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Abstract
Classical statistical methods prove advantageous for small datasets, whereas 
machine learning algorithms can excel with larger datasets. Our paper challenges 
this conventional wisdom by addressing a highly significant problem: the identifica-
tion of burned areas through satellite imagery, that is a clear example of imbalanced 
data. The methods are illustrated in the North-Central Portugal and the North-West 
of Spain in October 2017 within a multi-temporal setting of satellite imagery. Daily 
satellite images are taken from Moderate Resolution Imaging Spectroradiometer 
(MODIS) products. Our analysis shows that a classical Logistic regression (LR) 
model competes on par, if not surpasses, a widely employed machine learning algo-
rithm called the extreme gradient boosting algorithm (XGBoost) within this particu-
lar domain.
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1 Introduction

Different boosting methods and logistic regression (LR) models have been 
jointly analyzed since more than 20 years ago from a methodological perspec-
tive, obtaining similar performances (Friedman et al. 2000). One reason could be 
that boosting can be interpreted as an approximation to additive modeling with 
a logistic scale using maximum (Bernoulli) likelihood (Friedman 2001). More 
recently, the comparisons have been extended to many versions of boosting in the 
context of different models and different health (Ingwersen et al. 2023; de Men-
ezes et  al. 2017) or environmental applications (Arabameri et  al. 2019; Rizeei 
et al. 2019). These studies reaffirm the proximity between LR and boosting algo-
rithms, but with some differences depending on the boosting versions, modelling 
and data. Frequently, it is assumed that machine learning methods overcome tra-
ditional statistical procedures, in particular when dealing with large datasets. In 
this paper we assess the performance of both methods for detecting burned areas 
using satellite images. It is worth mentioning that the dataset used in this context 
is characterized by severe class imbalance and a large volume of data.

Satellite images are crucial sources of information for monitoring wildfires 
on the Earth surface and specifically, the generation of global images of Burned 
Areas (BA) has been an important issue since the late 1990s. Consequently, 
since the 2000s, it is possible to find periodical and global BA products routinely 
derived worldwide, but with limited level of accuracy. An excellent review of 
developments in detection of burned areas with remote sensing data is provided 
by Chuvieco et al. (2019).

The most popular Burned Area product is MCD64A1 of the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) (Tomshin and Solovyev 2021) mission, 
because it provides a monthly global gridded 500 m image of burned areas and 
quality information (Giglio et al. 2018) for all over the Earth. The algorithm used 
for creating this product lies in a burn sensitive vegetation index (VI) to create 
dynamic thresholds, however, some disturbances caused by clouds, atmospheric 
absorption and sensor-introduced noises can still be present (EEDC 2022), and 
erroneous identifications of burned areas are possible. For example, in the Euro-
pean Mediterranean countries, MCD64A1 shows a 25% of BA overestimation 
with regard to the European forest fire information system (EFFIS) (Turco et al. 
2019a). FireCCI51 is another global BA product (Lizundia-Loiola et  al. 2020) 
available from 2001 to 2020 based on MODIS 250  m reflectance product, but 
recent studies show little improvement of this product with regard to MCD64A1 
(Hall et  al. 2021; Vetrita et  al. 2021). There are also specific contributions for 
detecting burned areas with Landsat and Sentinel missions, but regrettably they 
are only available in specific regions.

Overall, satellite BA products are based on a great variety of algorithms with 
different efficiencies depending on image resolutions and ecosystem variety, yet 
recently, the fast evolution of machine learning techniques has enabled to improve 
the detection of burned areas (Jain et al. 2020), and the study of wildfire spread 
patterns (Khanmohammadi et  al. 2022). Known methods such as random forest 
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(Ramo and Chuvieco 2017; Belgiu and Drăguţ 2016), support vector machines 
(Zhang et  al. 2015; Petropoulos et  al. 2011), artificial neural networks (Mas 
and Flores 2008), convolutional neural networks with long short term memory 
(LSTM) (Pinto et al. 2020) and geometric semantic genetic programming (Cas-
telli et  al. 2015) are available methods for detecting burned areas, yet gradient 
boosting based models are widely used. LR has also been used for classifying 
burned areas since more than two decades ago (Koutsias and Karteris 2000; Bas-
tarrika et al. 2011), but only recently, machine learning techniques have become 
more popular, mainly due to the need of managing big datasets. Comparisons 
between statistical and machine learning approaches are scarce, but in some cases 
many similarities are observed in the predictive performances (Ramampiandra 
et al. 2023).

In this paper, we evaluate the effectiveness of burned area detection in a region 
spanning over 100,000 km2 on the Iberian Peninsula. We utilize remote sens-
ing data and compare the performance of two classifiers with distinct approaches: 
a traditional statistical classifier, LR, and a machine learning-based classifier, the 
extreme gradient boosting algorithm (XGBoost). The application presented in the 
paper starts with a detailed description of the procedure: (a) we shortly describe the 
MODIS products, (b) we explain the definition of the auxiliary variables and the 
reference classification variable, and (c) we compare both classifiers for the identifi-
cation of burned and non-burned pixels. We know that the presence of highly imbal-
anced data, specifically burn and unburned pixels, can significantly complicate the 
estimation process, but facing both procedures using the same data can give a fair 
evaluation. The validation is made by comparing the predicted classification with 
the target reference and other external classifications, not involved in the estimation 
process. Both procedures use the same auxiliary variables.

The rest of the paper is organised as follows. Section 2 describes the study region 
and the data. Subsection 2.1 includes specific subsections for MODIS remote sens-
ing data, spectral indices and additional products. Subsection 2.3 elucidates the pro-
cess of acquiring valuable data and constructing the input dataset. It encompasses 
explanations of the differences of spectral indices, the average density of active 
fires and the definition of the reference classification. XGBoost and LR are briefly 
explained in the context of our data analysis in Subsects. 3.1 and 3.2 of Sect.  3, 
respectively. The final results, and the accuracy metrics obtained for the validation 
process of XGBoost and LR, are shown in Sect. 4. Finally, the paper ends with some 
conclusions.

2  Study region and data

The region of interest covers several Iberian peninsula regions including Galicia and 
the Portuguese regions of Santarém, Braga, Vila Real, Coimbra, Guarda, Aveiro, 
Viseu, Castelo Branco, Portalegre, Braganca, Porto and Viana do Castelo, with an 
extension of about 84,348 km2 . Figure 1 illustrates the extent of burned areas within 
the study region over the designated time period. Galicia is a region of roughly 
30,000 km2 located in the north of Spain and above Portugal, that concentrates a 
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high number of fires in Spain. In 2017, approximately 80% of the 620 km2 area that 
burned in Galicia occurred within a span of 2 days. During this period, more than 20 
fires resulted in burned surfaces exceeding 5 km2 . Portugal, with a land area of about 
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Fig. 1  Overview of the burned areas in the region of interest between September and November 2017
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92,090 km2 , consists of over 66% forested land. In 2017, Portugal lost by wildfires 
the greatest area in 1 year, more than 5000 km2 (Turco et al. 2019b). It is the Euro-
pean country most affected by fires during the last decade (San-Miguel-Ayanz et al. 
2020).

Regarding the region of interest, multiple variables have been generated from 
various data sources. These sources provide information in a variety of formats, 
including both vectorial and raster formats. The data are standardized into a stack 
of rasterized images and projected with the MODIS mission format, denoted as SR-
ORG:6974. Most of the data used in this work is derived from multi-spectral satel-
lite images, explicitly capturing information related to burned areas; this data is pre-
sented in Subsect. 2.1. The remainder of the section includes additional information 
obtained primarily from vectorial sources in Subsect. 2.2. Finally, in Subsect. 2.3, 
the data processing for extracting valuable information are described.

2.1  Multi‑spectral data

The study requires a substantial amount of data, and MODIS provides a significantly 
larger variety of variable types related to burned areas compared to other satellite 
programs. The MODIS program has two satellites, Terra and Aqua, both of which 
capture daily images of the earth surface at 500 m spatial resolution. Both satellites 
cross the same orbit with a 3 h lag, allowing them to complement the missing values 
from each other.

The download and data loading into the R software (R Core Team 2023) was per-
formed using the rsat package (Pérez-Goya et al. 2021). This package assembles 
the images by the region and time of interest in an object that contains images cover-
ing the region of interest for the 91 days of September, October and November 2017. 
Using rsat, we import a total of 182 layers for each spectral index. This comprises 
91 daily layers from MOD09GA and an additional 91 daily layers from MYD09GA, 
sourced from Terra and Aqua satellites, respectively.

2.1.1  Spectral indices

Table 1 shows the definition of the spectral indices, and the pre-fire and post-fire 
differences used in this study. The normalized burn ratio (NBR) is the most popu-
lar spectral burn index, originally developed for identifying burned areas (García 
and Caselles 1991), and later used for burn and fire severity assessment (Lutes et al. 
2006). It is defined with the near-infrared and the shortwave-infrared indices, both 
sensitive to burning but in opposite way. Other indices, such as the normalized burn 
ratio 2 (NBR2) (Santana et  al. 2018), the burn-sensitive vegetation index (MVI) 
(Giglio et  al. 2009), and the mid-infrared bispectral index (MIRBI) (Trigg and 
Flasse 2001; McCarley et al. 2018), are also highly responsive to variations in live 
green vegetation or moisture content. The normalized difference vegetation index 
(NDVI) is a well known indicator of vegetation. A zero value means no vegetation, 
and a value near 1 indicates high level of vegetation. We also use the near infrared 
(NIR) band 2 of MODIS, commonly used for monitoring temporal burn signatures 
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(Tucker 1979; Mohler and Goodin 2010). Values close to zero are associated with 
unburned areas. All of these indices decrease significantly after a fire, becoming 
good indicators of burned pixels (Chen et al. 2011). More comprehensive descrip-
tions of the implications of spectral indices in the context of burned area monitoring 
can be found in the literature (Pereira 1999; Libonati et al. 2010, 2011).

Data obtained from satellites may contain invalid information due to cloud cover. 
The Terra and Aqua daily cloud masks are used to remove the cloudy observations 
from the classification process. This work reduces cloud gaps by using composite 
images of indices. These images are given by covering the daily indices defined 
with MOD09GA with the corresponding daily indices defined with MYD09GA. It 
means that we substitute unavailable pixels of MOD09GA indices with available 
MYD09GA pixels for the corresponding indices, reducing the number of unavail-
able or erroneous pixels. Several Gap-filling methods have been developed to solve 
this issue (Militino et al. 2019a, b; Wang et al. 2022).

2.2  Additional products

Apart from using multispectral indices, supplementary products incorporating addi-
tional data have been employed to enhance the detection of wildfires. One of those is 
the MCD12Q1 land cover product which provides yearly land cover maps at a spa-
tial resolution of 500 m, featuring 17 classification legends. The first 11 categories 
correspond to different types of vegetation, while the remaining categories encom-
pass a variety of croplands, urban and built-up lands, and water bodies. This clas-
sification enables the derivation of a binary variable to determine burnability. If a 
pixel corresponds to one of the first 11 categories, it is considered burnable, whereas 
pixels falling outside of these categories are deemed unburnable.

The study also includes specific products related to the fires and burned areas: 

1. Fire location products. Fire location products allow us to find the date of the near-
est fire to compute the pre-fire and post-fire differences. They also improve the 
detection of burned areas by incorporating features that include spatial informa-

Table 1  Definition of the spectral indices in terms of the red (R), near infrared (NIR), shortwave-infrared 
(SWIR1, SWIR2) and thermal infrared (TIRS1) bands; pre-fire and post-fire differences of spectral indices 
identified with the suffixes pre and post respectively

Spectral index Definition Difference index

NBR NIR−SWIR2

NIR+SWIR2
d.NBR1 = NBR_pre − NBR_post

NBR2 SWIR1−SWIR2

SWIR1+SWIR2
d.NBR2 = NBR2_pre − NBR2_post

MVI TIRS1−SWIR2

TIRS1+SWIR2
d.MVI = MVI_pre −MVI_post

MIRBI 10 × SWIR2 − 9.8 × SWIR1 + 2 d.MIRBI = MIRBI_pre −MIRBI_post

NDVI NIR−R

NIR+R
d.NDVI = NDVI_pre − NDVI_post

NIR Near infrared band d.NIR = NIR_pre − NIR_post
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tion, such as the distance to the nearest fire and the intensity of the point process 
of active fires. 

(a) The fire location product MCD14DL of October 2017. This is a monthly 
product of near real-time (NRT) MODIS Thermal Anomalies or fire loca-
tions representing the center of a 1 km spatial resolution pixel.

(b) The visible infrared imaging radiometer suite (VIIRS) of October 2017. It 
detects active fires and other thermal anomalies (VIIRS 2021) providing a 
means to identify fire-induced changes in surface reflectance (Loboda et al. 
2007). VIIRS data complements and enhances MODIS (MCD14DL) fire 
detection (NASA 2020).

   Both products provide vector files. Then, to use them in addition to the spectral 
indexes, they are reprojected into the grid that defines the MOD09GA images.

2. Burned area products. Burned area products serve a dual purpose. Firstly, they 
enable us to establish a reference classification for our methods. Secondly, they 
facilitate the validation of our classification models’ performance. 

(a) The EFFIS wildfire data base of October 2017. It contains perimeters 
of burned areas in Europe since 2003 in vector files (EFFIS 2021). This 
product is derived from the daily processing of MODIS satellite imagery 
at 250 m ground spatial resolution. The product is reprojected into the 
MOD09GA grid and used as a reference for the classification methods. The 
EFFIS reference classification is a binary variable where the burned pixels 
are those covered by the EFFIS burned areas. Building upon this reference, 
we create a refined classification reference, labeled as Lclass, for use in the 
validation process. Lclass removes atypical data from EFFIS classification, 
and identifies as burned pixels only those of the EFFIS burned areas greater 
than 2 km2 , and with d.NBR1 > 0.1 . The unburned pixels are those not 
defined as burned in the previous step, but with d.NBR1 ≤ 0.15 for avoiding 
isolated burn scars not identified in the EFFIS database (Lutes et al. 2006).

(b) The MCD64A1 product. It provides burned area data at a 500 m resolution 
grid. Even if the format is similar, we still need to reproject the MCD64A1 
images into the MOD09GA grid. This product has the sole purpose of 
validating our results.

(c) The FireCCI5.1 product. It provides burned area data at a 250 m resolution 
grid. Even if this product gives images, we still need to reproject them into 
the MOD09GA grid. This product is used for validation purposes only.

2.3  Input variables for the classifiers

Classification methods require a reference classification, which serves as the depend-
ent or target variable, along with auxiliary or predictor variables. The reference clas-
sification is derived from EFFIS burned area data, while the auxiliary variables are 
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obtained from differences of spectral indices, the distance of each pixel to the near-
est fire (distAF) and the average intensity of active fires (aF.int).

2.3.1  Differences of spectral indices and distances to the nearest active fire

Differences of spectral indices are a frequent tool in change detection algorithms 
for identifying burned areas (Van Wagtendonk et al. 2004; Miller et al. 2009). The 
difference process consists in subtracting the index value posterior to the fire (post) 
from the index value previous to the detected fire (pre) (Eidenshink et  al. 2007). 
Using the vector files of active fires of October 2017 from MDC14DL and VIIRS 
products in the region of interest, we obtain the nearest active fire date using the Dir-
ichlet tessellation, and we define the distance (distAF) of every pixel to the nearest 
active fire. The Dirichlet tessellation creates a polygon around a center point where 
any other point inside the polygon is nearest to the center point than any other point. 
Next, we assign to all pixels of the same polygon the date of the closer fire. Fire 
dates are used for identifying the eight previous and the eight posterior observations 
for every pixel. These images are drawn from the time series of composite indices 
defined between September and November 2017. Next, we calculate the difference 
indices subtracting the mean of the eight posterior dates of fires from the mean of 
the eight previous dates. The amplitude of 8 days is empirically the most suitable for 
time series of MODIS images (Giglio et al. 2018).

2.3.2  Average density of active fires

Fire locations are usual examples of point processes (Borrajo et al. 2020), because 
they are realizations of a random point process in a two-dimensional space (Bad-
deley et  al. 2015). The reference model of a point process is a uniform or homo-
geneous Poisson point process, where the number of points in a region A follows a 
Poisson distribution with mean � ∗ area(A) , where � is the intensity of the process, 
defined as the expected number of points by unit area. When the point process is not 
homogeneous, such as the case in Portugal or Spain where clusters of municipalities 
present a higher frequency of wildfires (Martinho 2018), the intensity can be effec-
tively modeled by incorporating spatial coordinates (u) through linear, generalized 
linear or generalized additive models (gam). To gain model flexibility a gam model 
is used here. The similarity found between the Poisson log-likelihood and the linear 
Poisson regression, allows the intensity to be expressed as log-linear in the param-
eter � . Namely,

where S(u) is a smooth function of the coordinates u. In this case, we use a thin-
plate basis function of dimension k = 30 (Turner 2009). Figure 2 shows the estima-
tion of the average density computed with the R package spatstat (Baddeley and 
Turner 2005).

log ��(u) = S(u),
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3  Classifiers

The classifiers allow a supervised classification of burned and unburned pixels. We 
analyze the dataset using extreme gradient boosting and logistic regression.

The input file is obtained by generating a text file from the raster dataset, and 
thus, it has the following variables: the differences of spectral indices called 
d.NBR2, d.MVI, d.MIRBI, d.NDVI and d.NIR, the average density of active fires by 
pixel (aF.int), the distance to the nearest active fire (distAF), and the reference clas-
sification as dependent or target variable. It has around 500,000 observations.

3.1  The eXtreme Gradient Boosting method (XGBoost)

XGBoost (Chen and Guestrin 2016) is an advanced implementation of the gradient 
boosting method with many applications in Earth Sciences (Sahin 2022). It is an 
ensemble learning method and supervised algorithm, where a single model com-
bines the predictive power of multiple learners. The main ensemble learners are 
boosting and bagging, both usually based on decision trees, that predict the target 
variable through several input features. Boosting works with sequential trees reduc-
ing errors from previous trees, and it is appropriate for managing large sets of data 
without specific assumptions. The main advantages of the decision trees are the rela-
tive simple structure, the lack of assumptions, and the flexibility and robustness with 
regard to other methods (Alnahit et  al. 2022). Decision trees can effectively deal 
with nonlinear relationships and diverse variable types, including both categorical 
and numerical variables. The main difference with other bagging methods such as 
random forest, is that boosting uses trees with few splits. In the training step, the 
parameters of the weak learner are fitted iteratively minimizing an objective func-
tion. In this application, every learner is compared with its previous learners to min-
imize the binary classification rate computed as the ratio of the number of wrong 
cases over the total number of cases.

Fig. 2  Average density of the 
point pattern of active fires in 
the region of interest
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XGBoost randomly chooses a training set of 75% of observations and uses a 
tenfold cross validation over the training set to estimate the best hyperparameters. 
The optimized model is obtained for the hyperparameters achieving the minimum 
mean error among the folds. The main hyperparameters are: (1) ‘Learning rate’, that 
scales the contribution of each tree by a factor to prevent overfitting and can make 
the boosting process more conservative. It varies between 0.1 and 0.5. The opti-
mum is 0.1. (2) ‘Maximum depth of a tree’, that controls the use of deeper trees, 
generating more complex models. It varies among 1, 5 and 10. Higher depth will 
result in more complex models, which are more likely to overfit. The optimum is 1. 
(3) ‘Minimum sum of instance weight needed in a child’, that provides minimum 
weights for further partitioning. If the tree partition step results in a leaf node with 
the sum of instance weight less than this weight, then the building process will give 
up further partitioning. It varies among 1, 3, 5, 7 and 9. The optimum is 7. (4) ‘Con-
trol of imbalanced classes’, that is fixed for the training set. This is a very specific 
hyperparameter that makes XGBoost more competitive than other machine learn-
ing methods in burned area detection. It is defined as the ratio of unburned over 
the burned pixels, i.e. 27.88. XGBoost has been implemented with the xgboost R 
package (R Core Team 2023), yet we have also used rsat (Pérez-Goya et al. 2021) 
and dependent packages for downloading, customizing and managing the images, 
vector and text files.

3.2  Logistic regression (LR)

LR is a popular statistical method for supervised classification (Hosmer et  al. 
2013) that predicts the probability of belonging to a binary class. Fitting LR mod-
els requires several assumptions: (a) a binary response variable, (b) independent 
observations, (c) absence of multicollinearity among explanatory variables, (d) no 
extreme outliers and (e) a linear relationship between explanatory variables and the 
response variable (James et al. 2013). The assumptions are accomplished as follows. 
The training data set is the same as for XGBoost, and consists in a random choice of 
75% of the observations. Therefore, choosing random data relaxes the assumption 
of independence. The variance inflation factor (vif) allows quantifying the effects 
of multicollinearity. In this application all predictor variables have a vif less than 5 
(far from the limit of 10). We have checked the linearity of the continuous independ-
ent variables and their logit (log odds) with the Box–Tidwell test (1962), and the 
absence of outliers.

In case of very imbalanced data, the LR can underestimate seriously the prob-
ability of success (burned pixels) (King and Zeng 2001). Then, the minority group 
will get a high sensitivity rate and a lower specificity rate. Using an adequate sam-
pling scheme and a weighted procedure we can compensate the differences of suc-
cesses and failures. This is made with undersampling and weighting (Haixiang et al. 
2017). Weights are assigned to data for compensating differences between successes 
(burned pixels) and failures (unburned pixels). Undersampling consists in drawing 
at random a number of successes similar (or equal) to the failures, that is, at a ratio 
of 1:27.88.
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The probability of burned pixels ( Y = 1 ) is given by

that can also be expressed as

where {�
i
∣ i = 1,… , n} are the coefficients given in Table 2 and fitted by maximum 

likelihood through an iteratively weighted least squares algorithm. All of the pre-
dictor variables are statistically significant except for the difference spectral index 
d.NBR2. We do not exclude it to keep the same auxiliary variables in both methods. 
The convergence is reached in a few iterations in less than 1 min.

3.3  Confusion matrices

The main accuracy metrics used to evaluate the classifiers are shown in Table 3. The 
true positives (TP) indicate the matches of pixels defined and predicted as burned 
pixels. The false negatives (FN) are those pixels that are defined as burned pixels 
but predicted as unburned. The false positives (FP) are those defined as unburned 
pixels but predicted as burned, and finally the true negatives (TN) are those defined 
and predicted as unburned pixels. Therefore, the detection rate (D) is the proportion 
of correctly defined and predicted burned pixels over the set of pixels, the omission 
error (OE) is the proportion of incorrectly predicted burned pixels over the burned 
reference set, and the commission error (CE) is the proportion of incorrectly pre-
dicted burned pixels over the burned predicted set. The precision (P) is the propor-
tion of correctly predicted burned pixels over the burned pixels. It is also the com-
plement of the commission error (P = 1 − CE) . The recall, also called sensitivity or 
true positive rate, is the proportion of true burned pixels over the burned reference 
set. It is the complement of the omission error ( R = 1 − OE ). The Dice coefficient 

� = P(Y = 1 ∣ X1,X2,… ,X8) =
1

1 + exp(�0+
∑8

k=1
�kXk)

log
(

�

1 − �

)

= �0 + �1X1 + �2X2 +⋯ + �8X8,

Table 2  Coefficients, estimated 
coefficients, standard errors, 
z-values and p-values obtained 
for the variables of the training 
set with LR

LR

Coefficients Estimate Std. Error z value p value

(Intercept) − 5.95225 0.07637 − 77.942 < 2e−16***
d.NBR1 13.63002 1.09998 12.391 < 2e−16***
d.NBR2 0.66970 1.18349 0.566 0.57148
d.MVI 7.76191 1.19432 6.499 8.09e−11***
d.MIRBI − 5.95759 0.32919 − 18.098 < 2e−16***
d.NIR 13.04828 1.57432 8.288 < 2e−16***
d.NDVI 18.74387 0.77658 24.136 < 2e−16***
distAF − 0.38149 0.01360 − 28.048 < 2e−16***
aF.int 2.47672 0.11159 22.196 < 2e−16***
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(DC) is a similarity measure lying between 0 and 1. It is defined as double of the 
overlapping area divided by the total number of pixels in both images (Guindon and 
Zhang 2017). The kappa coefficient (�) measures the agreement between the refer-
ence and the predicted classification.

4  Results

XGBoost and LR learn and estimate from the same random training data set of 75% 
of the pixels. Both use corrections to compensate the very imbalanced data using 
appropriate weights, but inevitably results can vary due to the randomness of the 
approximation methods. For avoiding uncertainties, we run both procedures 100 
times and derive the accuracy metrics. Negligible differences are found among dif-
ferent runs. Removing the weights for imbalanced data results in an increase in mis-
classifications. The final predictions of both methods are classified as either 0 or 1, 
depending on whether the predicted probability is less than or equal to 0.5 or greater 
than 0.5, respectively.

Table 3  Definition of accuracy 
metrics, where TP, TN, FP, 
and FN are true positives, true 
negatives, false positives and 
false negatives, respectively

*P0 is the relative observed agreement between reference and predic-
tion and P

e
 is the hypothetical probability of chance agreement

Detection rate (D) D =
TP

TP+TN+FP+FN

Omission error (OE) OE =
FN

TP+FN

Commission error (CE) CE =
FP

TP+FP

Precision (P) P =
TP

TP+FP

Recall (R) R =
TP

TP+FN

Dice coefficient (DC) DC =
2TP

2TP+FN+FP

Kappa    (�) � =
P0−Pe

1−Pe

∗

Overall accuracy (OA) OA =
TP+TN

TP+TN+FP+FN

Table 4  Proportions of true 
positives (TP), true negatives 
(TN), false negatives (FN) 
and false positives (FP) 
calculated with the means 
of 100 runs of XGBoost and 
LR when compared with the 
EFFIS reference, the redefined 
Lclass, the MCD64A1, and the 
FireCCI5.1 classification

Reference XGBoost Logistic

EFFIS 0.033 (TP) 0.001 (FN) 0.032 (TP) 0.003 (FN)
0.011 (FP) 0.954 (TN) 0.001 (FP) 0.964 (TN)

Lclass 0.032 (TP) 0.000 (FN) 0.031 (TP) 0.001 (FN)
0.012 (FP) 0.956 (TN) 0.001 (FP) 0.967 (TN)

MCD64A1 0.029 (TP) 0.001 (FN) 0.028 (TP) 0.001 (FN)
0.016 (FP) 0.955 (TN) 0.005 (FP) 0.966 (TN)

FireCCI5.1 0.029 (TP) 0.003 (FN) 0.028 (TP) 0.005 (FN)
0.015 (FP) 0.953 (TN) 0.005 (FP) 0.963 (TN)



1 3

Environmental and Ecological Statistics 

Table 4 gives the means of the TP, TN, FP and FN proportions obtained when 
comparing the predicted classification of XGBoost and LR with four different classi-
fications: the reference (EFFIS), the re-defined Lclass, the MCD64A1 and the Fire-
CCI5.1 classification. The EFFIS classification is used as reference in the estimation 
process, Lclass is a refined classification from EFFIS, MCD64A1 and FireCCI5.1 
are classifications based on MODIS products not involved in the estimation process. 
For the EFFIS reference, the proportions are calculated over the test set (25% of 
the input dataset) of 126,233 pixels, and in the rest the means are calculated over 
the total (100%) of 504,933 pixels in 100 runs. The results obtained for EFFIS and 
Lclass with XGBoost and LR are a bit better than the ones obtained for MCD64A1 
and FireCCI5.1 as expected. FN and FP rates are lower in EFFIS and Lclass classi-
fications in both classifiers, but XGBoost tends to provide more FP and less FN than 
LR in all the scenarios.

Table  5 shows the means of the accuracy metrics estimated with 100 runs of 
LR and XGBoost predictions in the four different scenarios already defined. The 
EFFIS reference has been made with the test set, while the rest of references are 
obtained with the complete dataset (training and testing). The highest detection 
rates are provided by XGBoost in the EFFIS (0.033) and Lclass (0.032) classifica-
tions, yet LR detection rates are very similar, 0.032 and 0.031 respectively. In all the 
metrics, the comparison of the predictions with EFFIS and Lclass classifications is 
more successful than the predictions with the MCD64A1 and FireCCI5.1 products 
as expected, because these products are not based upon the reference classification. 
LR is better in Precision and provides a lower number of FP, while XGBoost is bet-
ter in Recall and provides a lower number of FN in all the scenarios. The similarity 

Table 5  Means of estimated 
accuracy metrics of the 100 
runs of logistic and XGBoost 
predictions vs. the EFFIS 
reference, the redefined 
Lclass, the MCD64A1 and the 
FireCCI5.1 classification

Metrics EFFIS Lclass MCD64A1 FireCCI5.1

LR
 Detection rate 0.031 0.031 0.028 0.028
 Omission error 0.091 0.026 0.049 0.145
 Commission error 0.035 0.037 0.145 0.154
 Precision 0.965 0.963 0.855 0.846
 Recall 0.909 0.974 0.951 0.855
 Dice coef 0.936 0.968 0.901 0.851
 Overall accuracy 0.996 0.998 0.994 0.990
 � 0.934 0.967 0.898 0.846

XGBoost
 Detection rate 0.033 0.032 0.029 0.029
 Omission error 0.043 0.000 0.021 0.084
 Commission error 0.255 0.275 0.354 0.336
 Precision 0.745 0.725 0.646 0.664
 Recall 0.957 1.000 0.979 0.916
 Dice coef 0.838 0.841 0.779 0.770
 Overall accuracy 0.987 0.988 0.984 0.982
 � 0.831 0.834 0.770 0.761
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between predictions and all the classifications is higher in LR than in XGBoost, as 
Dice and � coefficients show.

Figures 3 and 4 show the mean of the classifications provided by XGBoost and 
LR, respectively vs. the reference, the redefined Lclass, the MCD64A1 and the Fire-
CCI5.1 products in the region of interest. NA pixels, plotted in white, are missing or 
un-burnable data, the green pixels are the true unburned pixels (TN), roughly 96% 
of the pixels. The true burned pixels (TP, in blue) represent approximately 3% of 
the pixels. All panels show a strong coincidence of location and identification. Only 
1% of false negatives (FN, plotted in red) and false positives (FP, plotted in yellow) 
are observed as misclassified pixels. The FP (see Fig. 3) are mainly in the border 
regions of burn scars, and more frequent in the MCD64A1 and FireCCI5.1 clas-
sification. The FN are sparsely distributed (see Fig. 4). Both classifiers have better 
performance when comparing with the EFFIS and Lcass classifications than when 
comparing with the MCD64A1 and FireCCI5.1 classifications (Fig. 5).

The importance assessment of XGBoost is shown in Fig. 5, where d.NBR1 has 
the highest contribution to the predicted classification, followed by d.MVI,  dis-
tAF,  d.NBR2,  d.NIR,  d.NDVI,  d.MIRBI and aF.int. This rank of contribution is 
expected, because NBR1 is one of the most popular burn index and MVI is the used 
index in MODIS BA products (Giglio et al. 2018). The rest of variables have lower 
percentage gain, but they are also crucial for detecting burned areas because they 
improve the classification process. Specifically, the average density of active fires 
(aF.int) as predictor variable reduces both the number of FN (2%) and the number of 
FP (13%) in the estimated confusion matrices.

Figures 6 and 7 zoom the highlighted region of Figs. 3 and 4, respectively. The 
blue burn scars (TP) are well identified in the four scenarios of both methods, yet in 

Fig. 3  From the leftmost to the rightmost panel, the XGBoost mean prediction of 100 runs vs. the refer-
ence, the redefined Lclass, the MCD64A1 and the FireCCI5.1 classification. NA pixels, plotted in white, 
are missing data, and pixels in blue, red, yellow and green colors are the true positive, false negative, 
false positive and true negative pixels, detected in each classification, respectively The highlighted region 
is zoomed in Fig. 6
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Fig. 4  From the leftmost to the rightmost panel, the Logistic prediction of 100 runs vs. the reference, 
the redefined Lclass, the MCD64A1 and the FireCCI5.1 classification. NA pixels, plotted in white, are 
missing data, and pixels in blue, red, yellow and green colors are the true positive, false negative, false 
positive and true negative pixels, detected in each classification, respectively The highlighted region is 
zoomed in Fig. 7
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Fig. 5  Importance assessment of the predictor variables in XGBoost
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the reference and Lclass classifications identification of burned pixels is higher than 
in the MCD64A1 and FireCCI5.1 products as can be expected since the detection 
rate is 10% higher in those cases (see Table 5). More specifically, Fig. 7 shows that 
LR has a slightly number of FN (plotted in red), but a lower number of FP (plotted 
in yellow) with regard to XGBoost.

5  Conclusions

In this work, we evaluate a machine learning algorithm called the extreme gradi-
ent boosting algorithm (XGBoost), that outperforms in many cases other machine 
learning algorithms when detecting burned areas using satellite images, and logistic 
regression (LR), a traditional statistical method that, in principle, is not specifically 
oriented to detect burned areas. Both use the same input set of predictor variables 

Fig. 6  From left to right, the XGBoost mean prediction of 100 runs vs. the reference, the redefined 
Lclass, the MCD64A1 and the FireCCI5.1 classification in the highlighted region of Fig. 3. NA pixels, 
plotted in white, are missing data, and pixels in blue, red, yellow and green colors are the true positive, 
false negative, false positive and true negative pixels, detected in each classification, respectively

Fig. 7  From left to right, the Logistic prediction of 100 runs vs. the reference, the redefined Lclass, the 
MCD64A1 and the FireCCI5.1 classification in the highlighted region of Fig. 3. NA pixels, plotted in 
white, are missing data, and pixels in blue, red, yellow and green colors are the true positive, false nega-
tive, false positive and true negative pixels, detected in each classification, respectively
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defined with the differences of spectral indices for identifying vegetation changes, 
the distance of every pixel to the closest active fire, and the average density of active 
fires by pixel, computed using point processes. Auxiliary variables contribute to a 
better classification in both methods, in particular the differences of spectral indi-
ces, but the distance to the active fires and the average density, are also relevant for 
identifying burned pixels. In LR, because these variables are statistically significant, 
and in XGBoost because removing them increases the number on misclassifications. 
Using weights to mitigate the bias effect of imbalanced data also aids in better iden-
tifying true fires.

Conceptualization of XGBoost is different of LR, but both present similar 
results with pros and cons. XGBoost extracts model-like structure from data, with-
out assuming any type of distribution. LR is a well-known parametric method, that 
requires some assumptions to be fitted. On the other hand, LR offers better inter-
pretability, and demonstrates greater robustness, as the estimated coefficients remain 
relatively stable even when changing the training dataset. Moreover, it is highly effi-
cient and significantly faster than XGBoost (from less than 1  min in LR to more 
than 4 h in XGBoost).

In all classifications, LR has better agreement coefficients (Dice, Overall accu-
racy and � ) but a bit smaller Detection rate. XGBoost has lower omission error and 
higher commission error than LR. In addition, XGBoost exhibits higher differences 
in omission error and commission error compared to LR. Specifically, XGBoost 
achieves a very low number of false negatives (FN) but increases false positives (FP) 
more than LR does when attempting to reduce FP by increasing FN. Consequently, 
LR slightly outperforms XGBoost in terms of global accuracy metrics. But more 
importantly, LR emerges as a simple, explainable, computationally efficient, and 
highly competitive model for classifying large sets of binary data with imbalanced 
classes. This makes LR an excellent choice for analyzing burned areas using satellite 
images.

Appendix 1: code availability section

Name of the code/library: LXG
Contact: e-mail and phone number: harkaitz.goyena@unavarra.es 

(+34)948168965
Hardware requirements: A PC windows computer with an Intel(R) Core(TM) 

i7-6700 @3.40GHz processor and 16 GB
Program language: R 4.2.2
Software required: R (https:// www.R- proje ct. org/)
Program size: 50 KB. The full repository: 360 MB
Source codes: https:// github. com/ spati alsta tisti csupna/ LXG
License: GNU General Public License, version 3 (SPDX short identifier: 

GPL-3.0)

https://www.R-project.org/
https://github.com/spatialstatisticsupna/LXG
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Appendix 2: data availability statement
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https:// github. com/ spati alsta tisti csupna/ LXG.
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