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1 Introduction

Multibody system dynamics is a well established discipline in the context of railway
vehicle design. It is used for new concept performance evaluation, stability, lifetime,
wear prediction, etc. In general it is desirable to be able to do these analyses as fast
as possible. In particular, due to the huge number of computations required, compu-
tational performance can be very important when dealing with design optimization.
Nevertheless, these tasks do not demand strict real-time performance.

The computational power available on today’s off-the-shelf computers is getting
closer to allowing real-time direct numerical simulation of complex railway vehicle
models. This in turn opens up new possibilities that can greatly benefit the design,
safety, and model based predictive maintenance in the railway field. Most important
applications can be considered to be HiL (Hardware in the Loop) on the design side,
and on-line filtering techniques (Kalman filter alike) in the context of safety, and
model based predictive maintenance. These developments usually run on the heels of
previous work done in the context of vehicle dynamics.

Symbolic multibody models have been demonstrated to be an effective tool for the
modeling of general multibody systems. In particular they have been shown to be very
fast when using recursive O(n3) formulations [1], that in turn require a parametriza-
tion based on relative coordinates. The main challenges are related to the enormous
size of the expressions that the symbolic processor needs to deal with as this can limit
the size of the problem to be analyzed. Recently, in [2] the authors presented a sym-
bolic multibody library in which the concept of recursivity is extended so that it is
no longer based on the formulation but, instead, on the parametrization level. This is
achieved by the definition of an algebra that includes the typical mechanics operators
(position vector, velocity,... ) and that deals with the recursivity that might be embed-
ded into the parametrization. The typical tree-shaped body structure is replaced by a
tree structure for points and another one for bases. This gives a fine grained control
of the recursivity that, in this way, can be different for both tree structures. No limi-
tation is imposed on the parametrization of the system. As a consequence the library
allows the implementation of arbitrary dynamics formulations. Atomization (opti-
mization of symbolic expression representation) is embedded into the library from
the very bottom upwards. This alleviates the symbolic manipulation of expressions
and lowers their complexity to a minimum. This in turn allows one to obtain optimal
atomizations that minimize the computational complexity and increases the size of
the problems that is possible to analyze.

This article aims to evaluate the feasibility of real-time numerical simulation of a
complex locomotive multibody model using state of the art symbolic modeling tech-
niques referred to above. For this study, the FEVE 3000 locomotive was used. A
generic (spline based) definition for the contact surfaces of the wheels and rails, in-
cluding irregularities, is used. Based on these, creep forces are modeled using a direct
symbolic implementation of the standard linear Kalker model without simplifications
of any kind. Bodies and rail are considered rigid with three-dimensional kinematics.
No further simplifications such as contact coordinate removal [3], pre-calculated ta-
bles [4], partial linearization [5] or base parameter reduction [6] are presented.
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To that end, the modeling is done based on the multibody system symbolic li-
brary lib_3D_MEC_GiNaC [2], using a relative parametrization with respect to the
inertial reference.

The paper is structured as follows: In section 2 the symbolic methods used in
this work are briefly described. In section 3 the description of the modeled system
is presented. In section 4 the most interesting details of the multibody modeling are
presented. In section 5 the results of the simulations are shown and discussed. Finally
in section 6 the main conclusions of this work are presented.

2 Symbolic modeling procedures

Simply stated, the main goal of the symbolic modeling of multibody systems can be
defined as:

“to obtain a set of functions that allow for the determination of the position, ve-
locities and accelerations of all the bodies of the system”.

Special symbolic procedures are required if a real-time-capable fast multibody
model is desired. The main features of these procedures, as proposed in [7], are sum-
marized below.

2.1 Parametrization and system topology.

In order to model the multibody system a set of geometric parameters p and gener-
alized coordinates q, along with their associated velocity q̇ and generalized acceler-
ations q̈ are defined. The authors propose to split up the classical tree-shaped body
structure into two different tree-shaped structures: 1) the bases structure and 2) the
points structure, see Fig. 1.

In this approach, bases Bj and points Pj are defined in terms of other bases Bi and
points Pi by the way of relative base-change or rotation matrices RBj

Bi
and positions

vectors r
Pj

Pi
. The functions used by the symbolic library [8] can be schematically

represented as

Bi

R
Bj
Bi

(expx(q,t,p),expy(q,t,p),expz(q,t,p), expϕ(q,t,p))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Bj (1)

Pi

r
Pj
Pi

(expx(q,t,p), expy(q,t,p), expz(q,t,p), Bk)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Pj , (2)

where exp∗(q, t,p) represent arbitrary symbolic expressions in terms of which vec-
tors and base-change matrices are defined. This in turn confers physical meaning to
the defined coordinates and parameters. Note that, in order to illustrate the procedure,
the rotation matrix appearing in Eq. (1) is parametrized using Euler parameters.

This splitting of the body structure into the bases and points structures confers
complete flexibility to the choice of the parametrization. A body position and orien-
tation no longer needs to be defined with respect to the preceding body in the tree-
shaped bodies structure. Instead, the body position is given by a point in the points
structure and an orientation by a base in the bases structure.



4 Javier Ros et al.

R
B 1 B R

I

R B
2B

1

R
B 3

B 1

R
B 4

B 3

R
B 5 B 3

R
B 6

B 5

R
B 7
B RI

R B
8BRI

R
B 9
B 8

BRI

B1

B2 B3

B4

B5

B6

B7B8

B9

rP 1 O

r P2P1

rP
3

P 1
rP 4 P 3 r

P5
P3

r P6O

r P
7P
6

r
P8

O

rP9
O

O

P1

P2 P3

P4

P5

P6

P7 P8

P9

Fig. 1: Illustrative examples of bases (left) and points (right) structures

It should be noted that the bases structure is independent of the points structure.
Conversely, the points structure is dependent on the bases structure as the relative
position vector components are given using arbitrary bases (note the Bk parameter
in Eq. (2)). Finally, it should be understood that the nature of the parameterization
depends on the definition of the rotation matrices and position vectors. For example,
if they are defined with respect to another point or orientation the coordinates will be
“relative”, but if they are defined with respect to an absolute point or orientation they
will be “absolute”.

2.2 “On-the-way” atomization

The symbolic expressions that need to be dealt with can be huge. The successive
multiplication of symbolic expressions leads to an explosive growth in the size of the
expressions that can limit the maximum size of the multibody systems that can be
analyzed. In order to deal with this problem, a standard technique in the context of
symbolic computations called atomization is used.

Atomization is a technique that condenses a symbolic expression set by split-
ting their expressions into several elemental sub-expressions. These elemental sub-
expressions are called “atoms”. They can be defined in terms of binary operations be-
tween symbols, numbers and/or other atoms, or as transcendental functions of atoms.

This technique is beneficial when repeated sub-expressions appear and the same
atom is used to represent them. Symbolically, this means less memory—as the sub-
expression is allocated in memory once—and faster symbolic manipulations. Numer-
ically, this implies that the repeated sub-expression is only computed once, leading
to computational cost savings.

In the present context, the sets of expressions related to the functions used to com-
putationally implement a given MSD formalism are discussed. This atomized repre-
sentation leads directly to the exportation of these functions in a way that benefits
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atom27 = sin(theta2);
atom0 = cos(theta3);
atom1 = sin(theta3);
atom26 = cos(theta2);
atom49 = atom1*atom26+atom27*atom0;
atom46 = -atom27*atom1+atom26*atom0;
atom237 = m3*l2*( cg3x*atom0+atom1*cg3z);
atom253 = m3*l1*( cg3x*atom46+atom49*cg3z)+atom237;
atom200 = -l1*atom26;
atom214 = -l2*atom200;
atom197 = (l1*l1);
atom215 = (l2*l2);
atom270 = atom27*l1*cg2z*m2+m3*( atom214+atom215)

-m2*cg2x*atom200+I3yy+atom237+I2yy+atom253;
atom229 = m3*l2*cg3x*atom0+m3*l2*atom1*cg3z;

atom271 = m3*l1*cg3x*atom46+I3yy+m3*atom49*l1*cg3z
+atom229;

atom273 = I3yy+atom229;

_M[0] = -m3*( atom197+2.0*atom214+atom215)-atom197*m2
-I3yy-I2yy+-2.0*atom253-I1yy
+-2.0*( atom27*cg2z+atom26*cg2x)*l1*m2;

_M[1] = -atom270;
_M[2] = -atom271;
_M[3] = -atom270;
_M[4] = -m3*atom215-I3yy+-2.0*atom237-I2yy;
_M[5] = -atom273;
_M[6] = -atom271;
_M[7] = -atom273;
_M[8] = -I3yy;

Fig. 2: Exported C code for atomized mass matrix.

from the referred computational cost savings. To get a less abstract idea, Fig. 2 shows
the exported C code for the mass matrix of a simple four-bar linkage mechanism.

The atomization process should ideally be done “on-the-way”, meaning that every
time a new algebraic operation is performed a new atom is created or replaced by an
existing matching atom. Thus, the symbolic method takes advantage of the memory
savings and the associated complexity reduction as soon as possible in the problem
setup. This means that the symbolic algebra system works internally with atomized
expressions, a feature that is not obvious for the standard user but that is widespread
in computer algebra systems. See Fig. 3 for an elemental example.

In the same line, it is important to remember that the fundamental symbolic dif-
ferentiation and substitution operations should be implemented to work directly on
atomized expressions. This maximizes atom recycling and limits enormously the time
and memory requirements of the algorithms.

In this context, to take advantage of the atomization, care should be taken when
choosing the way and order in which the required operations are performed. The op-
eration number should be minimized and atom recycling maximized. A general pur-
pose algorithm aiming at finding an absolute minimum number of operations would
require an exhaustive search that is beyond the reach of reasonable computational re-
sources. Therefore, appropriate heuristics must be defined. Recursive dynamics for-
mulations are usually taken as the starting point to define such heuristics. In this work,
these heuristics are partly implemented by the way of mechanics operators, as will be
explained in the next section.

2.3 Recursive kinematic operators

Recursive formulations represent the state-of-the-art on symbolic MSD [1]. These
formulations use relative coordinates to parametrize the system leading to a tree-
shaped body structure1. This allows the recursive determination positions, velocities
and accelerations of points as well as orientations, angular velocities and accelera-
tions of bodies, by the way of the well known “motion composition laws”. When
different elements -points and orientations- share a common path towards the tree

1 Closed loops are opened to parametrize and closed through constraint equations.
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The addition of vectors u and v given their components represented in bases B1 and B2

{
u
}
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}
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is sought. Let the rotation matrix be

RB2
B1

=

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

.
The addition of the two vectors represented in B1 base is performed as follows:

{
u+ v

}
B1
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u
}
B1
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where αi are the atoms:

α1 = cos(θ) α2 = sin(θ) α3 = α1vy α4 = α2vz α5 = α2vy α6 = α1vz

α7 = α3 − α4 α8 = α5 − α6 α9 = ux + vx α10 = uy + α7 α11 = uz + α8

Fig. 3: “On-the-way” atomization example.

root, this implies the sharing of common sub-expressions. If applied symbolically,
this recursive computation produces nearly good optimal “on-the-way” atomizations.
This sharing of expressions is the main feature on which the kinematic forward re-
cursion step, found in recursive formulations, is based.

For example, for a serial multibody system the angular velocity of body Si+1 with
respect to Si−1 could be expressed as follows:

ω
Si+1

Si−1
= ωSi

Si−1
+ ω

Si+1

Si
(3)

In the same way the angular velocity of body Si+2 with respect to Si−1 is expressed
as:

ω
Si+2

Si−1
= ωSi

Si−1
+ ω

Si+1

Si
+ ω

Si+2

Si+1
= ω

Si+1

Si−1
+ ω

Si+2

Si+1
(4)

So, when computing magnitudes related to a given element it can be appreciated
how computations related to elements down in the same chain can be reused. Other
kinematic entities like position vectors, base-change matrices, linear velocities, ac-
celerations and angular accelerations can be dealt with analogously.

In correspondence with the substitution of the bodies structure by the bases and
points structures proposed in this work, the recursivity at the level of bodies is now
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dealt with at the bases and points structure levels. This allows one not only to use
arbitrary parametrizations, as commented before, but also a better use of any degree
of recursivity that may be implicit when using arbitrary parametrizations.

To that end, kinematic operators that take advantage of any recursivity present in
the parameterization are defined: Position vector between two points, velocity of a
point with respect to a given frame (point plus orientation), angular velocity, base-
change matrix, and so on. Basically the typical recursivity found in recursive algo-
rithms is translated to the operator algebra.

To support this, an algebra of 3D vectors and tensors is defined. This algebra re-
lieves the user of dealing with base-changes that are internally dealt with. The full
system works using “on-the-way” atomization and the operators are implemented
taking advantage of the aforementioned recursivity. In this way, the number of op-
erations is minimized and the reuse of atoms is maximized. As a consequence, an
optimal implementation of the given formalism for any parameterization chosen by
the user is obtained.

The backward recursion of O(n3) algorithms can be considered a particular im-
plementation of the principle the virtual power. The inertia forces and moments of the
bodies affected by a given virtual movement appear added together in the contribution
of this virtual movement to the system dynamic equations. Recursive formulations
take advantage of this grouping so that they minimize the required operation count.
Taking advantage of this when symbolically applying the principle of virtual power
produces atomizations as efficient as state-of-the-art O(n3) formulations. This is the
approach followed by the symbolic implementation of the virtual power principle
used in this work.

As an illustration of the achievements of these symbolic methods, nearly optimal
atomized equations for standard multibody systems using for example the principle
of virtual power and relative coordinates can be obtained. Some authors [1] claim
to be unable to do the same unless a direct symbolic implementation of a recursive
formulation is used2.

2.4 Other symbolic methods

There are other symbolic methods that can be applied to reduce even further the com-
plexity of the resulting model: “trigonometricaly simplifiable expression removal”
[7], “base parameter formulation of the system inertias”[9–11], “base parameter
elimination”[6], etc... This methods can be applied directly on top of the presented
modeling techniques. However, they are not considered in this work.

3 Multibody model description

The FEVE 3000 [12] locomotive multibody model developed in this work is depicted
in Fig. 4 with an expanded view of the main parts shown in Fig. 5.

2 In comparison, this method presents the overhead of having to deal with the common atom search.
Even if using hash tables to do the search the symbolic processing phase seems to take longer.
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Fig. 4: Multibody model

Fig. 5: Expanded View

The Vehicle Body (dark grey) is attached to the front and rear bogies through
two Slider (green) bodies. The front bogie consists of a Slider that rests on a couple
of Suspender (orange) bodies hanging from the Bogie Frame (dark blue), and two
Wheelset bodies (light blue), each of them with two Axle Box (red) bodies. There
are a couple of anti-yaw links (grey) between each Suspender and the Bogie Frame.
The rear bogie is identical to the front one but it includes two motors (one per each
Wheelset). The motor Housing (mauve) rotates around the relative Wheelset and is
attached to the Bogie Frame using a bushing. The motor includes a Rotor (pink). The
transmission of motion from the Rotor to the Wheelset is done by the way of a gear
pair.

The Slider is connected by four identical spring-dampers to the Suspender part
of the Bogie Frame. In a similar way, each Axle Box is connected to the Bogie Frame
by two identical spring-dampers. The Housing is also attached to the Bogie Frame
using a bushing. Compliance is considered in the gearing contacts. Linear stiffness
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and damping is assumed for spring-dampers, bushings and gear compliance. Braking
on the wheels and traction on the rotors is modeled considering externally applied
torques.

The wheel-rail interaction model considers a fully three-dimensional rolling con-
tact considering a single contact point per wheel. Normal contact is enforced through
the use of constraints, while the tangential forces are determined based on the stan-
dard Kalker linear constitutive model. Note that generic wheel and rail profiles are
considered. The rails can present general irregularities along the track.

3.1 Parametrization

Multibody

The Vehicle Body is positioned relative to the track using absolute coordinates (3
translations followed by 3 Euler rotations). Each Slider is attached to the Vehicle Body
by a revolute joint. A rotation relative to the Vehicle Body, in the vertical direction, is
used to position the Slider.

To simplify the modeling, the effect of the anti-yaw bar is accounted for by re-
moving the relative yaw motion between the Bogie Frame and the Slider. With the
same purpose, the Suspender is considered fixed to the Bogie Frame. A vertical trans-
lation followed by two successive horizontal rotations (roll and tilt) to position the
Bogie Frame relative to the Slider is used. Each Axle Box is positioned fixed to the
“non-spinning wheelset” frame (NSWHS), a frame that follows the relative Wheelset
but that does not spin with it. Each Wheelset is positioned relative to the Bogie Frame
using a vertical translation and two horizontal rotations (roll and spin). Other relative
degrees of freedom between these bodies are removed by the particular configuration
of the spring-dampers. A rotation around the Wheelset axis, relative to the NSWHS
frame, is used to place each motor Housing. A rotation in the same direction, also
relative to the NSWHS frame, is introduced to give the angular position of the Rotor
of each motor.

A total number of 60 generalized coordinates, q, is used in this parametrization.

Contact

The rails and wheel surfaces are described using cubic splines [13],

f∗(u∗) = (((a∗(u∗ − u∗
bp) + b∗)(u∗ − u∗

bp) + c∗)(u∗ − u∗
bp) + d∗), (5)

defined based on a set of control points that approximate their geometry.
Figure 6 schematically shows the parametrization for a wheel-rail pair. The wheel

and rail profiles are given respectively by fw(uw) and fr(ur), while the shape of the
center line of the base of the rail along the track is given by f t

x(s
r), f t

y(s
r) and

f t
z(s

r). Wheel surfaces are assumed to have cylindrical symmetry. Not represented
in the figure is the spline used to represent the camber of the rail f t

θ(s
r).
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Fig. 6: Surfaces and railway parametrization

For the contact point at each wheel-rail pair the parameters θw, uw and sr, ur play
the role of “generalized coordinates” used to position the contact points, Pw and P r,
respectively onto the wheel and rail surfaces. When the contact is materialized, the
point Pw and the point P r -defined as an arbitrary points in the surfaces of the wheel
and rail respectively- are coincident.

The position of Pw is given relative to a reference point in the wheel axis, Ow, as

rP
w

Ow(uw, θw) = fw(uw) cos(θw)ewx + uwewy − fw(uw) sin(θw)ewz . (6)

For numerical reasons, the position of this point is given relative to a NSWHS base,
ewx , e

w
y , e

w
z . Analogously, the position of P r is given relative to a reference point in

the ground or track reference, Or

rP
r

Or (ur, sr) = f t
x(s

r)erx + f t
y(s

r)ery + f t
z(s

r)erz + urĉ+ fr(ur)n̂ (7)

The base erx, e
r
y, e

r
z is fixed at the ground. Defining t̂ as a unit vector tangent to the

center line of the rail base, ĉ is defined as a unit vector perpendicular to t̂ with an
angle f t

θ(s
r) with the ground measured in the positive direction of t̂. n̂ completes the

base so that it is dexterous.
The whole set of 8× 4 = 32 generalized coordinates required to position the i =

1...8 contact points used in the analyzed example is referred to as s = [..., sTi , ...]
T,

where si = [θwi , u
w
i , s

r
i , u

r
i ]

T is the set of coordinates required to position points Pw
i

and P r
i at the i-th contact point.

From the symbolic modeling point of view, functions f∗(u∗) are modeled as if
a single 3rd order polynomial completely represents the whole profile. At “show-
time”, the coefficients a∗, b∗, c∗, d∗ and break-points u∗

bp are updated depending on
the position of the contact point.

As commented before, for the purposes of this paper only a single point of contact
is considered. Note that flange contact rarely occurs when the train runs along straight
tracks or huge radii curved tracks, unless the train velocity is close to its critical
speed [14]. Nevertheless the parametrization proposed here is compatible with some
multiple-point-of-contact approaches [14].
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3.2 Constraint equations

The only constraints that are present in the analyzed problem are those related to the
contact points between wheel and rail. At a given contact, it should be enforced that
the points Pw and P r are coincident and that the surfaces at these points are tangent.

Defining the tangent and normal vectors to the wheel at point Pw as twx , twy ,
nw, and the tangent and normal vectors to the rail at point P r as trx, try , nr. These
conditions can be written [3] as:

ϕn(q, s) = nr · rPw

P r = 0 (8)

and

ϕd(q, s) =


trx · rPw

P r

try · rP
w

P r

twx · nr

twy · nr

 = 0, (9)

where ϕn is the so called normal constraint, and ϕd are the so called tangent con-
straints. For each contact point, the tangent and normal vectors can be defined as:

trx =
∂rP

r

Or/∂sr∣∣∂rP r

Or/∂sr
∣∣ , try =

∂rP
r

Or/∂ur∣∣∂rP r

Or/∂ur
∣∣ , and nr = trx × try (10)

twx =
∂rP

wr
Ow /∂θw∣∣∂rPw

Ow/∂θw
∣∣ , twy =

∂rP
w

Ow/∂uw∣∣∂rPw

Ow/∂uw
∣∣ , and nw = twx × twy . (11)

These vectors and constraint equations can easily be defined using the symbolic pro-
cedures previously discussed. It will be seen that this symbolic implementation will
be very efficient as well.

Now, the subindex i = 1...8 is used to refer to the constraint equations relative
to each of the 8 contact points. The set of all the normal constraints is referred as
ϕn(q, s) = [...,ϕn

i(q, s), ...]
T. Analogously, the set of all the tangent constraints is

referred as ϕd(q, s) = [...,ϕd
i(q, s), ...]

T.

3.3 Dynamic equations

As commented previously, the dynamic equations are obtained based on the direct
application of the principle of virtual power. Using the vector [q, s] as the set of gen-
eralized coordinates, the mass matrix M is obtained by differentiation of the equa-
tions motion with respect to the the generalized accelerations and the generalized
force δ vector is obtained by substitution of the generalized accelerations by zero
in the equations of motion. These equations should be complemented by the second
derivative of the constraint equations to have a determined set of equations

ϕ̈n(q, s) = 0 (12)
¨
ϕd(q, s) = 0 (13)
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This set of equations shows the following structure:
Mqq(q, q̇) 0 ϕ̇

n

q̇
T(q, s) ϕ̇

d

q̇
T(q, s)

0 0 0 ϕ̇
d

ṡ
T(q, s)

ϕ̇
n

q̇(q, s) 0 0 0

ϕ̇
d

q̇(q, s) ϕ̇
d

ṡ(q, s) 0 0



q̈
s̈
λn

λd

 =


δq(q, q̇)

0
γn(q, s, q̇, ṡ)
γd(q, s, q̇, ṡ)

 , (14)

where Mqq and δq are the blocks of the mass matrix M and vector δ related to
the set of coordinates q. In reference [3], the authors refer this formulation as the
Augmented Contact Constraint Formulation (ACCF).

The particular structure of the dynamic equations for the problem analyzed can
appreciated in Fig. 7. There, the nonzero entries for matrix

[
[M, ϕ̇q̇

T; ϕ̇q̇,0], [δ;γ]
]

are shown as dots. It should be noted that ϕ̇
n

ṡ is zero numerically, even if symboli-
cally a few nonzero expressions can be seen. As accelerations s̈ are not needed, the
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Fig. 7: Dynamic model structure
[
[M, ϕ̇q̇

T; ϕ̇q̇,0], [δ;γ]
]

previous system of equations can be reduced to[
Mqq(q, q̇) ϕ̇

n

q̇
T(q, s)

ϕ̇
n

q̇(q, s) 0

] [
q̈
λn

]
=

[
δq(q, q̇)

γn(q, s, q̇, ṡ)

]
, (15)

The reduced structure of the dynamic equations can appreciated on Fig. 8. Obviously,
standard linear solution procedures are going to perform much more efficiently in this
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case. There, the nonzero entries for matrix
[
[Mqq, ϕ̇

n

q̇
T; ϕ̇

n

q̇,0], [δq;γ
n]
]

are shown
as dots. In reference [3], the authors refer this formulation as the Embedded Contact
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Fig. 8: Dynamic model structure
[
[Mqq, ϕ̇

n

q̇
T; ϕ̇

n

q̇,0], [δq;γ
n]
]

Constraint Formulation (ECCF) [3].
Constraint stabilization is performed based on projection on the coordinate and

velocity manifolds. That requires the solution of the following equations

ϕn(q, s) = 0 (16)
ϕd(q, s) = 0, (17)

at the coordinate level, and of

ϕ̇
n

q̇(q, s)q̇ = βn(q, s) = 0 (18)

ϕ̇
d

q̇(q, s)q̇+ ϕ̇
d

ṡ(q, s)ṡ = βd(q, s) = 0 (19)

at the velocity level. Note that there are no rheonomous equations in the problem
analyzed, an therefore βn(q, s) and βd(q, s) are 0. For example, partitioning [15,
16] into dependent and independent coordinates is done frequently. The dependent
coordinates and velocities are obtained in terms of the independent ones.

It should be remarked that in the ECCF context, it is better not to consider s and
ṡ as standard generalized coordinates, but rather as a set of auxiliary variables that
must be known in order to solve equation system (15). After the integration, Eq. (17)
and Eq. (19) can be used to obtain the auxiliary variables s and ṡ in terms of q and
q̇. In this context the position and velocity projection would be performed after this
step, based on Eq. (16) and Eq. (18), respectively. These inertia-less coordinates find
different names in the literature, such as “surface parameters” [17,3,18–20], “non-
generalized coordinates” [21] or “auxiliary variables” [22], but their main feature is
that they do not participate in the system dynamics.

3.4 Contact model.

In the context of railway dynamic simulation, it is very important to correctly deter-
mine the values of the creep forces between the wheel and the rail. To that end, in this
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work the well known linear contact theory of Kalker [23] is used. This theory requires
the determination of several data: location of the contact point, the creepages, normal
loads at this contact point, wheel and rail surface curvatures at the contact point, tan-
gent and normal vectors at the contact patch. These computations are big and must
be done for every contact. To speed up the computations, several authors [24–26]
propose the use of pre-calculated look-up tables to determine the required data. This
procedure is tedious and usually requires the introduction of some modeling simpli-
fications. The authors propose to compute these quantities without simplifications,
on line, based on functions exported using the proposed symbolic methods. This is a
simpler and more general procedure to apply. The results will confirm that this is a
very fast procedure.

Contact patch geometry determination.

Based on classical Hertzian contact theory, the contact patch is a flat ellipse [27].
The semi-axes of this ellipse in the longitudinal and transversal directions, a and b
respectively, are determined as follows:

a =

(
3

2

1− ν2

E

1

A+B
N

) 1
3

m(θ) and b =

(
3

2

1− ν2

E

1

A+B
N

) 1
3

n(θ). (20)

In these expressions, N is the normal contact force acting on the wheel, E is the
Young’s modulus and ν the Poisson’s ratio. m(θ) and n(θ) are adimensional func-
tions proposed by Hertz. On-line interpolation in Table 4.1 in Ref. [27] is used to
evaluate these functions. θ = cos−1

(
|A−B|
A+B

)
, where A and B are determined as

A =
1

2

(
1

Rw
x

+
1

Rr
x

)
and B =

1

2

(
1

Rw
y

+
1

Rr
y

)
. (21)

Rw
x , Rw

y , Rr
x, Rr

y are the curvature radii of wheel and rail surfaces at the contact point.
For the case studied, these are computed as:

Rw
x =

√
(rP

w

Owewx )
2 + (rP

w

Owewy )
2√

1−
(
nrewy

)2 3 Rw
y =

∣∣∣∣∣ (1 +
∂fw

∂uw
)3/2

∂2fw

∂uw
2

∣∣∣∣∣
Rr

y =

∣∣∣∣∣ (1 +
∂fr

∂ur
)3/2

∂2fr

∂ur
2

∣∣∣∣∣ Rr
x = ∞

(22)

These curvature radii are obtained and exported based on the symbolic methods
presented preciously in this paper. The normal force N is the Lagrange multiplier as-
sociated with the normal constraint of the relative contact point. It is obtained directly
from the solution of the dynamic system of equations. To keep the dynamic problem
linear, avoiding a nonlinear iteration, the normal force used is the one obtained in the
previous integration step.

3 Distance from the rotation axis to the contact point along the normal at the contact point.
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Creep forces and moments

From the modeling perspective, creep forces and moments are considered external
actions, so their effect is contained in the vector δq, along with all the contributions
due to other inertial constitutive and external forces. For each wheel, these forces and
moments are symbolically expressed as

f = fx trx + fy try and m = mz n
r, (23)

where fx, fy and mz are symbols. These represents the tangent contact force and spin
contact moment acting on the wheel at the contact point Pw. They are defined at the
contact base trx,try , nr. The components of these vectors are numerically computed
as  fx

fy
mz

 = −G

ab c11 0 0

0 ab c22
√
ab c23

0 −
√
ab c23 (ab)2 c33

 ξx
ξy
φz

 (24)

[27]. The parameter G is the material shear modulus and cij(a/b, ν) are the coef-
ficients determined by Kalker, tabulated in Ref. [28]. On-line interpolation in these
tables is used. The creepages ξx, ξy and φ are defined as:

ξx =
vPw

Gr.
1
2 (
∣∣vOw

Gr.

∣∣+ ∣∣ωw
Gr. ∧ rP

w

Ow

∣∣) trx (25)

ξy =
vPw

Gr.
1
2 (
∣∣vOw

Gr.

∣∣+ ∣∣ωw
Gr. ∧ rP

w

Ow

∣∣) try (26)

φz =
ωw

Gr.
1
2 (
∣∣vOw

Gr.

∣∣+ ∣∣ωw
Gr. ∧ rP

w

Ow

∣∣) nr (27)

where vPw

Gr. is the velocity with respect to the ground (Gr.) of the Pw contact point
when moves “attached” to the wheel and ωw

Gr. is the wheel-set angular velocity with
respect to the ground. vOw

Gr. in the velocity with respect to the ground of the center of
the wheel-set and rP

w

Ow is the position vector form Ow to Pw as shown in Eq. (6). The
creepages are determined numerically based on exported functions for the numerators
and denominators of these expressions. In this way, division by zero can be dealt with
in the numerical solver.

All the symbolic functions required for the implementation of the Kalker model
for all the different contact points, referred previously, are computed in a single func-
tion call. In this way recycling of atoms is maximized.

4 Numerical integration

For this case study the Linear Kalker model used to model the contact forces has
been a major source of problems. To some extent, these forces can be considered
viscous friction forces with a huge value for the equivalent viscous constant, making
the system dynamics stiff. In this context, the use of an explicit integration scheme is
going to require a very small time step, spoiling real-time performance.
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In order to solve this problem, an Implicit-Explicit (IMEX) [29] integration schema
has been devised and adjusted to overcome the problem associated with the contact
forces without penalizing the computational cost. The use of these schemes is not
new. It has appeared in the bibliography under other names: semi-implicit [30], addi-
tive or combined methods [31], etc. These methods use different types of discretiza-
tion for the different terms in the dynamic equations. Those terms that are not related
to the stiff behavior of the equations are discretized using a low-cost explicit scheme,
while the stiff terms are discretized using an implicit scheme.

As commented before, creep forces and moments are introduced in the model as
external actions, and their contribution is embedded in the vector δq. To make this
contribution explicit, δ is split into two Kalker (K) and non-Kalker (NK) contribu-
tions. In this way, the first equation in Eq. (15) can be rewritten as:[

Mqq ϕ̇
n

q̇
T

ϕ̇
n

q̇ 0

] [
q̈
λn

]
=

[
δKq + δNK

q

γn

]
(28)

This new set of equations can be integrated using an IMEX method. The terms
related to creep forces will be integrated using an Implicit scheme and the rest using
an Explicit scheme.

Eq. (24) can be expressed as a typical viscous contribution

fK = − 1

V
CKν (29)

where

fK = [fx, fy,mz]
T (30)

V =
1

2
(
∣∣∣vOw

Gr.

∣∣∣+ ∣∣∣ωw
Gr. ∧ rP

w

Ow

∣∣∣) (31)

ν = [vPw

Gr.t
r
x vPw

Gr.t
r
y ωw

Gr.n
r]T (32)

and

CK = G

ab c11 0 0

0 ab c22
√
ab c23

0 −
√
ab c23 (ab)2 c33

 (33)

Adding a subindex i to refer to a particular contact point, the contribution δK can
be obtained as:

δKq =

8∑
i=1

∂δKq

∂fi
K
fi
K = −

8∑
i=1

∂δKq

∂fi
K

1

Vi
CK

i

∂νi

∂q̇
q̇ = −CK

qqq̇ (34)

In order to determine matrix CK
qq, matrices

∂δKq

∂fi
K
CK

i

∂νi

∂q̇
, i = 1 . . . 8, (35)
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are symbolically exported and numerically assembled matrix as

CK
qq =

8∑
i=1

1

Vi

∂δKq

∂fi
K
CK

i

∂νi

∂q̇
, (36)

where Vi and CK
i are determined using the same procedures described in the previous

section.
The contribution δNK , can be obtained symbolically substituting zero in δq the

symbols associated with the external forces fx, fy,mz for every contact point.
Now the dynamic equation set can be expressed as follows:

[
Mqq ϕ̇

n

q̇
T

ϕ̇
n

q̇ 0

] [
q̈
λn

]
=

[
δNK
q −CK

qqq̇
γn

]
(37)

The IMEX integration procedure proposed follows directly from this equation.
It must be observed that in Kalker’s Linear Theory when saturation occurs this

method is also valid, because in this case force can be also written as the product of a
constant matrix and the creepages. The numerical solver must determine with which
matrix to use at each moment.

Discretization

The contribution CK
qqq̇ is discretized using an implicit Euler. To that end, it is

evaluated at the next time step t+∆t,

CK
qqq̇t+∆t (38)

An explicit Euler scheme for the remaining terms requires acceleration to be dis-
cretized as

q̈t+∆t =
q̇t+∆t − q̇t

∆t
(39)

and δKq to be evaluated at t.
Substituting this into Eq. (37), the final discretization of the system takes the

form: [
Mqq +CK

qq∆t ϕ̇
n

q̇
T∆t

ϕ̇
n

q̇ 0

] [
q̇t+∆t

λn

]
=

[
δNK
q ∆t+Mqqq̇t

γn∆t+ ϕ̇
n

q̇q̇t

]
(40)

where all the functions are computed at time t. Note that in order to keep the equation
solution linear, CK is evaluated at t instead of t+∆t. The structure of this system of
equations can be observed in Fig. 9. It is noticeable that the sparsity structure is very
similar to the one seen in Fig. 8.

This problem has the same mathematical structure as the standard full dynamic
set, so it can be solved using the same procedures. Coordinate partitioning is used
[15,16]. This is a good performing strategy that is also used by other practitioners in
the symbolic multibody field. The authors use a LU procedure with full pivoting on
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Fig. 9: Dynamic model structure
[
[Mqq +CK

qq∆t, ϕ̇
n

q̇
T∆t; ϕ̇

n

q̇,0], [δ
NK
q ∆t+Mqqq̇t;γ

n∆t+ ϕ̇
n

q̇q̇t]
]

the non-tangent constraint Jacobian in the generalized velocities q̇, so the set of inde-
pendent coordinates can be chosen at each iteration step. This way, no conditions are
enforced on the parameterization q used. Thus, using this IMEX scheme comes for
free, as the evaluation of the functions appearing in Eq. (40) has the same complexity
as the functions in Eqs. (37) or (15).

It should be noted that the matrix Mqq+CK
qq∆t is not symmetric, so LU decom-

position should be used in place of LDL
T

, incurring a small penalty in performance.
The solution of this system will give the value of the generalized velocities at

t + ∆t, q̇t+∆t. To obtain the coordinates at qt+∆t the following explicit mid-point
rule is used:

qt+∆t = qt +
q̇t+∆t + q̇t

2
∆t. (41)

Note that it is second order and comes at no cost.
Next coordinate projection is performed. First Eq. (17) is used to obtain the con-

tact coordinates st+∆t in terms of the qt+∆t. As qt+∆t is accurate to second order,
this procedure gives an error of the same order. To this end the following iterative
Newton-Raphson procedure is used:

ϕ̇
d

ṡ(q, s)(sk+1 − sk) = −ϕd(q, s) (42)

This usually involves a single iteration4. After the update of s, Eq. (16) is solved for
q using the same iterative procedure:

ϕ̇
n

q̇(q, s)(qk+1 − qk) = −ϕn(q, s) (43)

This procedure usually converges in a single iteration. Note that qt+∆t is accurate
to second order after the integration step and the LU decomposition of the previous
Jacobians, ϕ̇

n

q̇(q, s) and ϕ̇
d

q̇(q, s), is known as they have computed at the previous
velocity projection step (described latter), so the Jacobian and its decomposition is
not updated in this step.

In the velocity projection step, first Eq. (18) is solved for q̇. To that end, the
Jacobian ϕ̇

n

q̇(q, s) and its LU decomposition are updated. Then, Eq. (19) is solved

for ṡ. for this purpose, the Jacobians ϕ̇
d

q̇(q, s) and ϕ̇
d

ṡ(q, s) are updated and the LU

decomposition of ϕ̇
d

ṡ(q, s) is computed.

4 This is related to the NSWHS frame used to define the contact point in the wheel.
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Start Simulation

Initialize
t = t0

q = q(t0)
q̇ = q̇(t0)

Look up wheel profile, rail
profile and railway spline coeffs.

(×8)

Newton-Raphson
φ = 0 ⇒ q,s

Look up wheel profile, rail
profile and railway spline coeffs.

(×8)

Solve
φ̇ n

q̇ q̇ + β n = 0 ⇒ q̇
φ̇ d

q̇ q̇+ φ̇ d
ṡ ṡ+ β d = 0 ⇒ ṡ

Dynamics Solution ⇒ q̇,λ n

• Contact Area

• Look-up Kalker’s coeffs.

• Evaluate CK
i

(×8)

Evaluate M,δ ,γn

Dynamics Solution ⇒ q̇,λ n

Time Integration ⇒ q,s
t = t + ∆t

Evaluate φ d , φ̇ d
ṡ

Newton-Raphson
(q frozen)

φ d = 0 ⇒ s

Look up wheel profile, rail
profile and railway spline coeffs.

(×8)

Evaluate φ n, φ̇ n
q̇

Newton-Raphson
(s frozen)

φ n = 0 ⇒ q

Evaluate φ̇ n
q̇ , φ̇ d

q̇ , φ̇ d
ṡ , β n, β d

Solve
φ̇ n

q̇ q̇+ β n = 0 ⇒ q̇
φ̇ d

q̇ q̇+ φ̇ d
ṡ ṡ+β d = 0 ⇒ ṡ

t < tend

Fig. 10: Integration procedure

In Fig. 10, a schematic representation of the integration procedure described here
is presented. To get a clearer picture, the steps related to the determination of the
creep forces has been represented.

5 Results

Simulation description

The track used in the simulation starts and ends with two straight and parallel seg-
ments running in the x direction and separated by 50 m. Both stretches are joined
by a symmetric and smooth double transition curve 270 m long in direction x. On
top of the defined geometry, two harmonic vertical irregularities with an amplitude
of 10 mm are added. These irregularities are defined using a sine wave that runs in
the direction of x with a wavelength of 10 m. Right and left rail irregularities present
a phase difference of π/2. As commented earlier, third order splines are used to dis-
cretize the whole track, including the irregularity.

The simulation starts with an initial forward speed of 23.7 m/s with the V ehicle
Body centered at x = 0 m and with a lateral misalignment of 5 mm with respect to
to the track center. Vehicle motors are actuated with a constant 200 Nm torque.
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Computational results

Fig. 11 shows the trajectory followed by the V ehicle Body center. Note that the
the given initial state is not in dynamic equilibrium and therefore, the oscillations at
the beginning of the simulation are in part due to this. This is related to the sudden
application of torque at the simulation start. By the time that the vehicle center enters
the track, the oscillations seen are no longer related to the initial condition.
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Fig. 11: Trajectories followed by the main body

Fig. 12 shows a zoom of the first graph in Fig. 11. This is done to make the os-
cillations in that plane visible. The zone in which the vehicle exits the second curve
is shown. Two different oscillations can be seen. Two oscillations are clearly distin-
guishable: The hunting oscillation is the one with the largest wave length, while the
shorter one is related to the irregularities of the track.

Creep velocities and creep forces and moments are presented in Fig. 13. It can
be observed that creep velocities are higher when the vehicle is at the middle of the
curved tracks (t ≈ 5 s and t ≈ 10 s). The same behavior is seen for the forces and
moments. Small fluctuations on the creepages and forces in the second straight track
(t > 15 s) are due to the vertical irregularities.

Using the proposed IMEX integrator with a ∆t = 1 ms, a stable integration is
achieved by a generous margin. In the same conditions, when using an explicit Euler
method for velocities and the explicit trapezoidal rule for accelerations, time steps
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Fig. 12: Hunting oscillation in detail.
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Fig. 13: Creep velocities and forces of the Rear Bogie, Front-Right wheelset

smaller than 10−4 ms, not compatible with a real-time performance, are required. the
implicit trapezoidal rule has also been used, with showing a stable behavior around
∆t ≈ 1 ms with not such a generous margin.

Using the IMEX Euler method, a fine grained analysis of the computation times
required by the different steps of the proposed algorithm is done. The results are given
in Table 1. A seven years old Intel Core vPro i5 @ 3500 MHz has been used for the
test. From this data, it can be seen that it takes 256 µs of CPU time to complete one
integration step. That is, hard real-time performance is achieved by a wide margin
using the proposed procedures. In comparison, using the trapezoidal rule soft real-
time performance can be achieved by a short margin.

In Fig. 14, the number of iterations required by the q-projection and s-projection
steps are shown. It is noticeable that the q-projection only requires a single Newton-
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Table 1: Results per time step (1 ms)

Task CPU Time µs

Contact Area, Look up Kalker coeffs. and evaluate
∂δKq
∂fi

K CK
i

∂νi
∂q̇

(×8) 30
Look up Wheel profile, rail profile and railway spline coeffs. (×8) 1
Evaluate M,δ and γn 55
Dynamics Solution ⇒ q̇,λ 103
Time Integration ⇒ q 1
Evaluate ϕn, ϕd, ϕ̇

n
q̇ , ϕ̇

d
q̇, ϕ̇

d
ṡ and βn 29

Projection Solution ⇒ q, q̇, s, ṡ 37
Total Time 256

Raphson5 iteration. The same is true for the s-projection. This has required the in-
tegration of s after the integration step using an explicit Euler procedure st+∆t =
st + ṡt ∆t leading to an to a smaller error (O(∆t2)) at the start of the Newton-
Raphson iteration. Clearly, the increased number of iterations is coincident with the
curved stretches. This result justifies the approach adopted, in which the s-projection
is performed before the q-projection.

0 5 10 15 20 25 30 35

0

1

Solve φn = 0 equation system

0 5 10 15 20 25 30 35

t [s]

0

1

Solve φd = 0 equation system

Fig. 14: Iterative steps needed by the Newton-Rapshon algorithm

5 the tolerance used is 10−6 amounting to a negligible error of ≈ 10−3 mm for lengths
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Table 2: Atoms and operation for the evaluation of the model functions

Function Atoms Operations
Mqq 1795 10910
δq 3648 19015
ϕn 425 1709
ϕd 541 2150
ϕ̇
n
q̇ 784 4116

ϕ̇
n
ṡ 846 6668

ϕ̇
d
q̇ 964 6574

ϕ̇
d
ṡ 1113 8437

βn 0 0
γn 3779 25870
∂δKq
∂fi

K CK
i

∂νi
∂q̇

350 1917

In Table 2 the number of operations required for the evaluation of the different
functions used by the proposed dynamic formalism are presented. The results show a
correlation between the time for function evaluations and the number of operations.
As a major result of this study, it can be seen that using the symbolic procedures
proposed, the penalties incurred for using an exact treatment of the linear Kalker
contact model are barely noticeable. Note that this is a fair comparison, as the opera-
tion count related to other dynamic and kinematic computations are very optimized,
showing numbers compatible with state-of-the-art recursive formulations. This puts
into perspective the relevance of symbolic methods proposed in achieving hard real-
time performance in the railway dynamics simulation context.

Still, there are still some possibilities to further improve the results given in this
article.

1.-The dynamic system structure shown in Fig. 8 shows a decent amount of spar-
sity. This sparsity is shared with the IMEX discretized dynamic matrix. Important
savings can therefore be obtained using a sparse LU algorithm.

2.- In the s-projection and ṡ-projection problems, ϕ̇
d

ṡ is a maximum rank block-
diagonal matrix with 4× 4 blocks [1]. Therefore, its computation can be speed up by
big integer factor. The solution could be easily implemented symbolically or even in
parallel.

3.- Removal of the repeated evaluation of constant atoms from the symbolic func-
tions and reuse of atoms common to different exported functions.

As commented in the introduction, at the expense of some accuracy, partial lin-
earization [5] or base parameter reduction [6], can be used to further improve the
computational performance of the model.

6 Conclusions

The purpose of the article was to test state-of-the-art methods for the symbolic mod-
eling in the railway context. A complex locomotive running on a track with a complex
and general surface geometry has been modeled and tested.
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Main aspects of the symbolic methods proposed are summarized: atomization,
recursive operators, points and bases structures, general parameterization, etc. Based
on this methods the model is obtained using a direct implementation of the principle
of virtual work. Creep forces and moments are modeled using a direct symbolic im-
plementation of the linear Kalker model without simplifications. An Implicit-Explicit
(IMEX) integrator has been proposed to cope with the contact model while attaining
real-time performance. The resulting equations are solved using coordinate partition-
ing MSD procedures.

A very stable hard-real-time-compatible performance is achieved with a time step
of 1 ms. A CPU time of 256 µs per time step is required in a seven year old Intel
Core vPro i5 @ 3500 MHz. The small time required for the determination of the
creep forces when using an exact implementation of the linear Kalker model is no-
table. Also, the efficiency/robustness compromise of the IMEX integrator proposed
is remarkable.

The results obtained show the relevance of the methods proposed for the real-time
simulation of railway vehicles.

There are still obvious possibilities to improve on the results presented in this
work: better sharing of atoms, constant atom revaluation, sparse linear solver im-
plementation and parallelization are the most obvious. On top of this, with a small
accuracy penalty, techniques such as partial-linearization and parameter reduction
can be used to improve the results presented even further.
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