58 1.20 13.02 1.39 

Row mean value 7.59 0.93 7.95 0.99 8.65 1.55 14.05 1.28 11.51 1.32 

Raw values 56.26 2.09 45.67 1.08 62.07 1.59 73.19 1.15 66.42 1.33 

 
TABLE 4: TIMES (IN SECONDS) TO PREDICT ALL MISSING VALUES 

 

 Time (in seconds) 

Simulation 1D.1 1D.2 1D.3 2D.1 2D.2 2D.3 

Sim-A 17 19 17 15 16 16 

Sim-B 54 54 35 42 49 56 

Sim-C 152 167 179 132 141 143 

Sim-D 473 479 531 361 396 416 

 

The results in Table 3 show that our strategies achieve 

lower/better MAE values than the rest of methods for Sim-A, 

Sim-C and Sim-D and that Strategy 2D.3 is the overall best 

method. However, it is worth emphasising that the minimum 

error is not always obtained by the same strategy. Therefore, if 

more accurate results were to be obtained, parameters such as 

k, vector subspace dimensionality, sub-matrices size and its 

corresponding database might be tuned depending on each 

simulation’s features. In opposition to the results of Sim-A, 

Sim-C and Sim-D, the MAE obtained by mean-based methods 

in Sim-B is lower/better than that achieved by our proposed 

strategies. This is due to the fact that Sim-B is very 

homogeneous and the range of measurements is very short, 

thus benefiting mean-based methods. The outcomes obtained 

by 2D strategies (i.e. Strategy 2D.3) outperform those 

obtained by 1D strategies for Sim-A, Sim-B, Sim-C and Sim-

D (cf Table 3). Therefore, we may conclude that 2D strategies 

capture more accurately wave propagation behavior. 

Moreover, as observed in Table 4, 2D strategies require less 

time to perform predictions. This occurs because the 

optimization performed in the search process has greater 

impact in 2D databases since they contain less patterns than 

1D databases. It is worth noting that database creation time is 

not included, as it corresponds to a unique process within the 

simulation process. 

This result supports our main claim that collaborative filtering 

could be used to improve simulations accuracy (even in its 

simplest approaches). However, it is important to notice that 

pure mean-based methods do not capture the real 

neighbourhood conditions of the data and might only be used 

in very homogeneous scenarios. Also, we observe that 

sparseness has an adverse effect on the overall prediction 

accuracy of all methods. This is especially apparent in Sim-D, 

which is very sparse. This result is not surprising since with 

less information is more difficult to make good decisions. 

Overall, as it can be seen in Table 3 (column: “All”), Strategy 

2D.3 outperforms the rest of strategies, and obtains the best 

prediction accuracy, which is about 25% better than the best 

method not proposed by us. 

IV. CONCLUSION 

We have proposed the use of collaborative filtering to 

improve simulations accuracy by predicting missing values. 

We have shown that our method outperforms other well-

known approaches such as linear interpolation and mean-

based methods. The main contributions of this article can be 

summarised as follows: (i) we show that 1D/2D collaborative 

filtering methods can be applied to improve the accuracy of 

LD simulations. (ii) We have proposed several prediction 

strategies that provide better results than classic collaborative 

filtering methods, (iii) we have shown that our proposal is fast 

and could help to reduce HD simulation costs.  
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