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ABSTRACT

Rehabilitation robots are increasingly being developed in order to be used by injured people to perform exercise

and training. As these exercises do not need for wide range movements, some parallel robots with lower mobility

architecture can be an ideal solution for this purpose. This paper presents the design of a new four degree-of-

freedom (DOF) parallel robot for knee rehabilitation. The required four DOFs are two translations in a vertical

plane and two rotations, one of them around an axis perpendicular to the vertical plane and the other one with

respect to a vector normal to the instantaneous orientation of the mobile platform. These four DOFs are reached

by means of two RPRR limbs and two UPS limbs linked to an articulated mobile platform with an internal degree

of freedom. Kinematics of the new mechanism are solved and the direct Jacobian is calculated. A singularity

analysis is carried out and the gained DOFs of the direct singularities are calculated. Some of the singularities

can be avoided by selecting suitable values of the geometric parameters of the robot. Moreover, among the found

singularities, one of them can be used in order to fold up the mechanism for its transportation. It is concluded that

the proposed mechanism reaches the desired output movements in order to carry out rehabilitation manoeuvres in

a singularity–free portion of its workspace.

1 Introduction

Parallel manipulators (PM) have focused the interest of many researchers and industries due to their advantages com-

pared to serial robots. Since their end-effector is sustained by several kinematic chains, they can achieve better structural

and dynamic properties with less structural mass [1]. Lower-mobility Parallel Manipulators are those having less than six

DOFs. Their main advantages are a simpler architecture and lower cost of design and manufacturing. They have been used

∗Address all correspondence to this author.



in many applications such as machine tool [2–4], pick-and-place operations [5–9] and medical (surgical or rehabilitation)

robots [10–13]. For each application or required task, the designed parallel robot has the corresponding number and type of

translational or rotational DOFs.

Focusing on the rehabilitation of the lower limb, most of the parallel manipulators developed until now have two or

three rotational degrees of freedom (DOFs), mainly because they focus on ankle rehabilitation [14]. Those proposals can

be suitable for very restricted motions such as the one which takes place in ankle rehabilitation. However, they cannot be

extended to rehabilitation of other human joints such as the knee or hip. These joints require large flexion–extension motion

in the tibiofemoral plane (the plane that form the tibia and the femur) as well as small rotations involving systems with three

or more DoF, of which at least two must be translational motions. Obviously, a 6-DOF parallel manipulator could be used

for this purpose [15]; however, this solution increases the cost and complicates the dynamic robot control [14].

This work deals with the design of a new parallel manipulator to be used for knee rehabilitation. The main goal is to

assist to the rehabilitation of the Anterior Cruciate Ligaments (ACL) after surgery. Fig. 1 shows the ACL together with other

parts of the knee.
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Fig. 1: Illustration of the knee ligaments and bones

The foot of the injured leg will be located in a mobile platform which imposes rehabilitation movements to it. In terms

of rehabilitation requirements, the knee joint can rotate around the transverse (with regard to the tibiofemoral plane) axis and

the vertical (with regard to the mobile platform) axis. Moreover, the knee could be translated in the tibiofemoral plane. It is

also intended that the proposed design for the parallel manipulator be able to perform diagnostic tests on the condition of the

ACL.



Nowadays, there are two tests that are currently used to diagnose ACL injuries: The Lachman test [16], and the Pivot

Shift test [17]. The Lachman test assesses ACL tear by displacing the tibia relative to the femur. To reproduce the Lachman

test, the PM requires two perpendicular translations in the tibiofemoral plane and a rotation perpendicular to it. The Pivot

Shift test is intended to reproduce translational and rotational instability in the knee by applying a twist to the tibia and

essentially measuring the rotation. To reproduce the Pivot Shift test the robot should provide a rotation about an axis

contained in the tibiofemoral plane.

The range of motion needed has been established according to the values for major rotations in the joints of the ankle,

knee and hip determined in [18], and considering also the specific characteristics of the diagnosis above mentioned. Based

on this, the novel PM should perform the following basic movements shown in Fig.2:

1. Flexion of the limb in the direction perpendicular to the tibiofemoral plane. The total range must be at least 60◦ for

rehabilitation purposes.

2. Rotation of the limb along an axis perpendicular to the mobile platform. The range of motion must be at least ±10◦

(Pivot Shift).

3. Translation in the direction of a horizontal axis contained in the tibiofemoral plane. The displacement is small, 15-20

mm, in order to reproduce the Pivot Shift or Lachman tests. However, in order to perform some of the movements

planned for rehabilitation, this horizontal displacement should be increased to a total of at least 400 mm.

4. Translation in the direction of a vertical axis, contained in the tibiofemoral plane. Major shifts may be required, at least

200 mm, in coordination with the horizontal movement previously described to reproduce rehabilitation motions. Also,

from a practical point of view, a greater displacement was required in order to properly locate the mobile platform where

the patients foot rests.

Another requirement is a compact design in order to be translated from one room to another in a hospital or even to the

patients home. In order to achieve this requirement, the proposed mechanism must have the ability to fold up or to be carried

to a configuration in which it takes the minimum possible volume.

An overview of the literature shows that there exist several two translation and two rotation (2T2R) robots but the output

DOFs do not coincide with the ones required for knee rehabilitation. Specifically, rotations of most 2T2R robots in the

literature are with respect to axes contained in the plane of the mobile platform. In [19], a 2T2R parallel manipulator is

presented and used for the construction of a 5-axis parallel machine tool. More recently, ref. [20] develops a systematic

synthesis of some 2T2R and other mechanisms and suggests some applications for synthesised mechanisms such as machine

tool or damping devices. An additional 2T2R parallel mechanism is shown in [21] for turbine blade machining, which has



Fig. 2: Movements of the required rehabilitation task

some partially decoupled DOFs. Ref. [22] introduces another 2T2R parallel mechanism, which is used as a solar tracker and

designed with the aim of minimising the energy consumption during its operation. One more 2T2R PM is presented in [23],

whose design is optimised for its application in automated fibre placement for aerospace part manufacturing.

Moreover, the synthesis of some other 2T2R parallel mechanisms are introduced in [24], which are designed as medical

robots for the task of needle manipulation. A task-based synthesis procedure is used, using a remote centre of motion point

as a key requirement for the synthesised mechanisms.

None of the mechanisms cited so far can be applied to the required knee rehabilitation task, since they have their rotations

DOFs with respect to axes located in the mobile platform instead of having a rotation around an axis perpendicular to it. In

some cases, this fact could be corrected changing the orientation of some of the aforementioned robots, placing their fixed

platform in vertical and designing an appropriate mobile platform. Nevertheless, the resulting robot would be a cantilever

mechanism suffering high bending loads. A planar mechanism moving in a vertical plane could avoid such bending loads

and such an arrangement is presented in [25], but it has only three DOFs lacking the rotation perpendicular to the mobile

platform, which is necessary to cruciate ligament rehabilitation.

To the best of our knowledge, only two references show mechanisms that could be usable for the required rehabilitation

task according to their kinematics. The first one presents a type synthesis procedure for multi-loop mechanisms [26]. Among

the synthesized mechanisms, there are some 2R2T mechanisms which could have the desired output DOFs, but the use of

curved bars in order to obtain intersecting joint axes could lead to a lack of stiffness which is not desired for the knee

rehabilitation application. The second one presents 2R3T and 2R2T parallel mechanisms using articulated mobile platforms



[27]. Two of the presented architectures can perform the required output DOFs. Nevertheless, the former has a topology

similar to the Delta robot with rotational actuators and parts subject to bending loads that make the stiffness performance

worse. Thus, it seems to be applicable for fast, light tasks such as pick-and-place operations. The latter, in turn, has a

structure with fixed prismatic actuators which allows a better stiffness performance, but it prevents achieving a compact

configuration in which the mechanism can be easily translated.

Besides the already cited mechanisms, in [28, 29] a mechanism accomplishing the required DOFs, but with a very

different topology, is presented, which has been developed in parallel to the one presented here in the environment of the

same research projects. A comparison study between this mechanism and the one presented here will determine which of

them is better for the required rehabilitation tasks.

This work presents a new architecture of a 2T2R parallel mechanism with a 2RPRR-2UPS topology for knee rehabil-

itation and its kinematic analysis. In order to allow the required DOFs, it uses an articulated mobile platform instead of a

rigid one. Further, a rigid platform is located on the articulated platform, since a rigid body is required in order to put the

patients foot on it. Articulated platforms have been proposed to perform the rotation in 3T1R fast parallel robots [30] or to be

used as a gripper, instead of a gripper in series to the end-effector, reducing the inertia of the robot [31–33]. In this case, the

articulated mobile platform is used to allow the mechanism to have a high rotational capability, as in [27], specially required

for the rotation perpendicular to the tibiofemoral plane. The designed mechanism also fulfils the requirements of having a

compact configuration in which it can be translated. In addition, it uses prismatic actuators to reduce bending loads in order

to be stiffer.

The paper is organised as follows: Section 2 describes the architecture of the 2RPRR-2UPS mechanism and shows a

preliminary CAD design. Kinematics equations are written and solved in Section 3, together with the calculation of the

Jacobian matrix. A singularity analysis is carried out in Section 4 and the null space of the listed singularities is also

calculated. Section 5 shows the location of the singularities within the workspace and presents a rehabilitation manoeuvre.

Finally, in Section 6 some conclusions are addressed.

2 The 2RPRR-2UPS mechanism

The 2RPRR-2UPS mechanism has two identical RPRR limbs, i=1,3, and two UPS limbs, i=2,4. The fixed base is a

square and the articulated mobile platform is a planar four-bar mechanism with the same length for the four bars. Fig. 3

shows its schematic representation.

In the RPRR limbs, the axis of the first revolute joint at A1 and A3 is horizontal in y direction. Consequently, the actuated
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Fig. 3: Schematic model of the 2-RPRR-2UPS mechanism

prismatic joint is contained in a vertical plane. Next R joint is located at points B1 and B3 and oriented as the first one, with

its axis in y direction. Finally, the axis of the last R joint is perpendicular to the previous R joint and to the mobile platform.

This last R joint connects the RPRR limb to a bar of the four-bar mechanism at C1 and C3. On the other hand, the UPS limbs

have a first universal joint with its first –fixed– axis horizontal in the x direction and the second one perpendicular to the first

one and to the prismatic pair of the limb. These universal joints are located at points A2 and A4. The actuated prismatic joints

connect the fixed base with a bar of the four-bar mechanism that forms the mobile platform by means of spherical joints

located at C2 and C4. The reference point P of the mobile platform is located at the geometric centre of the articulated mobile

platform. A frame u-v-w is located in the mobile platform in such a way that u vector points from P to C1 and w vector is

perpendicular to the plane containing the four-bar mechanism. Notice that w vector will always be contained in a vertical

plane.

With such a topology, points C1 and C3 belong to vertical planes and, since the bars of the four-bar mechanism are equal,

they constrain its centre –the reference point P– to be in the vertical x-z plane. As a consequence, there will not be parasitic

translations of the platform in y direction. In turn, R joints at B1 and B3 allow the plane of the four-bar mechanism to rotate

with respect to y axis. Finally, the internal DOF of the mobile platform allows the rotation of u with respect to w and thus

the second rotation of the mobile platform. Hence, the 4 DOFs of the mobile platform are displacement in x and z of point

P and rotations of the mobile platform about y and w directions, namely, those desired for the rehabilitation exercises. Since

the axes of the first two R joints of the RPRR limb are parallel to each other and perpendicular to the x-z plane, the axis of

the last R joint is contained in x-z. This fact makes that the plane in which the articulated mobile platform is contained can



only rotate about y axis. Hence, there is no parasitic rotation and the reference u-v-w can only rotate about two axes, namely

y and w.

In the schematic view of the mechanism shown in Fig. 3, it can be noticed that there is no physical mobile platform,

being point P a virtual point at the centre of the parallelogram formed by bars CiC j. In order to design a physical mobile

platform, a system of linear bearings is used. This system consist of two perpendicular guides, one from C1 to C3 and another

from C2 to C4, and four carriages or linear bearings, each of them attached to one of the Ci points. Fig. 4 shows the way the

guides are located at the bottom of the mobile platform together with the carriages of the linear bearings.

Fig. 4: View of the guides at the mobile platform

With the design shown in Fig. 4, a rigid mobile platform can be placed on the four-bar linkage. Notice that the centre of

the mobile platform will always coincide with the centre of the parallelogram. This rigid mobile platform allows the foot of

the patient to be located on it. A preliminary CAD design of the complete mechanism is shown in Fig. 5, with and without

the mobile platform.

For the described joints of the mechanism without the mobile platform, the mechanism is over–constrained with four

redundant constraints. Since it has a planar articulated four-bar mechanism with parallel R joints, replacing two of them with

U and S joints would remove three of its redundant constraints. The last one could be removed by replacing the R joint at B1

or B3 with a cylindrical C joint.

An attempt to show that the mechanism reaches the four output DOFs required in rehabilitation tasks is shown in Fig.

6. The movement of each of the four output DOFs is represented while the other DOFs remain constant. In order to show it

clearly, the starting configuration is the same in the four figures and the second configuration is presented with dotted lines.



(a) with mobile platform

(b) without mobile platform

Fig. 5: Preliminary CAD model of the mechanism

Other Possible architectures

The design presented is not the only solution for creating the desired 2T2R output DOFs. Using the same passive and

actuated joints, a 2PRRR-2PUS architecture could also be a solution. Nevertheless, the volume of the mechanism with fixed

prismatic actuators is larger at any configuration and this fact complicates the translation of the mechanisms from one place

to another (for example, from one room to another in a hospital or even to a patient’s home). From such point of view, the

chosen 2RPRR-2UPS architecture is more compact by taking the manipulator to the singularity shown later in Fig. 9.

Another design option could be the one with revolution actuators instead of prismatic ones, having a 2RRRR-2RUS

architecture. This change leads to an architecture similar to one 2T2R mechanism shown in [27], which produces the same

required output DOFs. As said before, the resulting mechanisms should be more suitable for fast, light tasks such as pick-



(a) Translation in x (b) Translation in z

(c) Rotation about y (d) Rotation about w

Fig. 6: Individual movements of the output DOFs

and-place operations, since they seem to be too weak to support the mass of a human leg.

3 Kinematics of the 2RPRR-2UPS mechanism

First, geometric parameters L, e and r of the mechanism are defined. Fig. 7 shows a top view of the mechanism with its

mobile platform horizontal showing said parameters.

L: length of the side of the square fixed platform

e: length of BiCi bars (i=1,3)

r: length of the bars of the mobile parallelogram

Kinematics are solved using 16 coordinates. The inputs of the mechanism are the prismatic actuators from Ai to Bi

(i=1,3) or Ci (i=2,4), whose lengths are described by ρi coordinates. On the other hand, the outputs are the Cartesian

coordinates xP and zP of point P and Euler angles ϕ with respect to the fixed y axis and γ with respect to the mobile w axis

(see Fig. 3).
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Passive coordinates used to solve the kinematic problem are angles φ1 and φ3 of R joints at points A1 and A3, angles φ2,

ψ2, φ4 and ψ4 of U joints at points A2 and A4, and distances c1 and c2 from point P to points C1 and C2, respectively. In order

to make it clearer, coordinates φ1, φ2, ψ2, c1 and c2 are depicted in Fig. 3.

Since the four bars of the articulated mobile platform have the same length, distances from point P to points C3 and

C4 are equal to c1 and c2 respectively and there is no need to define coordinates for them. As we will see later, the lack of

additional coordinates for C3 and C4 avoids the superposition of points C2 and C4 for c2 6= 0, which prevents a bifurcation

when modelling the singularity.

Taking into account that the mechanism has two types of limbs, two types of kinematic closed loop equations can be

written:

ai +ρρρi + e(±j) = p+Rcuvw
i i = 1,3 (1)

ai +ρρρi = p+Rcuvw
i i = 2,4 (2)

where ai stands for position vectors from the origin O to Ai, ρρρi are vectors from Ai to Bi (i = 1,3) or Ci (i = 2,4), j is the

unit vector in y direction, p is the position vector from the origin O to the reference point P of the mobile platform, R is the

rotation matrix from u-v-w to x-y-z and cuvw
i are position vectors from P to Ci expressed in base u-v-w. The sign for ± in Eq.

1 is − for i = 1 and + for i = 3.

In addition to the closed loop Eqs. 1 and 2, points P, C1 and C2 form a right triangle so that coordinates c1 and c2 are

related by Pythagoras Theorem.



c2
1 + c2

2 = r2 (3)

Finally, it must be noted that the equation in y direction in Eq. 1 is the same for both i = 1 and i = 3. From this equation,

c1 can be explicitly obtained as a function of γ.

c1 =
L/2− e

sinγ
(4)

Then, Eqs. 1 and 2 have 11 independent equations, so that with the addition of Eq. 3 a system 12 independent equations

is obtained, which matches with the 16 coordinates and 4 DOFs of the mechanism.

3.1 Inverse Kinematics

Inverse kinematics consist on solving actuator strokes ρi for desired output coordinates (xP,zP,ϕ,γ)
T . Solution is derived

by solving ρρρi from Eqs. 1 and 2.

ρρρi = p+Rcuvw
i −ai− e(±j) i = 1,3 (5)

ρρρi = p+Rcuvw
i −ai i = 2,4 (6)

Note that rotation matrix R is known since it depends on output angles ϕ and γ (see Eq. 7).

R =


cosϕcosγ −cosϕsinγ sinϕ

sinγ cosγ 0

−sinϕcosγ sinϕsinγ cosϕ

 (7)

In order to solve Eqs. 5 and 6, the first step is the calculation of c1 and c2 from Eqs. 4 and 3 respectively. Once cuvw
i are

already known, passive angles can be cancelled calculating the norm of the vectors of both sides of Eqs. 5 and 6:

ρi = ‖ρρρi‖= ‖p+Rcuvw
i −ai− e(±j)‖ i = 1,3 (8)

ρi = ‖ρρρi‖= ‖p+Rcuvw
i −ai‖ i = 2,4 (9)



From Eqs. 8 and 9, with the previously added information obtained from Eqs. 3 and 4, values of the actuators strokes ρi

are obtained.

3.2 Direct Kinematics

Direct kinematics, also known as forward kinematics, calculates output coordinates (xP,zP,ϕ,γ)
T for fixed strokes ρi

of the actuators. This is a complex problem and we have not found explicit analytic expressions for the output coordinates.

Although such analytic expressions would lead to a fast solution of direct kinematics problem, using an iterative numerical

method for this task would not compromise the performance of a real–time application.

3.3 Jacobian and velocity analysis

Eqs. 1 and 2 can be written separated for every limb of the mechanism as:

a1 +ρ1s1− ej = p+ c1u

a2 +ρ2s2 = p+ c2v

a3 +ρ3s3 + ej = p− c1u

a4 +ρ4s4 = p− c2v

(10)

where si is a unit vector in the direction of the ith prismatic actuator.

Differentiating with respect to time, leads to:

ρ̇1s1 +ρ1(ωωω1× s1) = ṗ+ ċ1u+ c1(ωωωp×u)

ρ̇2s2 +ρ2(ωωω2× s2) = ṗ+ ċ2v+ c2(ωωωp×v)

ρ̇3s3 +ρ3(ωωω3× s3) = ṗ− ċ1u− c1(ωωωp×u)

ρ̇4s4 +ρ4(ωωω4× s4) = ṗ− ċ2v− c2(ωωωp×v)

(11)

where ωωωi stands for the angular velocity of the ith limb and ωωωp for the angular velocity of the mobile platform.

In order to cancel passive coordinates of Eq. 11, each of its equations can be dot-multiplied by its corresponding si.

Using the time derivative of Eqs. 3 and 4, operating and simplifying, it yields:



ρ̇1 = s1 · ṗ+ c1(u× s1) ·ωωωP +K1 γ̇ s1 ·u

ρ̇2 = s2 · ṗ+ c2(v× s2) ·ωωωP +K2 γ̇ s2 ·v

ρ̇3 = s3 · ṗ− c1(u× s3) ·ωωωP−K1 γ̇ s3 ·u

ρ̇4 = s4 · ṗ− c2(v× s4) ·ωωωP−K2 γ̇ s4 ·v

(12)

where:

K1 =
−cosγ(L/2− e)

sin2
γ

K2 =
cosγ(L/2− e)2

sin3
γ

(
r2− (L/2−e)2

sin2
γ

)1/2

(13)

Regarding Eq. 13, the value of term K1 tends to infinite when angle γ approaches zero. However, this does not happen

if e< L/2. In turn, the denominator of K2 is cancelled or imaginary when:

r2 ≤
(L

2 − e
)2

sin2
γ

(14)

If the value of γ is such that Ineq. 14 satisfies the equality, the value of K2 and the Jacobian are not defined. In this case,

the mechanism turns into a configuration in which the four bars of the articulated mobile platform are aligned, with c1 = r

and c2 = 0. This fact will be analysed in Section 4.

From Eq. 12 the usual velocity equation in form Jxẋ = Jρρ̇ρρ can be obtained, ẋ = (ẋP, żP, ϕ̇, γ̇)
T and ρ̇ρρ = (ρ̇1, ρ̇2, ρ̇3, ρ̇4)

T

being output and input velocity vectors, respectively. In order to obtain such an expression, mobile platforms linear and

angular velocity vectors must be analysed. Since the mobile platform has 4 DOFs, components of ṗ and ωωωP in the fixed

frame are:

ṗ = ẋP i+ żP k

ωωωP = ϕ̇ j+ γ̇w
(15)

where i, j and k are unit vectors in x, y and z directions, respectively.

If Eq. 15 is substituted in Eq. 12, we obtain:



ρ̇1 = s1 · (ẋPi+ żPk)+ c1(u× s1) · (ϕ̇ j+ γ̇w)+K1 γ̇ s1 ·u

ρ̇2 = s2 · (ẋPi+ żPk)+ c2(v× s2) · (ϕ̇ j+ γ̇w)+K2 γ̇ s2 ·v

ρ̇3 = s3 · (ẋPi+ żPk)− c1(u× s3) · (ϕ̇ j+ γ̇w)−K1 γ̇ s3 ·u

ρ̇4 = s4 · (ẋPi+ żPk)− c2(v× s4) · (ϕ̇ j+ γ̇w)−K2 γ̇ s4 ·v

(16)

From Eq. 16 the direct Jacobian Jx can be obtained, inverse Jacobian Jρ being the identity matrix.

Jx =



s1 · i s1 ·k c1(u× s1) · j c1(u× s1) ·w+K1 s1 ·u

s2 · i s2 ·k c2(v× s2) · j c2(v× s2) ·w+K2 s2 ·v

s3 · i s3 ·k −c1(u× s3) · j −c1(u× s3) ·w−K1 s3 ·u

s4 · i s4 ·k −c2(v× s4) · j −c2(v× s4) ·w−K2 s4 ·v


(17)

Using Jacobian matrix calculated in Eq. 17, actuator velocities for desired output velocities can be calculated as:

ρ̇ρρ = Jx ẋ (18)

4 Singularity analysis

Singularities can be defined as configurations in which Jacobian matrices become singular [34]. They are usually

considered as undesirable configurations of the mechanism in which the mobile platform can gain or loose instantaneous

DOFs [1] and they can be avoided by actuation redundancy [35, 36]. Such consideration is commonly referred to direct

singularities in which the instantaneously gained DOFs may produce control problems and very high loads at the actuators.

In [37], instead, it is shown how inverse singularities can be used in order to obtain better stiffness conditions.

In addition to direct and inverse kinematics, another type of singularities are architecture singularities, which can occur

for specific values of geometric parameters of parallel robots, that fortunately can be avoided in early design stage [38].

Furthermore, an overall 6× 6 Jacobian matrix for limited-DOF parallel manipulators is presented in [39], which can be

divided into Jacobian of constraints and Jacobian of actuations, each of them having its specific singularities.

In this section, a singularity analysis of the proposed mechanism is carried out. Since the inverse Jacobian is the identity

matrix, singularities are calculated based on the direct Jacobian matrix of Eq. 17. Additionally, an inverse singularity is also

presented, which occurs when the denominator of K2 of Eq. 13 vanishes.



Direct singularities occur when Jx becomes singular. In such cases, there is at least one direction in which the mechanism

can move with blocked actuators. Such directions are given by the null space of Jx. The null space of a n×n matrix –let us

call it A– is a subspace Rn whose vectors are perpendicular to any row of said matrix. It can be expressed mathematically as:

v∗ ∈ null(A)⇔ Av∗ = 0 (19)

Singularities of the direct Jacobian Jx of Eq. 17 are listed below together with their corresponding null space, which has

been calculated with the MATLAB R© Symbolic Math Toolbox.

1. si⊥i,∀i. In this configuration, actuators 1 and 3 must be vertical with φ1 = φ3 = π/2. Additionally, actuators 2 and 4

must lie in vertical y-z planes, ψ2 and ψ4 being null. Then ,the null space of the direct Jacobian is:

null(Jx) =



1

0

0

0


(20)

Such null space shows that the mobile platform can move in the direction of coordinate xP, that is, in i direction. In this

configuration, the mechanism instantaneously becomes a parallelogram in the x-z plane. However, the null space has

been calculated regardless of the closed-loop equations of the mechanisms. A further analysis shows that this singular

configuration is only possible for specific values of geometrical parameters. Specifically, for fixed L and e, length r must

be defined as:

r =
L2−2Le+2e2

L−2e
(21)

Moreover, if such value of r and conditions derived from closed-loop equations are imposed, the null space of Jx can be

recalculated resulting a two-dimensional space:

null(Jx) =



1 0

0 0

0 0

0 1


(22)



The resulting configuration has two instantaneous DOFs with fixed actuators: translation in x direction and rotation

around w. Fig. 8 shows the mechanism in such configuration. Anyway, this singular configuration can be avoided by

Fig. 8: Singular configuration with si⊥i,∀i

chosing geometrical parameters that does not verify Eq. 21.

2. si⊥k,∀i. All the prismatic actuators are in the z = 0 horizontal plane with φ1 = φ2 = φ3 = φ4 = 0. The null space of the

direct Jacobian in such configuration is:

null(Jx) =



0 0

1 0

0 1

0 0


(23)

Now the mobile platform has two instantaneous DOFs with blocked actuators. On the one hand, it can move in the

direction of the second coordinate zP, that is, in k direction; on the other hand, the third coordinate ϕ is also unlocked

and the mobile platform can rotate around j direction. In this configuration the whole mechanism is contained in the

z = 0 plane, as shown in Fig. 9. Although direct singularities must be avoided, this configuration, or a configuration

close to it, can be used in order to fold up the mechanism for its transportation.



Fig. 9: Singular configuration with horizontal actuators

3. si ‖ u, i = 1,3 and si ‖ v, i = 2,4. This way, third column of Jx (Eq. 17) is cancelled. The null space of Jx is:

null(Jx) =



sinϕ

cosϕ

0

0


(24)

In such configuration the mechanism can move in w direction, that is, a direction perpendicular to the mobile platform.

In order this singularity to happen, a geometric constraint is needed: length e of bars BiCi must be equal to L/2 in such

a way that points C1 and C3 lie in the same vertical plane of P. Otherwise, vectors s1 and s3 can not be perpendicular to

u. If e = L/2 geometric constraint is imposed, points C1 and C3 are restricted to move within the y = 0 vertical plane.

Moreover, if e = L/2 is fulfilled the singularity will occur if si ‖ u, i = 1,3, being not necessary si ‖ v, i = 2,4 to happen.

However, in order s1, s3 and u to be parallel, actuators 1 and 3 must lie in the same plane of the mobile platform. This

fact is only possible in configurations in which the mobile platform is in the z = 0 plane. Fig. 10 shows the mechanism

with said geometric constraint in such type of singularity.

Fig. 10: Singular configuration with s1 ‖ s3 ‖ u

In addition, fulfilling e = L/2 has another consequence: the mechanism can not rotate around w, loosing one of its four

output DOFs. This geometric constraint must be avoided if the mechanism must be used as a 4-DOF rehabilitation robot.

Nevertheless, if the rigid mobile platform, the guides and the slider are eliminated, coordinates c1 or c2 can be used as

output DOF and the mechanism can be used for pick-and-place applications using the articulated mobile platform as a

gripper.



4. si = s j,∀i, j. All the prismatic actuators are parallel. In this case, first two columns of Jx (Eq. 17) are proportional. Then

the null space of Jx is:

null(Jx) =



sinφ1

cosφ1

0

0


(25)

The null space shows that the mobile platform can move perpendicular to the actuators, since all of them are parallel

and inclined with angle φ1. This is only possible if geometric parameters fulfil e = 0 and r = L. If so, the mechanism

instantaneously becomes a parallelogram. Fig. 11 shows the mechanism in this type of configuration.

Fig. 11: Singular configuration with parallel actuators

5. Intersection of the directions of actuators 4 and 2 with actuators 1 and 3, respectively. This a common singularity in

mechanisms with prismatic actuators like the Gough–Stewart platform [40]. In such configuration, the null space of Jx

is:

null(Jx) =



zP− L sinφ1 sinφ3
sin(φ1+φ3)

L sin(φ1−φ3)
2 sin(φ1+φ3)

− xP

1

0


(26)

In this type of singular configuration, bars C1C4 and C3C2 are aligned with bars B1C1 and B3C3 respectively. The null

space of Jx shows that the mobile platform does not rotate around w, so the articulated mobile platform behaves like a

rigid body. Then, with blocked actuators, the mechanism becomes a four-bar linkage in plane x-z and the instantaneously

rigid mobile platform can rotate around its Instantaneous Screw Axis with respect to the ground. Fig. 12 shows the

mechanism in such configuration and Fig. 13 shows the same configuration with the prolongation of the actuators



direction until the intersection. Each pair of crossing lines in Fig. 13a defines a plane. The intersection of these planes

defines the Instantaneous Screw Axis of the instantaneously rigid mobile platform with respect to the ground. Fig. 13b

shows how said planes are crossed.

Fig. 12: Singular configuration with intersection of actuators directions (I)

6. c2 = 0 or c1 = 0. The four bars of the articulated mobile platform lie in a line. If e 6= L/2, which is necessary to avoid

one of the previous singularities, c1 = 0 is not possible and only c2 = 0 can happen when points C2 and C4 coincide.

In order c2 to be zero, the value of γ must be the one that holds the equality in Eq. 14. As explained before, defined

coordinates c1 and c2 describe the movement of points (C1, C3) and (C2, C4), respectively, with opposite sign. Hence,

when coordinate c2 increases from c2 = 0 on, it is not possible that points C2 and C4 continue in superposition, they

take separate ways. In fact, this is an inverse singularity since said value of γ is a limit of the range of the coordinate.

Therefore, the calculation of the null space of Jx makes no sense here. A configuration of this type is shown in Fig. 14.

Nevertheless, the physical interaction of the parts of the mechanism avoids this kind of singularities, as can be seen in

Fig. 4 in which the guides avoid the physical superposition of the sliders.

7. By numerical analysis another singularity can be found which, in general, does not satisfy apparent geometric condi-

tions. An expression of its nullspace can be written as follows:

null(Jx) =

=


R2 S1 sφ3−R1 S2 sφ3−R2 S3 sφ1 +R3 S2 sφ1 +R1 S3 cψ2 sφ2−R3 S1 cψ2 sφ2

R1 S2 cφ3−R2 S1 cφ3−R2 S3 cφ1 +R3 S2 cφ1−R1 S3 sψ2 +R3 S1 sψ2

S3 sφ1 sψ2−S2 cφ3 sφ1−S1 sφ3 sψ2−S2 cφ1 sφ3 +S1 cφ3 cψ2 sφ2 +S3 cφ1 cψ2 sφ2

R2 cφ1 sφ3 +R2 cφ3 sφ1 +R1 sφ3 sψ2−R3 sφ1 sψ2−R1 cφ3 cψ2 sφ2−R3 cφ1 cψ2 sφ2


(27)



(a) isometric view (b) front view

Fig. 13: Singular configuration with intersection of actuators directions (II)

Fig. 14: Singular configuration with c2 = 0

where s and c stand respectively for sin and cos and:



R1 =
Lecγcφ1 sϕ

sγ
− Lecγcϕsφ1

sγ

R2 = c2 sγsψ2 sϕ+ c2 cψ2 cϕsγsφ2

R3 =
Lecγcφ3 sϕ

sγ
+

Lecγcϕsφ3

sγ

S1 = cφ1

(
Lecϕ+

Lec2γcϕ

s2γ

)
+ sφ1

(
Lesϕ+

Lec2γsϕ

s2γ

)
S2 =

r2 cγcψ2 sφ2 sϕ

c2
−

cφ2 cψ2
(
r2 c2γ− c2

2
)

c2 sγ
− r2 cγcϕsψ2

c2

S3 = cφ3

(
Lecϕ+

Lec2γcϕ

s2γ

)
− sφ3

(
Lesϕ+

Lec2γsϕ

s2γ

)
Le =

L
2
− e

Although

this type of singularity does not have an apparent geometric identity, there are particular cases for which some geometric

conditions are fulfilled:

• xP = 0 and ϕ 6= 0. In this case actuators 2 and 4 lie in vertical parallel planes. Fig. 15 shows the mechanism in this

configuration. Two vertical planes containing actuators 2 and 4 are also represented.

Fig. 15: Singular configuration with actuators 2 and 4 in vertical parallel planes

• xP 6= 0 and ϕ = 0. This time the singularity appears for two specific values of γ, which do not change for any values

of xP and zP. Specifically, the singularities occur at γ≈ 1.248rad and γ≈ 1.986rad. Then, it gives an interesting

range of γ free of singularities of around 0.738rad (42◦) for ϕ = 0.



• xP = 0 and ϕ = 0. It is a particular case of the previous ones, for which the nullspace of Eq. 27 becomes the simple

expression shown in Eq. 28.

null(Jx) =



0

−( L
2−e)

tanφ1 sin2
γ

0

1


(28)

Notice that the nullspace of Eq. 28 shows an instantaneous screw motion about the axis perpendicular to the mobile

platform.

Most singularities described above should be avoided. The only exception is the 2nd one, which will be useful for

folding up the mechanism and, fortunately, it will be far from the trajectories of rehabilitation manoeuvres. The other

types of singularities can be harmful, but most of them can be avoided by choosing appropriate values for the geometric

parameters L, r and e. The 5th and the 7th ones are the only harmful singularities, which can appear for any set of values of

the geometric parameters. The next Section analyses the location of these singularities within the workspace in order to find

a singularity–free domain in which rehabilitation manoeuvres can be carried out.

5 Location of the Singularities in the Workspace

In Section 4 the possible singularities of the 2RPRR-2UPS mechanism have been described. Although most of them

can be avoided with suitable values of the geometric parameters of the mechanism, this is not the case of the 2nd and the 7th

types of singularities. Then, it is necessary to know the location of these singularities within the workspace. Nevertheless,

since the mechanism has four DOFs, the graphical representation of such singularity locus is not possible. This issue

is usually overcome by analysing a constant orientation or translational workspace and orientation workspace for a fixed

position [41–43]. Such separation will be used here.

The geometry of the robot is defined by three parameters, namely, the length L of the side of the fixed base, the length e

of bars B1C1 and B3C3 and the length r of the four identical bars of the articulated mobile platform. Numeric values of this

parameters are shown in Table 1, together with the strokes of the prismatic actuators.

Before analysing the singularities, an observation must be done concerning the workspace of the mechanism. Since it

has prismatic actuators, the workspace is limited mainly by their strokes. In fact, this is the only limitation for coordinates xP,

zP and ϕ. The range of coordinate γ, in turn, is limited by the values of the geometric parameters of the mechanism. Hence,

the workspace of γ will be analysed first, followed by the orientation workspace and translation one. Finally, a rehabilitation

manoeuvre will be described.



Table 1: Geometric Parameters and Strokes of Actuators

L (m) e (m) r (m) ρmin (m) ρmax (m)

0.42 0.05 0.28 0.4 0.75

5.1 Workspace of γ

In order to look for the values of γ for which the 5th and 6th type singularities occur, a representation of the platform in

its own plane is very helpful. In Fig. 16 the platform is drawn in its own plane in both singular configurations. In order to

make the figure clearer, actuators A1B1, A2C2, A3B3 and A4C4 have been omitted.
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Fig. 16: Platform in the 5th and 6th singularity configurations

The 6th type singularities (the one represented and its symmetric with respect to y axis) determine the limits of the

workspace of γ. From trigonometrical inspection of Fig. 16, limit γmin of the workspace of γ can be calculated. Because of

the symmetry, γmax can be also calculated.

γ
6
min = asin

(
L/2− e

r

)
, γ

6
max = π− γ

6
min.

On the other hand, the 5th type singularity divides the workspace into two sets. Bearing in mind that in the 5th singularity



bars B1C1 and C1C4 are aligned, the value of γ in this singularity is:

γ
5 = asin

(√
L/2− e

r

)

Evaluating γ5, γ6
min and γ6

max for the possible values of L/2−e
r , Fig. 17 shows how the 5th type singularity divides the

workspace into two different regions. As the bright region provides the largest ranges for γ, small values of L/2−e
r are

preferred in order to maximise it. For the values of L, e and r selected in this paper, the ranges of motion for γ are from

0.6082 to 2.533 radians shown by the vertical line of Fig. 17. The singularity of 5th type will occur at γ = 0.8571 radians

and other type singularities may occur between γ6
min and γ6

max, as will be shown next.
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Fig. 17: Workspace of γ in terms of L/2−e
r

5.2 Orientation Workspace

The orientation workspace is calculated by fixing the value of coordinates xP and zP and calculating the range of motion

for angular coordinates ϕ and γ. The way to create such a workspace is making a mesh with numeric values of coordinates

ϕ and γ and, if the location is reachable with the strokes of the actuators, calculating the condition number of Jx.

Taking into account the requirements of a rehabilitation task and the results of Section 5.1 for γ, the considered ranges of

motion for ϕ and γ are from−π/2 to π/2 radians and from γ6
min to γ6

max, respectively. The orientation workspace is calculated

for the sets of values [xP = 0m, zP = 0.55m] and [xP = 0.2m, zP = 0.55m] of the Cartesian coordinates. Results are shown

in Fig. 18, in which the yellow coloured lines show the locations in which Jx is ill-conditioned. The results for negative

values of xP are not calculated since they will be symmetric to the positive ones due to the symmetry of the mechanism.



(a)

(b)

Fig. 18: Singularities in the orientation workspace

From Fig. 18, it can be seen that for a fixed value of γ, namely γ = 0.8571rad, there is a yellow, straight vertical line.

This is the singularity of the 5th type described in Section 4 whose location does not depend on the values of the other

coordinates. It happens for said specific value of γ when bar C1C4 is aligned with bar B1C1. On the other hand, the other

two yellow curves are dependent on the values of the coordinates. Both are singularities of the 7th type presented in Section

4. Although their location changes slightly, there is portion of the workspace free of singularities between these two curves

which can be used for rehabilitation tasks. There, the range of motion of ϕ and γ are ±0.6rad (±30◦) and [1.4rad, 1.9rad]

(∼ 28◦) respectively. These ranges of motion will be validated and completed analysing the translation workspace.



5.3 Translation Workspace

A translation or constant orientation workspace can be represented by fixing values of coordinates ϕ and γ and evaluating

the reachable values of xP and zP and the condition number of Jx when possible. In order to avoid the 2nd singularity, which

as said before can be used to fold up the mechanism, values of zP start from 0.05 meters. From the results of Section 5.2,

it is expected that for values of xP ∈ [−0.2m,0.2m] and zP = 0.55m with orientations defined by values of ϕ ∈ [−0.6,0.6]

and γ ∈ [1.4,1.9], there will be no singularities. This premise is accomplished in Fig 19, in which the translation workspace

is shown for the values [ϕ = 0rad, γ = 1.65rad] and [ϕ = 0.5rad, γ = 1.65rad] of the angular coordinates. Notice that

the absence of yellow lines means that the condition number of Jx is approximately constant and, consequently, there are no

singularities for the used angles.

Taking into account the results of Figs. 18 and 19, Table 2 shows a range of values of the output coordinates which is

free of singularities and wide enough to perform the rehabilitation manoeuvre shown next.

Table 2: Singularity–free ranges of motion

coord. xP (m) zP (m) ϕ (rad) γ (rad)

min -0.20 0.44 -0.60 1.5

max 0.20 0.60 0.60 1.9

5.4 Analysis of a rehabilitation manoeuvre

Based on the Lanchman test, a rehabilitation trajectory can be defined as an arc of circumference of radius 0.45m in the

x-z tibiofemoral plane, for a constant value of γ and rotating the mobile platform in such a way that it is always tangent to

the arc. Fig. 20 shows this trajectory in the x-z plane with an instantaneous projection of the mobile platform.

The values of the input coordinates ρi along the trajectory are presented in Fig. 21 with respect to the trajectory values

of xP. Notice that the values of inputs ρi are within the stroke limits of the actuators.

This trajectory can be performed for any value of γ ∈ [1.5,1.9]. The condition number of Jx shows that the rehabilitation

manoeuvre can be carried out for said values of γ in a singularity–free zone. As a result, a Pivot Shift test can be carried out

at any point of the trajectory, varying the value of γ ±0.2rad (±11◦).



(a)

(b)

Fig. 19: Lack of singularities in the translation workspace

6 Conclusions

A new 2T2R parallel mechanism has been designed for its application as a knee rehabilitation robot. The mechanism is

able to carry out the needed movements for the Lanchman and Pivot Shift tests. The desired output movements are reached

by means of an articulated mobile platform which allows large rotations in the tibiofemoral plane needed for the Lanchman

test and small rotations around the an axis perpendicular to the mobile platform needed for the Pivot Shift test. Kinematics

of the designed mechanism makes it a folding mechanism that occupies little volume when folded in order to be transported.

This feature is achieved by taking the manipulator to a singularity or its neighbourhood. Other singularities of the mechanism

have been also analysed and it has been shown how some of them can be avoided choosing suitable values for the geometric

parameters of the mechanism. The location of the remaining singularities within the workspace has been analysed and a
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Fig. 20: Rehabilitation trajectory in x-z plane
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Fig. 21: Values of input coordinates ρi along the trajectory

portion of workspace free of singularities has been determined in which rehabilitation tasks can be carried out. Together

with the singularity analysis, the null space of the direct Jacobian has been calculated in order to know how the mechanism

would move with blocked actuators if each singularity was reached. Next steps of the design stage include the analysis of

the workspace and the optimisation of the mechanism in order to build a prototype.
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