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Abstract
Temporal sequences of satellite images constitute a highly valuable and abundant resource for analyzing regions of interest.
However, the automatic acquisition of knowledge on a large scale is a challenging task due to different factors such as the
lack of precise labeled data, the definition and variability of the terrain entities, or the inherent complexity of the images and
their fusion. In this context, we present a fully unsupervised and general methodology to conduct spatio-temporal taxonomies
of large regions from sequences of satellite images. Our approach relies on a combination of deep embeddings and time
series clustering to capture the semantic properties of the ground and its evolution over time, providing a comprehensive
understanding of the region of interest. The proposed method is enhanced by a novel procedure specifically devised to refine
the embedding and exploit the underlying spatio-temporal patterns. We use this methodology to conduct an in-depth analysis
of a 220km2 region in northern Spain in different settings. The results provide a broad and intuitive perspective of the
land where large areas are connected in a compact and well-structured manner, mainly based on climatic, phytological, and
hydrological factors.

Keywords Clustering · Deep learning · Satellite images · Semantic embeddings · Time series · Unsupervised learning

1 Introduction

Earth monitoring using satellite image analysis is nowa-
days essential for the identification, mapping, assessment,
and monitoring of land use and land cover change. This
land monitoring throughout long periods of time is possible
and cost-effective thanks to multi-spectral satellite images
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freely provided by satellite programs supported by public
agencies, such as the Sentinel-2 program by the European
Space Agency. Thus, public access to satellite imagery has
favored the interest of a growing number of researchers in the
analysis of satellite image time series (SITS). The vast data
volume and the complexity of the SITS analysis have pro-
moted the use of machine learning methods to obtain land
use maps, land cover maps, crop classification, or harvest
prediction (Csillik et al. 2019; Qiao et al. 2021; Wambugu
et al. 2021). However, obtaining labeled data may be prob-
lematic in SITS analysis since they are very expensive to
produce and maintain. Therefore, semi-supervised and clus-
tering methods are gaining more and more attention in this
field (Jean et al. 2019; Kalinicheva et al. 2020; Chen et al.
2022). Moreover, when dealing with large regions, it is cru-
cial to employ effective data partitioning strategies (Lin and
Li 2020; Olasz et al. 2016; Wu et al. 2021). Typically, satel-
lite imagery is generated using a standardized overlapping
grid to prevent image gaps and facilitate image fusion. How-
ever, this approach often results in a noticeable border effect
during image analysis.

In recent years, the rapid development of convolutional
neural networks (CNN) represents a revolution in the field
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of image analysis in general and in SITS data in particu-
lar (Li et al. 2019; Moskolaï et al. 2021). CNNs are able
to extract patterns from massive volumes of complex data,
and they become a natural candidate to tackle problems in
the field of remote sensing. The use of deep embeddings
based on CNNs is gaining increasing attention due to their
ability to encode the images into relevant latent features
used later in other classification or clustering methods (Ji
et al. 2018; Kalinicheva et al. 2020; Attar et al. 2011). How-
ever, the feature extraction obtained by the embedding is
usually guided by a good compression of the information
contained in the original image, and it is not directly related
to a classification or clustering purpose. A way to enrich
these kinds of models is to create semantically meaning-
ful embeddings using tools such as the Tile2Vec algorithm
(Jean et al. 2019). Specifically, this algorithm is learned
in an unsupervised manner, aiming to generate an embed-
dingwhere similar image patches have vector representations
nearby while being distant from dissimilar patches. The term
semantic refers to the meaningful comprehension and repre-
sentation of complex spatial features and patterns within the
imagery. A semantic deep embedding captures the inherent
characteristics, relationships, and similarities among objects
by encoding the relevant information into embedded vectors
in such a way that the distances between them also hold sig-
nificance.

In the current work, we propose a novel methodology
that constitutes an advancement in several aspects not previ-
ously addressed in depth. Four main contributions are worth
mentioning: (i) we design a method to train the embedding
considering time series instead of static images, therefore
the final embedded vectors contain both spatial and tem-
poral information, (ii) we train the embedding from a grid
of satellite images covering a large region, demonstrating
the benefits of using embeddings to avoid several technical
problems that arise in image fusion such as border effect,
inconsistencies between sensors, or temporal shifts when
using cloud-free images (Goyena et al. 2023), (iii) we go far
beyond the classic pixel level in the creation of time series
(Guyet andHervé 2016; Zhang et al. 2021) since we usemul-
tivariate time series (MTS) of embedded vectors that provide
a much richer and more meaningful representation of the
spatio-temoral dynamics of the land, (iv) the methodology
is fully unsupervised as relies on semantic embeddings and
clustering of time series to identify areas, potentially large,
that share both similar geographical characteristics and tem-
poral evolution.

The procedure followed in this research can be summa-
rized as follows. Firstly, based on the Tile2Vec approach, we
adapt the training of the embedding to the SITS context. Sec-
ondly, the images are decomposed into square image patches,
called tiles, and the embedding is used to obtain the vectorial
representation of each tile. Then, the sequences of images are

represented as a collection of MTS. Thirdly, we cluster the
MTS using the K -means clustering method for time series.
The final step of the methodology is to refine the embed-
ding by resuming the training with information given by the
previous clustering partition of MTS. Thus, the embedding
is driven to assign a nearby representation in the embedded
space to tiles sharing both similar semantics and temporal
evolution.

The results derived from the proposed approach have been
validated by an experienced geographer with deep knowl-
edge of the region under study. This corroborates our claim
that the proposed methodology yields semantically coherent
divisions of land, enabling a comprehensive understand-
ing of the terrain. The outcomes do not replicate image
details as pixel-based partitions tend to do, but offers a
higher abstraction level through coarse-grained clustering.
This arrangement of the land is particularly distinguished
by identifying structured patterns across wide areas that put
together intricate evolving semantics such as river basins or
mountain ranges, but also separate climatic zones or ecolog-
ical systems.

The rest of the paper is organized as follows. Section2
discusses relevant previous works. Section3 summarizes the
background of the Tile2Vec embedding. Section4 devel-
ops the proposed methodology based on both the semantic
embedding and the partitional clustering. Section5 specifies
the details of the experiments and the model parameters used
for the case study. In Sect. 6we present and discuss the empir-
ical results from the study. Finally, Sect. 7 draws conclusions
and identifies possible future work.

2 Related work

Dealing with SITS data involves significant methodologi-
cal and technical challenges. A crucial issue is a need for
labeled data (Storie and Henry 2018), which are particu-
larly difficult to obtain for satellite images. Moreover, even
if the ground truth is available, the land cover class could
change over time, especially when the time series is long
(Guyet and Hervé 2016). Although most of the work in
SITS has been focused on supervised techniques for land
cover classification, an increasing number of contributions
are devoted to developing unsupervised methods. These pro-
posals mainly work at the pixel level or rely on segmentation
techniques. Thus, Zhang et al. (2021) develop a procedure
based on dynamic time wrapping (DTW) distance measures
between time series of pixels and Lampert et al. (2019)
carry out a constrained K-means clustering at pixel level
that needs for a proportion of labeled data. Alternatively,
Khiali et al. (2019) characterize the dynamics of specific
objects that evolve similarly, using the well-known segmen-
tation algorithm Mean Shift (Comaniciu and Meer 2002) to
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identify trackable objects within the SITS. The dynamics of
the objects are represented using graphs, and the clustering
algorithm is conducted on these graphs. For the experiments,
they consider well-delimited areas up to a maximum exten-
sion of 95km2, and the ground truth is provided by an expert.
Similarly, Kalinicheva et al. (2020) apply 3D convolutional
autoencoders and a segmentation procedure also based on
Mean Shift. They go a little beyond the pixel level by using
patches of a maximum size of 9 pixels. The autoencoder is
used to generate a vector representation that encodes spatio-
temporal information from the whole time series of patches.
Then, they use segmentation to find a unique segmentation
map for the whole SITS.

Relevant differences exist between the aforementioned
contributions and the current research. Firstly, we work on
a different scale, far beyond the pixel level. We focus on
patches (a.k.a. tiles) of 100 pixels to capture broad and
complex semantics belonging to potentially large regions.
Secondly, we avoid the use of segmentation techniques for
SITSwhich can be very context-specific, complex to use, and
focused on fine-grained analysis. Instead, we let the partition
naturally emerge from clustering. Thirdly, we put aside the
study of DTW distance measures, since the benefits of using
this kind of distance largely depend on the characteristics of
the time series data sample. Since we consider regular time
series with a low temporal resolution, there is no difference
between using DTW or Euclidean distance. Lastly, unlike
Kalinicheva et al. (2020) we consider the whole explicit time
series of embedded vectors, which are generated by a seman-
tic embedding specifically trained for this task. The use of
autoencoders in Kalinicheva et al. (2020) provides a good
compression of the time series, but the distance between
vectors has no special meaning. Therefore, the information
contained in the time series and the relationships among them
are obscured by the encoding that does not encourage vector
discrimination. On the other hand, the use of segmentation
leads to fine-grained modeling that, although highly suitable
to classify well-defined elements such as roads, rivers, build-
ings, or crops, cannot be applied to analyze a region from a
more global perspective i.e. from a higher level of abstrac-
tion that aims not to get lost into very specific details of the
images. As previously introduced, we propose an alterna-
tive methodology to create partitions of the ground where
large areas can potentially be grouped according to a more
complex and general semantic. Our approach can reveal new
global information about the land that is not possible to
obtainwith the aforementionedworks. It usesmultiple image
sequences to capture spatio-temporal interconnections, such
as those associated with ecological systems, climatic zones,
forests, river basins, grasslands, or mountain ranges. Thus,
our method is able to get comprehensive terrain information
that can be used for example as an intermediate step in fusion
methods (Goyena et al. 2023) or it can be integrated into a

preprocessing step before image fusion. Furthermore, pre-
diction procedures for cloud filling, such as the IMAmethod
introduced inMilitino et al. (2019), where scalability may be
problematic, can benefit from the use of intelligent clustering
by reducing partition errors.

A crucial element of the current work is semantic embed-
ding. The use of embeddings (Taskin et al. 2021) is gaining
increasing attention in thefieldof satellite images,mainlydue
to the complexity of multi-spectral satellite image analyses.
These methods are able to create embedded spaces where
the images are encoded as vectors of bounded size. Here we
are particularly interested in those that can create seman-
tic embeddings, where not only the vectors are meaningful
but also the distances between them represent the amount
of dissimilarity between the images. The embedding built
for the current work is based on the Tile2Vec model (Jean
et al. 2019). It uses simple arithmetic operations within the
space that conserve semantic properties. This provides a solid
basis for analyzing the final clustering partition obtained by
the proposed methodology from a semantic perspective. The
main contribution of Jean et al. (2019) is how the model is
learned. They use a triplet loss function where triplets of
tiles are generated according to a spatial neighborhood, pro-
viding a kind of weak supervision. Thus, similar tiles are
mapped close to each other, and different tiles are mapped
as far apart as possible. In the current research, we use the
CNN of Tile2Vec and its loss function, but we generate the
triplets in a specific way to bring the model into the con-
text of SITS and ultimately, to assist in identifying areas
with both similar semantic properties and similar temporal
evolution. To the best of our knowledge, semantic embed-
dings have not been specifically trained and analyzed within
the context of SITS clustering. In Woźniak et al. (2021) the
authors present an approach analogous to Tile2Vec but using
hexagonal instead of squared tiles. Alternatively, Jung et al.
(2022) use a SimCLR approach, an encoder network trained
to maximize agreement by using contrastive loss (Chen et al.
2020), and modify this model to include k-neighbor tiles, but
no distant tiles are considered. However, we use the Tile2Vec
approach since it has demonstrated that within the resultant
embedded space, basic operations between vectors conserve
the semantic meaning. This is a very useful property for our
posterior clustering analysis.

3 Tile2Vec in a nutshell

Tile2Vec (Jean et al. 2019) is a semantic embedding method
that departs from using labeled images and instead derives
image semantics fromTobler’s first law of geography (Tobler
1970): everything is related to everything else, but near
things are more related than distant things. As atomic units,
Tile2Vec considers tiles, x , of fixed dimension as square
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image patches taken from a satellite image X . Following
Tobler’s law, the algorithm assumes that, on average, closer
tiles are more similar than distant tiles, and therefore, their
embedded representation has to be close. The learning pro-
cess is expected to build not only an embedded space where
vectors of similar images are closer to each other than vectors
of dissimilar images but also to capture the corresponding
degree of similarity.

Tile2Vec is learned from a training set of triplets of tiles
(xa, xb, xc), where xa denotes the anchor tile, xb the neighbor
tile, and xc the distant tile. Given a spatial neighborhood of r
pixels, the neighboring tile’s center must be within this range
from the anchor tile. The distant tile is randomly selected
from outside this area. The embedding function, f, is given
by a ResNet-18 (He et al. 2016) CNN with parameters θ ,
a modified input to handle multi-spectral tiles, and without
the final classification layer. Thus, f maps a tile x to a d-
dimensional vector z ∈ Rd . The loss for a triplet (xa, xb, xc)
is given by:

L(xa, xb, xc|θ) = [|| f (xa |θ) − f (xb|θ)||2 −
|| f (xa |θ) − f (xc|θ)||2 + δ]+ (1)

where [·]+ is the positive part of the argument. δ ≥ 0 is
the margin, which bounds the difference between the two
distances of the triplet loss function. Otherwise, the model
could increase the distance between the anchor and the dis-
tant embedding without restriction to minimize the loss. The
objective function is the sum of loss for the whole training set
of N tripletsD = {(x (1)

a , x (1)
b , x (1)

c ), . . . , (x (N )
a , x (N )

b , x (N )
c )}:

min
θ

N∑

i=1

[
L(x (i)

a , x (i)
b , x (i)

c |θ)+

λ
(
|| f (x (i)

a |θ)||2 + || f (x (i)
b |θ)||2 + || f (x (i)

c |θ)||2
)]

(2)

where λ is a regularization parameter that bounds the resul-
tant vector magnitudes. In summary, the learning algorithm
finds the embedding function f that minimizes the Euclidean
distance between an anchor and its neighbor tile while max-
imizing the Euclidean distance between the anchor and the
distant tile. For further details see Jean et al. (2019).

Tile2Vec-based models naturally emerge as suitable can-
didates to build multidimensional time series embedding
for sequences of tiles on which it makes sense to perform
and interpret partitional clustering. Nonetheless, it’s worth
highlighting that before clustering, a crucial step involves
adapting the training approach of Tile2Vec to encompass
both geographic and temporal information (see Sects. 4.1 and
4.3).

4 Methodology

The spatio-temporal clustering of the satellite images is
carried out on the embedding of sequences of tiles. This
codification is scalable and interpretable and constitutes a
fundamental element of the methodology. We assume that
each satellite image can be decomposed into small tiles that
contain relevant pieces of geographic information when con-
sidered in isolation. Intuitively, the size of a tile should be the
minimum to capture patterns such as those shown by rivers,
mountains, hills, crops, or pastures.

Let X = {x1, . . . , xm} be an image of a region of interest
that we assume is decomposed into a grid of square tiles,
xi , for i = 1 . . .m. Note that X can also be composed of
a set of satellite images covering the region of interest. Let
(X1, . . . , XT ) be a temporal sequence of images of the same
region, where Xt is the image of the region at time t , for
t = 1, . . . , T . From these images, we get sequences of tiles
X = {x1, . . . , xm}, where xi = (x1i , . . . , x

T
i ) corresponds

to the i-th sequence of tiles.
Using the semantic embedding, we represent sequences

of tiles as MTSs of embedded vectors. Thus, we propose the
following two-step procedure to perform the clustering:

1. Geographic-based land partitioning:

1.1 Learn the geographic-based embedding, f g , from
(X1, . . . , XT ) (Sect. 4.1).

1.2 Embed the set of sequences of tiles X = {x1, . . . , xm}
with f g and cluster the resultant MTSs (Sect. 4.2).

2. Clustering-based land partitioning:

2.1 Learn the clustering-based embedding, f c (Sect. 4.3).
2.2 Embed the set of sequences of tiles X = {x1, . . . , xm}

with f c and cluster the resultant MTSs.

The procedure starts in 1.1 by learning the embedding
f g using a training set of triplets taken from the avail-
able sequences of images, (X1, . . . , XT ). Each triplet in the
dataset belongs to the same time. Neighbor and distant tiles
are defined according to a spatial distance. Using the embed-
ding function, f g , we represent each sequence of tiles, xi , as
an MTS, zgi = ( f g(x1i ), . . . , f g(xTi )), for xi ∈ X . Then, in
1.2, we obtain a clustering partition of Zg = {zg1, . . . , zgm},
Pg = {Pg

1 , . . . , Pg
K } with Pg

k ⊂ Zg for k = 1, . . . , K . In
2.1, we learn a second embedding f c from triplets whose
tiles are sampled according to the neighborhood given by
Pg so that the neighbor tile belongs to the same cluster as
the anchor tile and the distant tile is chosen from a differ-
ent cluster. The clustering-based embedding f c constitutes a
refinement of the geographic-based embedding f g . Since the
clustering,Pg , captures spatio-temporal patterns, the triplets
sampled from Pg include additional spatial and temporal
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information. Thus, the neighbor tiles tend to be semantically
similar to the anchor tiles and additionally, they belong to
regions that change similarly over time. On the other hand,
distant and anchor tiles tend to be semantically different
and/or belong to regions that change differently over time.
This step aims at reinforcing the target of the clustering,
which is, in essence, to group areas with a similar evolving
semantic. Finally, in 2.1, the function f c is used to obtain a
new embedded representation for each sequence of tiles xi
as zci = ( f c(x1i ), . . . , f c(xTi )), for i = 1, . . . ,m. Thus, we
can obtain the final clustering partition. In the rest of this
section, we provide a detailed explanation of our proposal.

4.1 Geographic-based embedding

We use the objective function defined in 2 to obtain the
semantic embedding. Nevertheless, we must develop an
appropriate method to generate the training set of triplets,
Dg , in the context of time series. Since we want to capture
the semantics of a region as a whole for any given time,
we observe the following restriction: the tiles within a triplet
must belong to images from the same time t . Due to this tem-
poral constraint, intuitively, our embedding is only focused
on the semantics of the spatial component of every image
within the sequence. The temporal information is later intro-
duced by using multidimensional time series to encode the
sequences of tiles.

When large geographical areas are analyzed, X may be
a composition of several satellite images needed to cover
the whole region of interest. As our method deals with the
semantics of the tiles, these individual satellite images do not
require any regularization or pre-processing step to be used.
This is a noteworthy advantage of the proposed method since
the composition of satellite images usually produces border
effects that may alter the posterior analysis.

The training set Dg consists of N triplets. To obtain the
neighbor and distant tiles in a triplet, we consider a neigh-
borhood around xa (the anchor tile). This neighborhood is
defined by a circle with a radius of r pixels centered at
xa . The value of r is typically set to be equivalent to the
tile size to allow for partial overlap or close geographical
proximity between anchor and neighbor tiles. Thus, anchor
and neighbor tiles are very likely to have similar semantics.
Consequently, each triplet is obtained using the following
procedure:

• Select t at random from {1, . . . , T }.
• Select an anchor tile, xta , at random from Xt .
• Select a neighbor tile, xtb, at random within the neighbor-
hood of xta in Xt .

• Select at random from Xt a distant tile, xtc, located outside
the neighborhood of xta .

Once Dg is created, we learn the geographic-based
embedding function f g from Dg .

4.2 Time series clustering

Given a set of embedded sequences of tiles, Z = {z1, . . . , zm},
we aim to identify K groups by using partitional clustering
techniques. In particular, we propose to solve the K -means
problem for Z, where K determines the number of clus-
ters. The K -means problem consists of finding a partition
P = {P1, . . . , PK } (with non-empty clusters) thatminimizes
the error:

E(P) =
K∑

k=1

∑

z∈Pk

d(zk, ck)2, (3)

where d(z, z′) = ∑T
t=1 ||zt − z′t ||2 is the Euclidean distance

between the MTSs z and z′, and ck = 1
|Pk |

∑
z∈Pk z is the

centroid of the cluster Pk which corresponds to the average
of the MTS within this cluster.

The use of the K -means algorithm (Lloyd 1982) is moti-
vated by several reasons. It is an iterative procedure that
generates a sequence of clustering partitions with a mono-
tone decreasing error function (Eq.3) until convergence is
reached. The algorithm is linear in the number of considered
data points,m, and therefore, the proposed methodology can
be applied to a large collection of MTS. Since K -means uti-
lizes centroids, they can be used as reference points to obtain
the representative sequence of tiles for each cluster. Jean et al.
(2019) show that the interpolation of two hand-picked tiles
embedded with Tile2Vec allows for covering the full spec-
trum of intermediate patterns. We exploit this property in a
fully automatic process by using the centroids provided by
K -means and the interpolation between them. This is feasi-
ble because the K -means algorithm favors the formation of
spherical or convex clusters, where the convex hulls of indi-
vidual clusters are not intertwined. The convex hull refers
to the smallest convex shape that encompasses all the points
within a cluster. Convex clusters are particularly interesting
from the embedding perspective because the convex combi-
nation of any subset of points from a cluster Pk ∈ P belongs
to the convex hull of Pk . In other words, both the centroid of
the cluster Pk and any other point obtained by linear inter-
polation between two points within Pk belong to the class of
points given by the cluster Pk . In the context of distinct clus-
ters, the linear interpolation between two points is found to
intersect the border in the embedding space precisely once.
In essence, this implies a smooth transition from one cluster
to another. In simpler terms, as we move from one cluster
to the adjacent one, the points in that path gradually change
from the characteristics of the first cluster to those of the sec-
ond cluster, ensuring a seamless and continuous progression.
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Additionally, Tile2Vec loss-function and K -means error are
related. These make K -means the preferred option among
other clustering algorithms.

4.3 Clustering-based embedding

The last step consists of refining the geographical-based
embedding f g by using information obtained from the
clustering partition Pg and conducting the final clustering
partition of sequences of tiles using the new embedding f c.
For this purpose, we generate a new training set of triplets Dc

using a neighborhood based on Pg . With an abuse of nota-
tion, in this section, we consider that Pg corresponds to the
partition of the sequences of tiles from the original images,
{x1, . . . , xm}, associated to the geographic-based embedding
Zg . The triplets conforming Dc, (xta, x

t
b, x

t
c), again satisfy

the aforementioned temporal constraint. The training set Dc

consists of M triplets as follows:

• Select a cluster index k at random from {1, . . . , K } with
probability proportional to the size of the cluster |Pg

k |.
• Select an anchor sequence xa uniformly at random from
the cluster Pg

k .• Select a neighbor sequence xb �= xa uniformly at random
from the cluster Pg

k .• Select at random a cluster Pg
j (with j �= k) with a prob-

ability proportional to |Pg
j | and d(ck, c j ).

• Select a distant sequence xtc uniformly at random from
Pg
j .

• Construct the triplet (xta, x
t
b, x

t
c) by selecting t uniformly

at random from {1, . . . , T }.

Then, we obtain the clustering-based embedding f c by tun-
ing f g parameters with the new training Dc. The obtained
clustering-based embedding, f c, is still a mapping from the
tile space X into Rd . The clustering-based embedding aims
to reduce the average intra-cluster dissimilarity of Pc with
respect to the geographical-based embedding while increas-
ing the average inter-cluster dissimilarity.

Finally, the sequences of tiles are re-clustered using K -
means in Zc = {zc1, . . . , zcm}, providing the final clustering
partition (see Sect. 4.2). This final partition is considered a
refinement of the clustering partition obtained from Zg .

5 Design of the experiments

In this section, we illustrate our proposal by using a sequence
of Sentinel-2 images located around the province of Navarre
(northern Spain) that contains relevant areas, such as the
Pyrenees or the Ebro river basin. We chose this region due
to its environmental variability within just 220km2. In this

Fig. 1 Region chosen for experiments in northern Spain, covered by 4
Sentinel-2 images

region, we can find the Cantabrian valleys in the north, which
have a temperate and humid climate, with abundant cloudi-
ness and precipitation. On the contrary, in the southern part,
the continental Mediterranean climate appears, arid and dry
in the Ribera Navarra area, which takes on desert-like fea-
tures in the Bardenas. Next, we provide the details of the
learning parameters, the satellite imagery dataset, and the
tools to analyze the results.

5.1 Image dataset and training parameters

We use Sentinel-2 RGB-bands to create images of size
10,980×10,980 pixels with a spatial resolution of 10 meters
per pixel. These three bands, alongwith the near-infrared, are
the only bands provided by Sentinel-2 with this resolution.
Since this work stresses the use ofMTSs and their interpreta-
tion, we decided to deal with images of bounded complexity
in terms of band composition.

The area selected to illustrate the proposed methodology
is depicted in Fig. 1. The training of the first embedding is
carried out with sequences of images of the four regions indi-
cated on the right of this figure. The whole selected area
contains a wide variety of land types such as high and low
mountains, crops, pastures, or rivers, and it exhibits different
characteristics throughout the year, such as snow-covered
areas or harvested fields. Thus, extracting and synthesiz-
ing the most relevant information of such a complex and
large environment may demonstrate that the methodology
presented in this paper works in practice. The proposed
methodology provides a general framework and can be
applied to any other places, resolutions, and bands. In this
particular case, we get images of each season of the year
for five years (2017–2021). Therefore, we use a total of
4 (regions) × 5(years) × 4 (seasons) = 80 Sentinel-2
images to train the first embedding f g .

We first train the geographic-based embedding, f g , fol-
lowing the procedure proposed in Sect. 4.1. A total of N =
100,000 triplets sampled from the Sentinel-2 images, 5000
triplets from each timestamp, are used. A training set with
100k triplets has shown to be large enough to obtain a rich
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semantic representation of the image semantics (Jean et al.
2019). The size of the tiles is 100 × 100 pixels (covering
1km2), and the geographical neighborhood is given by a ball
of radius r = 100 pixels whose center is the center of the
anchor tile.

Given the Sentinel-2 images, tiles of 100 × 100 pixels
allow capturing relevant spatial characteristics of the region.
The training process is iterated 50 epochs as the convergence
of the loss function is observed. The batch size is set to 50,
the margin is δ = 50, and the regularization parameter is
λ = 0.01. Since we are interested in the relative distances
among vectors, the values of δ and λ are not crucial elements
in this case, so they are set as it is done in Jean et al. (2019).
We set the last layer of the network, i.e. the dimensions of the
embedding space, to 512 features to have a trade-off between
a rich representation of the tiles and an affordable dimen-
sion. For the clustering-based embeddings f c, we re-train the
model as described in Sect. 4.3, with M = 20,000 triplets.
The number of triplets has been reduced in this case to prop-
erly combine both models. The neighborhood is given by a
partitional clustering of size K = 5 since this number of
clusters is suitable for human interpretation in the context of
the current research, but it could be fitted according to the
problem at hand. The training process in this case is iterated
25 epochs, which is enough for the model to converge. Note
that the computational cost to train the embeddings mirrors
that of the Tile2Vec algorithm (Jean et al. 2019).

5.2 Tools of analysis

In this section, we introduce the tools used to analyze,
validate, and evaluate the results obtained when using the
proposed methodology. These tools include visualization
techniques for portraying clustering, a comparative study
between embedding-based and pixel-based clustering, and
an exploration of semantic information captured by the clus-
tering.

5.2.1 Geographic representation

We plot the original satellite images as color-maps accord-
ing to the clustering of MTSs obtained with K -means,
P = {P1, . . . , PK }. The color of each cluster is given by
its corresponding centroid, ck , as follows. The colors are
automatically generated using principal component analy-
sis (PCA) (Jolliffe 2002). The PCA is fitted with the entire
set of MTSs, Z, and then, we extract the first three compo-
nents of each centroid. In our specific case, the first three
principal components are utilized as RGB values for visual-
ization purposes. Thus, each cluster Pk is represented by its
centroid, ck , and its color is given by the first three PCA com-
ponents of ck . As the centroid captures the overall semantics
of the sequences of tiles within the cluster, if two clusters

have similar colors (in the RGB space) it means that they
are semantically similar, and vice versa. This representation
facilitates the interpretation of the clustering partition and
some intuition about the general spatio-temporal pattern of
the region and, in particular, about the possible number of
clusters behind the images.

5.2.2 Embedded representation

As a complement to the previous geographical represen-
tation, we show the clustering partition through a two-
dimensional projection of the embedded space. Specifically,
the original embedded space is projected down to two dimen-
sions by using Multidimensional Scaling (MDS) (Kruskal
1964). The distance used is the Euclidean distance between
MTS, the same distance as in Eq.3. Then, each point in
the two-dimensional space corresponds to an MTS, and
it is depicted with the color of the cluster to which it
belongs. MDS is a deterministic algorithm that seeks a low-
dimensional representation of the data that preserves the
relative distances of the high-dimensional embedded space.
The two-dimensional projections are used to compare the
geographical-based and the clustering-based embeddings.

5.2.3 Pixel-based clustering

Working at the pixel level has been widely used in the
research literature on satellite imagery. Since, to the extent
of our knowledge, there is no other method devoted to a
semantic large-scale analysis as the method we propose
here, we believe it is worth comparing the clustering pre-
sented in the current work with pixel-based clustering.
Nonetheless, examining each individual pixel’s time series
is impractical and cost-prohibitive for large-scale analysis.
Therefore, we compute the average RGB components of
pixel tiles. Specifically, we consider tiles consisting of 8 pix-
els each, as it produces a dataset for clustering of the same
size as the one obtained with the MTSs used in our pro-
posal. We also use the average RGB components of tiles
of 100 × 100 with the specific purpose of comparison with
the embedding-based clustering by two standard clustering
quality measures: Silhouette and Calinski-Harabasz scores
(Rousseeuw 1987; Caliński and JA 1974). To ensure a fair
quantitative comparison between the embedding-based and
pixel-based clusterings, these scores are calculated using dis-
tances in the two-dimensional space of the original images,
specifically based on the 2D coordinates of the tiles. This
approach allows for comparison within the same geographic
space for both clustering methods. Note that the silhouette
score ranges from −1 to 1, where a high value indicates
that the object is well matched to its own cluster and poorly
matched to neighboring clusters.
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5.2.4 Representatives, interpolations, and semantic tree

We introduce three essential tools designed to validate the
effectiveness of our unsupervised approach in capturing
accurate, valuable, and structured spatio-temporal informa-
tion. These experiments rely on the significance of distances
within the embedding.

• Cluster representative: the sequence of tiles, xk , that is
closest to the centroid ck within the cluster. This central
point encapsulates the essence of the cluster, providing a
symbolic representation of the data within.

• Interpolation: the intermediate MTS, zw = w · ck + (1−
w) · ck′ , for w ∈ [0, 1], between pairs of centroids ck and
ck′ . We show the representative sequence of tiles, xw (the
closest sequence to zw). The interpolations aim to bridge
the gap between distinct clusters by generating transi-
tional representations between their centroids. They offer
clear and coherent insights into the connections among
clusters within a complex and intricate geographic sys-
tem.

• Semantic tree: theminimum spanning tree (Prim 1957) of
a complete undirected graph calculated from the distance
matrix among cluster centroids. This tree is essential for
linking clusters and guiding the aforementioned interpo-
lation experiment. Through this approach, we can reveal
the primary connections among clusters on a global scale,
offering a structured and interpretable visualization of the
entire region in terms of spatio-temporal relationships.

This set of experiments are designed to be interpretable and
easily reviewed by experts.

6 Results and analyses

This section presents the results of the aforementioned exper-
iments. Firstly, we study the clustering partitions generated
with the geographic-based embedding, f g , and compare
them with pixel-based clusterings. Secondly, we study the
impact that the clustering-based embedding, f c, has on the
underlying structure of the clustering partition. Lastly, we
inspect the semantics captured by the cluster centroids and
the interpolations between them. For the sake of clarity and
to conserve space, we only show the most relevant findings.
All the results have been validated by a field expert with
in-depth knowledge of the entire area. Official geographic
information sources have also been consulted (Gobierno de
Navarra 2023; Gobierno de España 2023a, 2023b).

6.1 Geographic and embedded representations

In this section, we explore the geographic-based embedding,
f g , and the partitions Pg generated from this embedding.
The first results are shown in Fig. 2. In this case, we focus
on the NE region, given that identical behavior patterns are
displayed across the remaining regions. Figure2a shows one
of the 20 images of the temporal sequence of this region.
The mountains in the middle of this image correspond to the
Pyrenees, where we can see snowy mountains on the east
side.

Figure2e shows the land in the light of the embedding
f g , before any clustering analysis. The color map is gen-
erated automatically by assigning a different color to each
MTSs according to PCA, as explained before. This chart con-
denses a great deal of information regarding the semantics
of the region, its evolution over time, and the relationships
among different zones. From an overall perspective, three
big areas can be clearly distinguished: the northern part of
the Pyrenees (shades of oranges), the southern part (shades
of greens), and the Pyrenees themselves (shades of purples).
This division is concisely captured by the clustering with
K = 3 shown in Fig. 2b, whose corresponding MDS 2D
projection is shown in Fig. 2f. These three areas are also
associated with three different climatic zones: oceanic cli-
mate (orange), continental-Mediterranean climate (green),
and alpine climate (purple).

Figure2 also shows the results of the clusterings with
K = 4 and K = 5 in the charts (c, d, g, h). We can
observe that a hierarchical pattern naturally emerges. The big
areas are mostly kept intact, and they are subdivided as the
number of clusters increases, revealing new large and well-
defined zones. Thus, the green cluster of Fig. 2b, which is
related to a continental climate on the Mediterranean slope,
is divided into two clusters in Fig. 2c with K = 4. In this
case, the cluster is mostly associated with cultivated areas
of Mediterranean rainfed agriculture, which are character-
ized by a wide variety of crops such as cereals, vineyards,
or olives, although pastures can also be found. The clus-
ter primarily encompasses non-cultivated regions, including
pastures, forests, mountain vegetation, and areas dedicated to
mountain agriculture. In Fig. 2d, with K = 5, it is important
to note that the highest peaks of thePyrenees, belonging to the
axial zone ( ), are identified within the wider mountainous
Pyrenean area ( ). In general, we can observe a very struc-
tured pattern, compactly grouping large meaningful areas.
The method is able to abstract from the small details of the
images and, as the number of clusters increases, find outmore
specific semantics within the clusters. The 2D projections
indicate that the clusters are also well-defined in the embed-
ded space and provide complementary information regarding
the morphology of the clusters and the neighboring relation-
ship between them.
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Fig. 2 Geographical representations and 2D projections of the clustering Pg with different number of clusters

Fig. 3 Comparison between pixel-based and embedding-based clusterings for NE region. a Representative satellite image of the sequence. b
Pixel-based clustering with tiles of size 8× 8 pixels. c Pixel-based clustering with tiles of size 100× 100 pixels. d Embedding-based clustering Pg

As we have seen so far, the land partitions given by the
clustering of MTS are characterized by showing clearly sep-
arated and easily identifiable areas. The clusters obtained
cover compact and large areas in the geography to which a
field expert can easily assign semantic properties from a high
level of abstraction. To validate this pattern of behavior, we
compare the clusterings based on embedded sequences of
tiles with clusterings based on pixels for the four available
regions, choosing K = 5 for this experiment. Figures3 and
4 show a visual comparison, while Table1 provides quantita-
tive results.We firstly show the NE region in Fig. 3, mainly to
analyze the two versions of the pixel-based clusterings men-
tionedbefore, and compare themwith the clusteringpartition,

Pg , given by the embedding. We confirm that the pattern in
which the terrain is arranged for the two pixel-based cluster-
ings is similar, as can be seen in Fig. 3b and c. This result is
analogous for all regions (not shown here) and allows us to
verify that the pixel-based clustering with tiles of 100× 100
is suitable for comparison.

The difference between pixel-based and embedding-based
clustering can be easily appreciated by examining the corre-
sponding charts in Figs. 3 and 4. The partitionsPg of embed-
ded sequences of tiles show compact and well-separated
clusters in all cases. In general, we can see that the pixel-
based clusterings tend to reproduce the original images,
while the clusterings based on the embedded sequences
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Fig. 4 Comparison between pixel-based and embedding-based clusterings. The first column shows satellite images representatives of the sequence,
the second column shows the pixel-based clusterings with tiles of size 100×100 pixels and the last column shows the embedding-based clusterings
Pg

of tiles are able to disregard the specific image details to
provide a more general overview of the whole region. To
support these findings, Table1 provides numerical values for
both approaches. As explained before, the Silhouette and
Calinski-Harabasz scores are calculated using the distances
in the two-dimensional space of the original images. This
table indicates that the embedding-based clustering is clearly
superior in creating dense and well-separated clusters over
the geographic space.

To demonstrate the potential and versatility of the pro-
posed method, we conduct the clustering of the four

sequences of images as a whole. Figure5 demonstrates the
feasibility of conducting this clustering effectively without
requiring supplementary techniques like image normaliza-
tion and fusion. Interconnections between the four regions
naturally emerge to provide an informative partition of a
large area. Although different clustering partitions have been
explored, in Fig. 5, we show a clustering with K = 7. This
partition into seven clusters provides the most insightful out-
come, readily available for expert analysis. The legend of
Fig. 5 indicates the main semantic tags linked to each clus-
ter. From a comprehensive standpoint, our domain expert
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Fig. 5 Overall clustering and legend with associated semantic tags when considering the four sequences of images

Table 1 Numerical comparison between pixel-based and embedding-
based clusterings

Embedding-based Pixel-based
Region Silhouette C–H Silhouette C–H

NW 0.11 2683 −0.05 1458

NE 0.14 4463 −0.14 750

SW 0.09 2504 −0.11 348

SE 0.10 2320 −0.06 314

deduces that the physical geography of this extensive region
is predominantly segmented based on climatic factors. This
observation further underscores the significance of incorpo-
rating time series data within the methodology.

6.2 Clustering-based embedding

This section presents the results of the clustering obtained
with the refined clustering-based embedding, f c. Although
we select K = 5 to train f c, the impact that this second round
of learning has in the embedding is independent of the num-
ber of clusters. We compare the clustering partitionsPc with
the preceding partitions P f for each of the four sequences,
aiming to validate themethod’s performance. As in the previ-
ous section, we provide both a visual comparison through the
2D projections in Fig. 6 and a quantitative analysis using Sil-
houette score and the K -means error (intra-cluster variance)
in Table2.

In Fig. 6, the MDS projections of the partitions P f are
displayed in the first row, whereas the MDS projections of

the partitions Pc are shown in the second row. We chose
MDS because it is deterministic and allows multiple com-
parisons without the need to set a random seed. For the sake
of comparison, we plot the results of each region with the
same colors for both kinds of partitions. The geographic
representations are not shown because they are highly sim-
ilar to those in Figs. 3 and 4, which suggests a convergence
in the geographic aspect of the semantic clustering. How-
ever, if we compare the 2D projections of this figure, a
dramatic change in the internal structure of the embedding is
revealed in each single region. These results not only provide
additional valuable information regarding the relationships
among clusters but also can be useful for further automatic
classification purposes or expert analysis. As evident from
Table2, the clusters derived from the refined embedding
exhibit greater density and enhanced separation between
them, aligning with the established notion of effective clus-
tering. Both measures indicate a higher quality of this refined
clustering-based embedding for all regions. In particular, the
variance within the clusters given by the K -means error is
dramatically reduced by the refined embedding.

These results can be combined with the previous results
to achieve a better understanding of the region under study
or can be used to conduct a more in-depth analysis, as we
will show in the next section. For instance, Figure6a and e
shows that Pc obtains a better separation between the and

clusters than Pg , although both clusters are close geo-
graphically. Also note that the and clusters are located
on each side of the chart forPc, while they are placed nearby
for Pg . As we will explore next, the and clusters repre-
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Fig. 6 MDS projections, with K = 5, of the clusterings Pg and the clusterings Pc for the four sequences of images

Table 2 Numerical comparison between the partitions Pg and Pc for
K = 5

Clustering Pg Clustering Pc

Region Silhouette Error Silhouette Error

NW 0.278 13,458 0.454 2801

NE 0.306 13,293 0.346 2524

SW 0.211 13,505 0.329 2939

SE 0.203 14,498 0.302 3222

Fig. 7 Semantic tree for Pc

sent the transition towards the Pyrenees from Spain, while
and clusters contain different types of crops on either side
of the Pyrenees. From a more global perspective, Fig. 6a, e

reinforce the previous finding of two main zones in the NE
region: (1) the southern zone under the Pyrenees ( and )
and (2) the northern area in conjunction with the Pyrenees
( , , ). These observations suggest that the clustering-
based embedding makes sense, and it is able to capture a
better representation of the reality of the ground not cap-
tured without refinement. A similar analysis can be done in
the rest of the images of Fig. 6. It is worth mentioning, for
example, that Fig. 6f and g confirm that the two clusters at the
extremes of the scatter plots are indeed well separated, even
in the case of Fig. 6g, for which both clusters are neighbors
in the geography (see Fig. 4i). This figure also indicates that
the most significant separation between clusters is observed
in the Pyrenees.

The images in Fig. 6 also demonstrate the convexity of
the clusters formed by K -means over MTS. The clusters are
especially well arranged with the refined embedding, where
clear transitions and paths between clusters arise. Figure6f
and g arrange the clusters in a chain whereas Fig. 6e and
h exhibit a tree structure, where only one of the clusters has
three neighbors. These characteristics are essential to conduct
a more in-depth semantic analysis in the next section, which
is based on the relationship among clusters, their centroids,
and the interpolations between them.

6.3 Representatives, interpolations, and semantic
tree

In this section, we first create a semantic tree, an undirected
graph that summarizes the relationships among clusters
obtained from the refined embedding. As it is done in some
previous experiments, we focus on the NE region to provide
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concise interpretations. The same analysis can be conducted
for any region of interest. Moreover, to facilitate the interpre-
tation of the figures belonging to this section, we only show
the first 4 elements of the sequences of tiles that correspond to
the four seasons of years 2017–2018. The semantic tree (see
Sect. 5.2) of the NE region is shown in Fig. 7. The length of
the edges is proportional to the Euclidean distance between
centroids and the size of the node is also proportional to the
size of the cluster.

Figure8 shows the semantic tree with the representative
sequence of tiles for each cluster (cluster’s medoids) and the
representative sequence of tiles for each edge (interpolation
with w = 0.5 between centroids). The tree representation
has a unique path between every pair of nodes that exhibits
a smooth evolution between their corresponding sequences
of tiles. On the one hand, Fig. 8 shows that each medoid
expresses a clear and well-defined overall semantic of the
cluster. Roughly speaking, the cluster is associated with
crops and cultivated areas of rainfed Mediterranean agricul-
ture. The cluster corresponds with the pre-Pyrenean area
located on the southern slopes of the Pyrenees. This cluster
includes valleys, hills, permanent pastures, and mountains
ranging from600 to 1800ma.s.l. The and clusters group
together the Pyrenean area, where the cluster encompasses
the highest mountains, reaching altitudes ranging from 2000
to 2600ma.s.l. (the maximum altitude of the Pyrenees is
3404m a.s.l). Finally, the cluster also contains a mixture
of crops and pasture. However, it is located in the northern
part of the Pyrenees, on the French side, where the oceanic
climate prevails, leading to a different type of vegetation.
Hence, we find here different crops and pastures compared
to those found in cluster . On the other hand,we can see that
the representatives of the linear interpolations with w = 0.5
always contain semantics halfway between the twomedoids.
Thus, the interpolation between and shows crops with
a higher degree of pasture than the representative and
includes some hills that gradually transition to low moun-
tains in the representative. In the second interpolation,
between and , we can observe a landscape of valleys
and mountains with snow in the third temporal instant as in
the next node. From the node, we can take two paths. To
the left (according to Fig. 8), we find the crops of the French
side and the interpolation shows a mixture of small crops
with hills and pastures. We can see that there is still some
snow remaining at the third instant of time. Finally, we reach
the highest peaks of the Pyrenees to the right. The interpo-
lation exhibits a clear mountainous system that gives way to
the highest and almost permanently snow-covered peaks of
the cluster.

Finally, Fig. 9 presents an interpolationwith three interme-
diate steps (w = 0.25, 0.5, 0.75). This figure shows a smooth
transition from the to the representatives. It is clearly
observed that the altitude rises with increasing w. The land

contains more pastures and mountainous terrain at each step,
while the crops disappear. It is also worth mentioning that
snow is an indicator of the different climatic patterns in each
sequence of tiles. The transition is similar to that obtained in
Fig. 8.

7 Conclusions

In this paper, we investigate a fully unsupervised methodol-
ogy to conduct semantic clustering of a large region using
sequences of satellite images. The sequences of images are
encoded as a set ofmultidimensional time series (MTS) using
a semantically meaningful embedding, which is built in three
main steps: (1) training the embeddingwith triplets generated
according to the geographic neighborhood, (2) clustering the
MTS, and (3) embedding refining with triplets generated
according to the clustering neighborhood.

We conduct experiments to explore the clustering par-
titions, thereby acquiring valuable comprehensive insights
into the region. We observe that the geographic represen-
tation of the clustering reveals a distinct structure, wherein
extensive regions are tightly grouped compactly. Moreover,
as the number of clusters increases, a hierarchical partition
naturally emerges, revealing an increasing number of seman-
tic details, that could be studied more in-depth depending on
the specific application.Both the geographical and embedded
representations offer supplementary information regarding
the configuration of the clusters and the interconnections
between them. In particular, the refined clustering-based
embedding is able to sharpen the semantic information
obtained from the sequence of satellite images. This embed-
ding exploits the information about the underlying properties
of the land for a given number of clusters. The clustering-
based embedding highlights the elements belonging to each
cluster, i.e., it tries to separate the borders and brings the
points to the center of the cluster, which is desirable for fur-
ther interpolation analysis or classification tasks. The visual
inspection of the centroids and the corresponding interpola-
tions show the ability of the clustering to capture the different
semantics of a region and its evolution. Each cluster is able to
represent a specific and well-differentiated spatio-temporal
semantic. Also, the interpolation between clusters is clearly
meaningful due to the convex partitions provided by K -
means and the impact of the refined embedding.

The proposed procedure is applied to a region of north-
ern Spain, but any other region of interest may be studied.
The results of the method do not reproduce very specific
details of the images as pixel-based partitions do but pro-
vide a higher level of abstraction embodied in a coarse-grain
clustering approach. This semantic arrangement of the land
is particularly distinguished by finding structured patterns,
where the clusters tend to cover wide and compact areas that

123



   71 Page 14 of 17 Statistics and Computing            (2024) 34:71 

Fig. 8 Semantic tree with cluster representatives and interpolations
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Fig. 9 Interpolation between and clusters in Pc with w =
0.25, 0.5, 0.75

put together complex evolving semantics such as the Ebro
river basin or the Pyrenees and separate climatic zones, for
instance, clearly distinguishing between oceanic and con-
tinental climates. To the best of our knowledge, this kind
of high-level semantic partition has not been carried out
automatically as a fully unsupervised procedure before. The
proposed methodology can be used to assist non-technical
users, such as decision-makers, domain experts, or policy-
makers, to easily gain insights from the data without the
need for extensive data processing, technical expertise, or
labeling efforts. Thus, the provided visualizations, succinct

summaries, and practical information can be readily under-
stood at user-level.

In future work, we will continue developing the method-
ology and exploring its applicability to various challenges,
including climate zone mapping, river basin analysis, or
assessment of ecological and agricultural systems. We argue
that our methodology is also suitable to analyze critical
environmental issues such as desertification. This can help
to encode indicative spatio-temporal patterns and identify
affected areas, providing valuable insights for studies and
mitigation measures. Furthermore, the flexibility of the clus-
tering procedure proposed in this work could be used in
distributed computing as it allows for the division of large
spatial regions, which facilitates the development of strate-
gies to allocate similar areas to different machines. One
significant drawbackof distributed processing is the slowness
in transferring information between machines. This spatio-
temporal clustering approach has the potential to mitigate
these limitations by grouping information both in spatial
and temporal dimensions. Additionally, since the clusters are
interpretable, it becomes feasible to identify both nearby and
distant clusters, allowing for flexible and automatic changes
in the groupings. This behavior would enable an elastic divi-
sion of the processing system, defining how to distribute
similar data on a new machine if necessary.

Finally, it is important to remark that using sequences of
tiles is an essential element in conducting further analysis
related to the changing semantics of a region. The specific use
of sequences of tiles incorporates a new dimension in seman-
tic clustering that provides richer information and presents a
wide variety of possibilities. For instance, bi-clustering algo-
rithms can be usedwith the set ofMTS tofind similar sub-sets
both in space and time, detecting change points and season-
ality in land semantics.
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