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A B S T R A C T   

Alfalfa is a forage of vast importance around the world. In the past, near-infrared spectroscopy (NIRS) technique 
have been explored in the lab to determine quality traits such as fibre content in dried and ground material. 
During the last decade, portable hyperspectral devices have emerged as a tools for in-field prediction, of not only 
crop yield but also a large range of quality and physiological markers. The objective of this study was to estimate 
quality parameters in an alfalfa crop using hyperspectral data acquired from a full-range (350–2500 nm) spec-
trometer under field conditions. Reflected spectra were measured in single leaves as well as at the canopy level, 
then reflectance was related to target parameters such as biomass, leaf pigments, sugars, protein, and mineral 
contents. Due to their large effect on crop quality parameters, meteorological conditions and phenological stages 
were included as predictors in the models. We found that meteorological and phenological variables improved 
the accuracies and percentage of variance explained (R2) for most of the parameters evaluated. Based on R2 

values, the best prediction models were obtained for biomass (0.71), sucrose (0.65), flavonoids (Flav) (0.56) and 
nitrogen (0.70) with normalized root mean squared errors of 0.196, 0.32, 0.087 and 0.08, respectively. These 
parameters were associated mainly with visible (VIS) (approx. 350–700 nm) and near infrared (NIR) (700–1250 
nm) regions of the spectrum. Regarding mineral composition, the best prediction models were developed for P 
(0.51), B (0.50) and Zn (0.44), associated with the short-wave infra-red (SWIR) region (1250–2500 nm). The 
results of this study demonstrated the potential of hyperspectral techniques to be used as a base for performing 
initial evaluations in the field of quality traits in alfalfa crops.   

1. Introduction 

Alfalfa (Medicago sativa L.) is the most important forage around the 
world, due to its strong and broad adaptability to different environ-
mental conditions (Feng et al., 2020). Because of this, alfalfa is called the 
“queen of forage”, considering its crucial role in animal feeding, which 
then provides dairy and meat products that are important constituents 
for the human diet (Fan et al., 2018). The forage provides several 
compounds such as fibres, soluble carbohydrates, proteins, minerals, 
etc., that directly affect animal performance and the profitability of 

livestock (Feng et al., 2022). This perennial legume has the potential to 
produce high yields and withstands multiple harvests in a single year 
without loss in quality (Shi et al., 2017). Furthermore, planting of alfalfa 
contributes to soil protection and quality, improving the soil’s structure 
due to its capacity to develop deep root systems (Hrbáčková et al., 2020; 
Radović et al., 2009). In addition, like other legumes, alfalfa plants have 
the capacity to fix atmospheric molecular nitrogen, therefore contrib-
uting to the natural N fertilization of soils, minimizing the use of syn-
thetic fertilizers. For this reason, forages are becoming an appropriate 
crop for inclusion in agricultural systems with low inputs that could 
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mitigate the emission of greenhouses gases (Stagnari et al., 2017). 
For forages, the correct determination of the best time to harvest is a 

crucial technical management factor that has the greatest effect on 
production quantity, quality, persistence, and profitability of the crop, 
and as a consequence has an impact on its digestibility (McDonald et al., 
2021). For instance, an equilibrium between structural and non- 
structural carbohydrates is required to provide sufficient energy while 
avoiding the development of slowly digested fibre (Chamberlain et al., 
2016; Fulgueira et al., 2007). The forage reaches its optimal quality 
period prior to the appearance of the flower buds, while maximum 
production is reached during full bloom. Therefore, the choice of the 
harvest time is based on a complex balance between quality and pro-
duction (Chamberlain et al., 2016). 

The most important quality parameters considered by the alfalfa 
market are: (i) crude protein (CP) involving all the N content in both 
protein and non-protein forms; (ii) starch and soluble carbohydrates 
(glucose, fructose, sucrose) that can be digested quickly and used as 
energy by rumen microbes (Chamberlain et al., 2016); (iii) mineral 
nutrients required for animal reproduction, health, regulation of meta-
bolism and immune functions, especially the macronutrients potassium 
(K), phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S) and the 
micronutrients zinc (Zn) and iron (Fe), which are essentials precursors 
for enzymatic activities to enhance digestibility (Chand et al., 2022) and 
(iv) fibres (cellulose, hemicellulose, and lignin) that form the structure 
of the cell wall (Fulgueira et al., 2007). Previous authors have indicated 
that ruminants need to consume dietary fibre to assist the function of the 
rumen, although high fibre consumption decreases digestibility of the 
forage. Indeed, the increase in the fibre content in advance phenological 
stages of alfalfa plants has been implicated in reduced digestibility in 
cattle (Chamberlain et al., 2016). Therefore, the characterization of 
these compounds is a very relevant point because their values can be 
altered by factors such as phenology (Fan et al., 2018) and environ-
mental conditions (Li et al., 2022). 

Within the framework of precision agriculture, producers require 
cheaper, faster, and more precise methods that inform about the state of 
the plants and the plant food quality at all times. The most standardized 
analyses (HPLCs, gas chromatographs, etc.) are lab-based, and the 
requirement to purchase expensive equipment and, consumables, etc. 
significantly increases the cost of analysis. Furthermore, it has to be 
considered that these analyses are very laborious and require a high 
investment in time and consumables (Feng et al., 2020), which de-
creases throughput. In the case of alfalfa, some of the key parameters 
related to fibre composition, such as neutral detergent fibre (NDF) and 
acid detergent fibre (ADF) analyses, need to be determined using time- 
consuming methods and hazardous chemicals (Fulgueira et al., 2007). 
Currently, traditional techniques to analyse such traits have been 
replaced and/or complemented by lab spectroscopy techniques (Bec 
et al., 2020). Among these, near infrared spectroscopy (NIRS) equip-
ment would stand out as being the most commonly used. NIRS devices 
use radiation in the 750 – 2500 nm wavelength region of the spectrum 
and allow rapid quantification of different traits in several crops (Batten, 
1998; Vasseur et al., 2022). This technique was first used in pastures and 
forage, including alfalfa crops, mainly for quality factors determinations 
such as protein, fibre, lignin and in vitro dry matter (Batten, 1998; 
Brogna et al., 2009). However, despite the rapid and simultaneous 
determination possibilities of NIRS devices, those analyses require a 
prior preparation and standardization in the collection and manipula-
tion of samples, i.e., particle size has a significant influence on the 
spectral responses, thus all samples should be dry and finely ground 
(Batten, 1998). By contrast, portable spectroradiometers enable in situ, 
non-destructive determinations of the crop, which means no processing 
of samples and enables repeated measures on the same plant. Also, the 
wide range and high resolution of some devices (e.g. 350 nm – 2500 nm) 
allow the capture of information in the entire range of the spectrum, 
including the visible region of the spectrum related to marked absorp-
tion peak of plant pigments that is absent in NIRS devices (Araus et al., 

2021). These advantages have together increased the interest in spectral 
measurements for further exploitation in agricultural research, and the 
development of portable tools for in situ (i.e. field) assessment of small 
areas, or even individual plants or canopies (Araus et al., 2021; Grzy-
bowski et al., 2021). 

Several studies have demonstrated the efficient use of information 
generated from full-range or hyperspectral portable spectroradiometers 
to create prediction models of target plant quality and yield markers 
(Bruning et al., 2019; Buchaillot et al., 2022; Miguel Garriga et al., 2021; 
Jackman et al., 2021; Vergara-Diaz et al., 2020; Wiegmann et al., 2019). 
In alfalfa crops in particular, studies that use hyperspectral techniques 
have been focused on the development of models to predict yield (Feng 
et al., 2020; Garriga et al., 2020; Marshall & Thenkabail, 2015; Noland 
et al., 2018), moisture content (Cevoli et al., 2021), leaf area index, gas 
exchange, water potential, nitrogen content and isotopic composition 
(Garriga et al., 2020), and CP and fibre (Feng et al., 2020; R. L. Noland 
et al., 2018). Other parameters in alfalfa like soluble sugars or minerals 
elements have not been explored with hyperspectral spectroradiometers 
under field conditions. 

Nowadays, agriculture demands cheaper, faster, non-destructive, 
and easy-to-use methods that facilitate the most appropriate decisions 
from the agronomic, economic, and environmental point of view. 
Therefore, effective technical solutions to determine plant quality traits 
in-field are highly desirable. In this sense, the use of full-range portable 
spectroradiometers could allow the characterization of relevant alfalfa 
parameters in the field. The main objective of this study was to build up 
prediction models for onsite assessment of quality parameters in com-
mercial an alfalfa crop located in Navarre (Spain), based on the reflec-
tance obtained with a portable full range (350 nm – 2500 nm) 
spectroradiometer. Spectral measurements were performed in individ-
ual leaves and at canopy levels during the entire 2021 campaign. 

2. Materials and methods 

2.1. Plant material and experimental site 

The study was carried out in an alfalfa (Medicago sativa L.) cv. Aragon 
field trial located in Olite (municipality of Navarre region in northern 
Spain; Fig. 1). The trial was performed during the 2021 growing season. 
Annual accumulated precipitation was 437.8 mm, and the mean tem-
perature was 13.5 ◦C (Fig. 2). Patterns of temperature and precipitation 
were obtained from the meteorological station nearest to the field 
evaluated (42◦ 25′N, 1◦ 39′ W), belonging to the openly accessible sta-
tion network of the regional government of Navarre (www.meteo.nava 
rra.es/estaciones). 

The commercial field selected was sown in September of 2019 and 
covered a total area of 26 ha, with the samples taken from twelve 
different sub-plots chosen randomly inside the area (detail information 
of sampling procedure is described below). The trial was conducted 
under organic agriculture specifications, and water was supplied ac-
cording to the plants needs via a pivot irrigation system, with a total of 
7.453 m3 ha− 1 of water applied during the campaign. The soil pH was 
8.21, with optimal levels of N-NO3 (21 mg kg− 1) and medium levels of P 
(16 mg kg− 1) and K (141 mg kg− 1) (Appendix Table S1). 

2.2. Sampling procedure 

In this study we analysed four harvests performed in the field on 
April 16th, June 7th, July 7th and August 11th and the harvests were 
designated H1, H2, H3 and H4, respectively (Fig. 2). An additional 
harvest was performed by field managers on September 29th, but it was 
not included in this study. The plant characteristics determined at the 
four harvest dates are a good representation of each time point in growth 
cycle of alfalfa: H1 being representative of winter and early spring, H2 
representing spring, and H3 and H4 covering summer conditions. In 
addition, four different growth stages were sampled prior of each 
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harvest, considering the accumulated growing degree days (GDD) 
calculated according to Charles (1959) (Eq. 1). The dates of sampling 
were performed with consideration of these GDD and their relationship 
to phenology, with the dates being indicated in Appendix Table S1. 

∑Actualharvest

Lastharvest

Tmax + Tmin
2

− Tbase  

Where Σ indicates the sum between harvests, depending of the harvest 
analysed, of daily maximum and minimum temperatures divided by 
two, minus the base temperature, which in this case was considered 5 ◦C 
according to Noland and Wells (2018). 

To include the total variability of the field at all sampling dates, three 
zones were considered within the field (Fig. 1B), and four replicates 
were taken from each, resulting in sampling of a total of 12 sub-plots. 
Within each sub-plot, a PVC square of 1 m2 area was randomly 
thrown into the field and the biomass inside the square was cut to 
determine the produced fresh biomass (Appendix Fig. S1). A subsample 

of the biomass was transferred under refrigeration to the lab, and sub-
sequently processed and stored for later laboratory analyses. 

2.3. Spectral field measurements 

Prior to harvesting, the total biomass of the random sub-plots, leaf 
and canopy spectra were measured with a FieldSpec4 full-range portable 
spectroradiometer (350 – 2500 nm) (ASD Inc. PANanalytical Company, 
Boulder, USA) (Appendix Fig. A1). In each case, the determinations were 
conducted, in sunny days, from 11:00 h to 13:00 h. The reflectances of 
five leaves were recorded for each 1 m2 sub-plot with a leaf clip acces-
sory coupled to the contact probe of the ASD device, provided with 
halogen light connected through an optical fibre to the spectroradi-
ometer. Likewise, ten canopy spectra were captured at 45◦ with respect 
to the ground and 80 cm above the canopy, with a pistol grip coupled to 
an optical fibre. The reflectance was calibrated in each sub-plot with a 
white reference. The averages by sub-plot of the reflectance data were 
used for analyses. 

Fig. 1. Geographical location of the field studied in Navarre, Spain. A. The geographical location of the field site is marked with a green triangle inside the Navarre 
region. The lower right inset map shows Navarre’s location in Europe. B. The right panel shows the field studied and the three zones selected are marked in circles. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Monthly temperature (average, minimum and maximum) and precipitation during the 2021 growing season. Harvest dates (H1 to H5) are indicated in the 
horizontal axis as purple circles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.4. Plant biomass production 

The alfalfa aboveground biomass of each 1 m2 subplot was harvested 
during each harvest date. A subsample of this fresh biomass was kept 
refrigerated in cold and stored at − 80 ◦C for later laboratory analyses of 
protein content. The remaining biomass samples collected were placed 
in an oven at 60 ◦C for 48 h and the dry biomass was determined. After 
weighing, the samples were powdered and stored for the later carbo-
hydrate and mineral composition analyses. 

2.5. Pigment content 

Parallel to spectral determination, chlorophyll a + b (Chl), antho-
cyanins (Anth) and flavonoid (Flav) relative contents were estimated in 
vivo, with a DUALEX ScientificTM a clip sensor (Force-A, Orsay, France), 
which operates with a red reference at 650 nm and UV light at 375 nm 
(Cerovic et al., 2012). The data for each sub-plot corresponds to the 
average of five measurements on different leaves. The measurements 
were taken on healthy upper leaves of the plants. 

2.6. Quality parameter determination in the alfalfa crop 

2.6.1. Soluble sugars (glucose, fructose, sucrose), starch, total soluble 
protein, and N content 

The extraction of soluble sugars in the aerial part of alfalfa was 
carried out in powdered dried material. 25 mg of powder was suspended 
in 1 ml of ethanol (80 %) in an Eppendorf tube, the samples were 
incubated and shaken using a thermomixer (90 min, 70 ◦C, 1100 rpm) 
and centrifuged at 20800g for 10 min at 22 ◦C. The supernatant was used 
for soluble sugar quantification using an ionic chromatographer (ICS- 
3000, Thermo ScientificTM, USA). The pellet obtained was used for 
starch quantification. Starch was solubilized by adding KOH (0.2 N) to 
the pellet, and pH was adjusted to 4.8 – 5 with acetic acid (0.1 N). The 
extraction was carried out with an amyloglucosidase test kit (R-Bio-
pharm AG, Darmstadt, Germany). Finally, the absorbance was measured 
with a spectroradiometer at 340 nm. 

The total soluble protein concentration was determined using the 
Bradford method (Bradford, 1976) in the samples that were dried, 
ground and frozen previously. In addition, a total N content determi-
nation (organic and inorganic forms) was carried out at the ionomic 
service of the Centre for Edaphology and Applied Biology (Murcia, 
Spain) based on Dumas’s combustion method using an elemental ana-
lyser (TrusSPec CN628, LECO, Michigan, USA) equipped with an 
autosampler. 

2.6.2. Mineral composition 
The concentration of a range of minerals (B, Ca, Cu, Fe, K, Mn, Na, P, 

S and Zn) was analysed on previously dried and ground material. 
Samples were weighed (≈ 150 mg) in Eppendorf tubes (1.5 ml) and the 
analyses were carried out at the ionomic service of the Centre for Eda-
phology and Applied Biology (Murcia, Spain) using ICP/OES (induc-
tively coupled plasma/optical emission spectrometry) on an iCAP 6500 
Duo spectrometer (Thermo Fisher Scientific, Waltham, USA). Due to the 
detection limits and their low concentrations (<0.01 mg kg− 1) the ele-
ments As, Be, Bi, Cd, Co, La, Pb, Sb, Se, Tl and Ti, were not considered in 
this study. 

2.7. Data analysis 

2.7.1. Processing of spectral data 
Before using the spectral data for modelling, data processing was 

performed with SK-UTALCA software (Lobos & Poblete-Echeverría, 
2017). Exploratory analysis, spectral noise deletion and spectra outlier 
exclusion were conducted. Additionally, spectral regions with high 
levels of noise were removed, especially at the canopy level in wave-
lengths between 1350 nm and 1465 nm and 1800 nm – 2040 nm, due to 

their high level of water vapour absorption (Vergara-Diaz et al., 2020). 
After that, samples with missing values were excluded and then data 
were normalized using RStudio v4.2.0 (R Core Team, 2020) (R Foun-
dation for Statistical Computing, Vienna, Austria). Finally, principal 
component analysis (PCA) was applied to reduce the large number of 
highly correlated wavelengths. 

2.7.2. Model building 
Biomass and quality parameter prediction models were generated 

with data from canopy and leaf spectra. To fit the models, single spectra 
(canopy or leaf) were used and the four phenological stages were 
combined into one dataset with the objective of increasing the vari-
ability of data provided to the model. Considering the distribution of the 
data in the case of quality parameters, log transformation was applied to 
some of these traits. Three regression methods were applied for 
modelling: least absolute shrinkage and selection operator (LASSO), 
Elastic net (E.net) and Partial least square regression (PLS). PLS is well 
recognized as an effective method for quantitative correlation of spectral 
data with reference values (Bec et al., 2020). The ability to reduce the 
highly correlated predictors to a small number of latent variables allows 
maximization of the correlations and increases the robustness of the 
model (Burnett et al., 2021). In addition, LASSO and E.net models apply 
regularization techniques, which penalizes any coefficients that tend to 
zero, to avoid overfitting, and effectively identify the subset of signifi-
cant predictors in high-dimensional data (Pannu & Billor, 2017; Su & 
Wang, 2021). The data was analysed in Rstudio, principally with the 
caret, glmnet and pls packages normally used to run and compare a va-
riety of machine learning models (R Core Team, 2020). As the first step, 
to increase the robustness of the results, ten-fold cross-validation was 
conducted, with a total of 100 cross-validation runs being performed. 
The full dataset was divided randomly into training and validation sets 
in 70 % and 30 % proportions, respectively. The 70 % data set was used 
for model training involving parameter optimization using ten-fold cross 
validation. The 30 % data set, representing the independent test set, was 
used for assessing the prediction capability of the trained model. The 
accuracy evaluation of the model was achieved with root-mean-square 
error (RMSE) and normalized RMSE (nRMSE = RMSE / mean) calcu-
lations, and the coefficient of determination (adj-R2) was used to esti-
mate the proportion of variance explained by the model. The model 
showing the greatest robustness and accuracy was chosen for each 
parameter analysed. In order to increase the robustness of models, the 
meteorological data (temperature, precipitation and relative humidity) 
and GDD in each sampling were included into models as predictors. 

In addition, selection of the wavelengths in each parameter was 
directly extracted from the model chosen as a regression coefficient of 
the respective waveband. For the PLS models, the variables important 
for projection scores were used as the statistic to select the most 
important variables. In LASSO and E.net models the variable selection 
was incorporated into the model-building procedure, with the LASSO 
method reducing some of the regression coefficients to zero, and non- 
zero values were selected for use as predictors in the model. E.net is 
an improvement on the LASSO method using two types of shrinkages of 
the coefficients. These selected predictors were associated with each 
parameter evaluated. The bands were aggregated into 50 nm, with the 
aim of avoiding the highly correlated wavebands and reducing the noise, 
as described by Hennessy et al. (2020). 

2.7.3. Statistical analysis 
Statistical analyses were conducted using R software. For all pa-

rameters, the normal distribution and homoscedasticity were checked 
with Shapiro-Wilk and Levene tests, respectively. To study the harvests 
across the campaign and phenological effects on the biomass yield and 
quality parameters studied, one -and two- factors analyses of variance 
(ANOVA) were performed. Differences among factors were assessed 
using Tukey’s HSD test. Significance was accepted at p < 0.05 and all 
figures were created with Sigma-Plot 11.0 software (Systat Software 
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Inc., California, USA). Furthermore, principal component analysis (PCA) 
was conducted using R with the stats package and the prcomp function (R 
Core Team, 2020). 

3. Results 

3.1. Yield and quality traits data 

The different harvests performed throughout the seasons examined 
and the phenological stages determined according the GDD reported in 
Table 1, had a significant effect on the traits analysed (Appendix 
Table A2 and A3). In this sense, Chl content increased in the last harvest 
analysed but Flav and Anth decreased significantly. Likewise, glucose, 
fructose and sucrose showed a decline in H4 compared to H1. The rest of 
the parameters showed significant changes across the different harvests, 
although these did not follow a clear trend (Appendix Fig. A1). 
Regarding the phenological effects, the parameters of biomass, Chl, Flav, 
glucose, fructose, sucrose, and protein content in leaves increased as a 
function of advanced phenology. Contrastingly, N content progressively 
decreased in the last phenological stages. However, starch content 
reached its highest values in the late vegetative stage but then declined 
in subsequent stages. In particular, the Anth content decreased pro-
gressively up to bud stage and finally increased during flower devel-
opment (Fig. 3). 

In relation to mineral content, significant differences among harvests 
were observed, but there was no trend among the results (Appendix 
Fig. A3). Regarding the effect of phenology (Fig. 4), there was a signif-
icant decline during the advanced phenological stage in Cu, K, Mn, P, S 
and Zn, but an increase in Na. The other minerals analysed, such as B, Ca 
and Fe did not show a clear trend. 

Overall, considering the coefficient of variation (CV) a wide varia-
tion was observed in traits evaluated in this study, showing a CV higher 
than 0.20 in most of them, except for leaf pigments (Appendix Table A2), 
which is important for generating robust models. The traits with highest 
CV corresponded to the sugars: glucose (CV = 0.66), fructose (CV =
0.53) and starch (CV = 0.43), followed by biomass yield (CV = 0.26), 
sucrose (CV = 0.25) and protein (CV = 0.25). Finally, the lowest CV was 
observed for the leaf pigments Chl (CV = 0.08), Flav (CV = 0.12) and 
Anth (CV = 0.15). In the case of minerals, Fe, B and Na showed the 
highest CVs with 0.57, 0.49 and 0.30, respectively. The CV for the 
remaining minerals was in a range between 0.12 and 0.22 (Appendix 
Table A3). 

3.2. Biomass yield and quality trait predictions 

The accuracy and R2 of the prediction models for estimating quality 
parameters in aboveground material of alfalfa were highly influenced by 
the GDD (associated with phenology) and the meteorological parame-
ters of temperature, relative humidity, and precipitation during the 
plants’ growth. The results showed that the inclusion of these parame-
ters as predictors in the models enhanced the predictive ability of the 
traits. In addition, we have developed the models with a dataset that 
include the four phenological stages for increasing the variability within 
the parameters. Further each phenological stage was not considered 

separately because not enough data was available for developing robust 
models. 

3.2.1. Estimation of biomass yield 
The reflectance spectra obtained from canopy and leaves were 

clearly differentiated by principal component analysis (PCA) (Fig. 5A), 
although these differences could not be so clearly separated when 
plotted as individual reflectance values (Fig. 5B). 

Canopy and leaf reflectance spectra were used to predict biomass 
yield (n = 192), and the best prediction was obtained using canopy 
spectra (Table 2). Canopy spectra were able to explain 71 % of vari-
ability in test sets with high accuracy (nRMSE = 0.196), using the PLS 
regression model. Although, the E.net regression models provided the 
best prediction accuracy, it was very close to the PLS prediction accu-
racy. In addition, the R2 and accuracy was increased up to 8.2 % when 
GDD and meteorological conditions were included as predictors into the 
PLS model. 

3.2.2. Estimation of quality traits 
The quality parameters measured in this study in alfalfa plants were 

associated with spectra in both canopy and leaf reflectance (Table 3). In 
the leaf pigments estimation (Chl, Flav, Anth) (n = 191) using a hand-
held leaf pigment meter (i.e., DUALEX), the best predictions were ob-
tained for Flav and Anth, where the LASSO regression model was able to 
explain 56 % and 45 % of variability in validation sets, respectively; with 
high accuracy (nRMSEFlav = 0.087, nRMSEAnth = 0.01). For the esti-
mation of Chl, E.net regression explained 37 % of variability in valida-
tion sets with high accuracy (nRMSE = 0.089). Similar to biomass, the 
GDD and meteorological conditions improved the accuracy of the 
models by 4 % − 10 %. For Anth in particular, the raw reflectance from 
the canopy, without the inclusion of meteorological parameters as pre-
dictors, were sufficient to generate the best model with low RMSE, while 
the external parameters did not increase model accuracy. 

For most of the sugars, the best models were generated with the in-
clusion of GDD and meteorological conditions as predictors, besides the 
spectral reflectance variables. According to the R2 in the validation sets, 
the sugars with the best predictions were sucrose (n = 192, R2 = 0.65, 
nRMSE = 0.32) using canopy spectra in the PLS regression model, fol-
lowed by fructose (n = 187, R2 = 0.50, nRMSE = 0.46) using canopy 
spectra in E.net. The models for the remaining sugars including starch (n 
= 192) and glucose (n = 186) were able to explain 23 % and 41 %, 
although the accuracies of the predictions obtained for these were low 
(nRMSEstarch = 0.56, nRMSEGlucose = 0.53). Regarding soluble protein 
content (n = 192), the LASSO regression model was able to explain 54 % 
of variability in the validation sets with high accuracy (nRMSE = 0.22). 
In addition, the LASSO regression model explained 70 % of the vari-
ability in total N content with very high accuracy (n = 192, nRMSE =
0.08). 

Concerning the estimation of mineral content (n = 192) in the field, 
the models were able to explain more than 30 % of the variability in 
validation sets for seven of the ten minerals assessed (Table 4). The best 
predictions were obtained for P (R2 = 0.51, nRMSE = 0.17), B (R2 =

0.50, nRMSE = 0.38) and Zn (R2 = 0.44, nRMSE = 0.05). For these three 
minerals, no strong differences were observed in the statistical param-
eters for training and test sets (Table 4). The percentage of variance 
explained by the models for the remaining minerals was lower than 40 
%. For mineral content, the GDD and climatic parameters also improved 
the accuracy of the model between 14 % and 70 %. 

3.3. Wavelength selection for the best prediction model for quality 
parameters 

Fig. 6 illustrates the wavebands selected for each quality parameter. 
We analysed the full spectrum across VIS-NIR-SWIR for all the param-
eters evaluated. Despite the different methods used for selecting the 
predictors for each parameter (either canopy or leaf-based 

Table 1 
Growing degree days (GDD) for the four analysed phenological stages in each 
harvest.  

GDD 

Harvest 
analysed 

Mid 
vegetative 

Late 
vegetative 

Early 
bud 

Early 
flowering 

1 577 616 665 720 
2 371 440 490 518 
3 396 424 463 523 
4 415 453 505 574  
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measurement) common bands were selected in some cases. The best 
waveband selections for biomass yield prediction occurred in the VIS 
(350 – 700 nm) and an extensive portion of the NIR (700 nm – 1100 nm) 
regions of the spectrum. Moreover, when leaf pigments were analysed, 
the principal bands selected were those that belonged to the VIS region 
between 350 nm and 700 nm, irrespective of the recording method 
(canopy or leaf). For the prediction of starch, soluble sugars, protein and 
nitrogen, the wavebands with the highest impact on prediction were 
found in the VIS and NIR regions. 

A wide range of wavebands was selected in the basis of coefficients 
obtained for the estimation of mineral composition. Three major regions 
were identified according to the accumulation of bands: the first was the 
VIS region, the second in the near SWIR (1250 nm – 1800 nm) and the 
last corresponded to the far SWIR (2300 nm – 2500 nm). These results 
show a great variation in the selected bands as a function of the pa-
rameters evaluated. In summary, the VIS and NIR regions were mainly 
selected for biomass, leaf pigments, sugars, soluble protein, and N 
content, although for minerals the VIS-NIR and a wide portion of the 
SWIR region of the spectrum were selected. 

4. Discussion 

The main objective of this research was to estimate yield and quality 
parameters through generation of statistical models using canopy and 
leaf reflectance collected with a portable and non-destructive spectror-
adiometer in an alfalfa crop under field conditions. The evaluation of 
different phenological stages from harvests undertaken throughout the 
year, and consequently under different meteorological conditions due to 
the season, have allowed a dataset to be obtained with a high range of 
variation and thus better parameter estimation (Table S2, S3). This is the 
ideal basis for evaluating the potential of spectral data from field con-
ditions to generate quality trait prediction (Vatter et al., 2022) and such 
an approach benefits the creation of accurate models (Burnett et al., 
2021; Hastie et al., 2008). In this context, it is relevant to note that plants 
are capable of adjusting metabolism to the surrounding environmental 
conditions and phenological stages to ensure survival. In particular, in 
alfalfa, the physiological and metabolic modifications involve cold 
acclimation in autumn, dormancy in winter, and de-acclimation in 
spring, with evident changes in photoperiod and ambient temperature 
(Li et al., 2022). Likewise, several authors (Fan et al., 2018; Lamb et al., 
2003; McDonald et al., 2021; Sheaffer et al., 2000) have reported the 

Fig. 3. Biomass, leaf pigments, sugars and N content evaluated throughout different phenological stages of alfalfa. Values represent means ± SE. Different letters 
indicate significant differences among phenological stages at p-value < 0.05. 

Fig. 4. Mineral contents evaluated throughout different phenological stages of alfalfa. Values represent means ± SE. Different letters indicate significant differences 
among phenological stages at p-value < 0.05. 
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adjustment of plant metabolism as a function of the phenological stage. 
In this sense, our results have highlighted that phenology significantly 
altered the parameters analysed. As an example, degradation of starch 
during advanced growth stages contributed to accumulation of glucose 
(Fig. 3), as reported by Fan et al. (2018). In relation to mineral content, 
advanced stages had a negative effect on some of the minerals analysed 
(Table 4). Similar results were observed by Kume et al. (2001), who 
reported that P, K, and Mg content decreased in bloom stage of alfalfa 

and these authors concluded that the most important factor influencing 
the mineral content in alfalfa is the growth stage (Kume et al., 2001). 
Given the important role of climatic conditions and phenological factors, 
as also reported by Noland et al. (2018), these parameters were included 
as predictors in the current study, resulting in a considerably increased 
prediction ability in the most of parameters analysed. 

Parameter predictions during alfalfa growth period in vivo using 
hyperspectral spectroradiometry has been mainly applied to yield, 

Fig. 5. A. Principal component analysis (PCA) of the reflectance spectra and B. Means of canopy and leaf VIS-NIR-SWIR reflectance spectra.  

Table 2 
Prediction statistics for biomass yield (g DM m− 2) of alfalfa for training and test sets evaluated by three regression models (LASSO, E.net and PLS) at the canopy and leaf 
level.  

Raw spectra as predictors Raw spectra, GDD and climatic parameters as predictors  

Training set  Test set   Training set  Test set   

Model adj-R2 RMSE adj-R2 RMSE nRMSE adj-R2 RMSE adj-R2 RMSE nRMSE  

Canopy          
LASSO 0.634 40.05 0.621 42.08 0.233 0.703 34.15 0.675 38.17 0.213 
E.net 0.642 40.17 0.615 38.54 0.213 0.712 34.99 0.704 35.03 0.194 
PLS 0.656 40.53 0.655 38.79 0.218 0.708 34.37 0.709 35.22 0.196  

Leaf          
LASSO 0.382 49.75 0.389 52.53 0.294 0.536 44.05 0.464 46.25 0.249 
E.net 0.382 50.74 0.366 50.88 0.281 0.538 43.81 0.446 47.04 0.254 
PLS 0.368 54.94 0.304 52.04 0.281 0.505 46.03 0.456 47.56 0.254  

Table 3 
Prediction statistics for quality parameters in training and test sets of alfalfa from canopy or leaf spectra. The predictors of phenology and meteorological variables 
added as predictors next to the reflectance data in the model with higher influence are marked for each parameter.   

Training set Test set  Predictors with higher influence in the model*  

Parameter adj-R2 RMSE adj-R2 RMSE Spectra selected** GDD Tmax Tmin Tmean RH Prec Model selected*** 

Biomass  0.708  34.37  0.709  35.22 Canopy X X X X  X PLS 
Chl  0.390  2.894  0.374  2.854 Canopy X X X  X X E.net 
Flav  0.559  0.126  0.557  0.121 Leaf X X     LASSO 
Anth  0.500  0.017  0.449  0.014 Canopy – – – – – – LASSO 
Starch  0.276  28.21  0.227  28.371 Leaf X X   X  E.net 
Glucose  0.427  4.535  0.410  3.562 Leaf X X   X X E.net 
Fructose  0.487  5.873  0.496  5.390 Canopy  X    X E.net 
Sucrose  0.709  11.558  0.649  12.391 Canopy  X X   X PLS 
Protein  0.550  0.624  0.541  0.621 Leaf X X X  X  LASSO 
Nitrogen  0.691  0.330  0.697  0.309 Leaf    X   LASSO  

* GDD: Growing degree days; Tmax: Maximum temperature, Tmin: Minimum temperature; Tmean: Average temperature; RH: Relative humidity; Prec: Precipitation 
** The spectra with the best prediction and highest accuracy were selected. 
*** The model with the best prediction and highest accuracy was select. 
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physiological traits (Garriga et al., 2020; Marshall & Thenkabail, 2015), 
NDF and crude protein content (R. L. Noland et al., 2018). Despite 
studies of in vivo parameters prediction considered in this study, such as 
leaf pigments, starch, soluble sugars, and mineral content have not been 
explored for alfalfa crops. 

4.1. Biomass yield prediction 

The main focus of our study was the prediction of traits based on the 
entire spectrum from the VIS-NIR-SWIR regions. Yield prediction studies 
undertaken in alfalfa have commonly focused on the application of 
vegetation indices calculated with the combination of single bands of 
spectra (Cevoli et al., 2021; Chandel et al., 2021; Feng et al., 2020). 
Nevertheless, these method have been limited by using only a few 
wavebands, and therefore the information available for introduction 
into machine learning models has been restricted (Garriga et al., 2020; 
Vatter et al., 2022). Within this context, it should be also considered that 
indices calculated with NIR bands tend to be saturated at advanced 
phenological stages as result of a high leaf area index, which could result 
in poor correlations between traits and indices (Kayad et al., 2016). 
Thus, we used single wavelengths as inputs into the models evaluated. 

Biomass yield prediction obtained in this study was informative, 
being the percentage of variance explained intermediate between the 
one obtained by Noland et al. (2018) (who reported R2 = 0.79), and the 
value achieved in Garriga et al. (2020) (R2 = 0.65). However, previous 
authors have restricted these estimations to harvest time, while our 
study performed the estimation at different phenological stages. 

4.2. Prediction of leaf pigment contents 

The prediction of leaf chlorophyll content through reflectance pa-
rameters is well established (Tayade et al., 2022). Different authors have 
reported considerable prediction for chlorophyll measured by the 
handheld SPAD and MC-100 devices in wheat and maize crops (Cotrozzi 
et al., 2020; Ge et al., 2019; Silva-Perez et al., 2018). However, our re-
sults in alfalfa showed lower success for relative chlorophyll estimation 
when the DUALEX device was used (R2 = 0.37). Regarding prediction of 
other leaf pigments, Flav and Anth have been less studied, and to the 
best of our knowledge, no previous investigations in alfalfa crops exist. 
We achieved relatively high accuracies in the models in this study, 
although only intermediate R2 values were generated (R2 = 0.58 and 
0.45 for Flav and Anth, respectively). Different authors have suggested 
that the presence of chlorophyll could mask the concentration of other 
pigments (Blackburn, 2007; Gitelson et al., 2001), which could explain 
the moderate prediction in Flav and Anth content. 

4.3. Predictions of quality trait 

On the other hand, we obtained an intermediate accuracy for sucrose 
(R2 = 0.65) and fructose (R2 = 0.50) predictions. This result could be 
explained by the rapid metabolization of stored sugars during the day to 
prevent down regulation of photosynthesis by avoiding the accumula-
tion of solutes in the organs; as a consequence, excess sugars are limited 
under optimal conditions and their detection in vivo become more 
difficult (Ely et al., 2019; Zeeman et al., 2010). For this reason, Ely et al. 
(2019) indicated that for many metabolites, developing robust models is 
a challenge due to regulation by external and internal factors. Never-
theless, similar results to ours were found in maize plants by Yendrek 

Table 4 
Prediction statistics for minerals in training and test sets of alfalfa from canopy or leaf spectra. The spectra and models with the best prediction are indicated.   

Training set Test set   

Mineral adj-R2 RMSE adj-R2 RMSE nRMSE Test Spectra selected Model selected 

B  0.51  7.36  0.50  6.91  0.38 Canopy Lasso 
Ca  0.41  0.34  0.33  0.34  0.20 Leaf Lasso 
Cu  0.36  1.30  0.30  1.33  0.14 Leaf Lasso 
Fe  0.39  0.17  0.33  0.17  0.09 Canopy Lasso 
K  0.29  0.42  0.28  0.41  0.24 Leaf E.net 
Mn  0.34  0.08  0.33  0.08  0.05 Leaf Lasso 
Na  0.21  0.03  0.21  0.03  0.49 Canopy E.net 
P  0.51  0.05  0.51  0.05  0.17 Canopy Lasso 
S  0.28  0.04  0.28  0.04  0.15 Leaf PLS 
Zn  0.54  0.06  0.44  0.07  0.05 Leaf E.net  

Fig. 6. Wavelength selection at 50 nm intervals for the VIS-NIR-SWIR regions (350 nm – 2500 nm). Green filled cells represent at least one of the wavelengths 
selected for each parameter evaluated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

A.L. Gámez et al.                                                                                                                                                                                                                               

http://E.net
http://E.net
http://E.net


Computers and Electronics in Agriculture 216 (2024) 108463

9

et al. (2017) for sucrose prediction (R2 = 0.62) and in rice by Das et al. 
(2018) for total sugars (R2 = 0.72). In addition, Ely et al. (2019) eval-
uated eight different crops and found a low R2 for fructose (R2 = 0.29) in 
comparison to our results, but had a strong prediction for starch (R2 =

0.75). 
The prediction of soluble protein content was analysed in this study 

due to its importance as a principal N source. Although studies that 
estimate protein in vivo are limited, we obtained a prediction of soluble 
protein with high accuracy, but the R2 (0.54) was moderate in com-
parison to estimations in alfalfa of crude protein reported by Noland 
et al. (2018) (R2 = 0.66 – 0.87) and Feng et al. (2022) (R2 = 0.84). In 
relation to N, we found similar R2 (0.70) to Ramoelo et al. (2011) who 
obtained R2 values of 0.60, when original reflectance was used in 
savanna grass in vivo. 

Moreover, in the current study, we were able to estimate N, Zn, P, B, 
Ca, Fe and Mn with relatively high accuracies (Table 4). Because some 
inorganic components do not have specific absorbance, mineral pre-
dictions based on spectroscopy techniques are more difficult than 
organic molecules. For this reason, minerals should be estimated by 
their association with other compounds that produce a spectral signal 
with specific vibrational bonds (Horta et al., 2015). Likewise, water’s 
absorption in different regions of the spectrum can mask minerals, 
especially in fresh material (Ramoelo et al., 2011). However, previous 
authors obtained low R2 for P (0.18) in comparison to our results (R2 =

0.52), while Ge et al. (2019) reported a similar R2 value to ours (0.48) 
for P in maize. The results of the current study demonstrate the potential 
of using hyperspectral techniques for an initial screening for prediction 
of minerals in the field. 

4.4. Selection of wavelength for quality parameters 

As mentioned before, we used the entire spectrum to develop the 
models. In this sense, we extracted the most relevant wavebands for each 
trait (Fig. 6). In this study, selection for biomass yield corresponded 
mainly to the VIS region and NIR regions, which have previously been 
associated with photosynthetic processes and water absorption, 
respectively (Hernandez et al., 2015; Vergara-Diaz et al., 2020). More-
over, as we observed, the reflection in the VIS region was the most 
associated with leaf pigments (Blackburn, 2007). Furthermore, the NIR 
region, which includes the red edge slope (680 – 780 nm), is one of the 
most frequently selected regions in other studies, as detailed in Hen-
nessy et al. (2020). This region has been associated with structural 
features as well as the nitrogen and sugar contents of leaves (Araus et al., 
2021). This is in agreement with our results, where the NIR region was 
linked to starch and soluble sugars. 

In addition, the SWIR region can be related to absorptions by pro-
teins, lignin, cellulose and other biochemical components (Araus et al., 
2021; Hennessy et al., 2020; Vergara-Diaz et al., 2020). In our study, 
mineral predictions were associated with these regions. Concerning 
mineral composition, most of the bands selected are found in the SWIR 
region. Our results are similar to those reported by Ramoelo et al. 
(2011), who analysed N and P in savanna grass and found that many of 
the important bands were located between 1000 and 2500 nm. In the 
same sense, Pimstein et al., (2011) found high correlation of the SWIR 
region with the N and K content in wheat plants. 

5. Conclusions 

The current manuscript showed that the full range of reflectance 
spectra recorded in vivo from the canopy and leaves can be used as an 
initial screening to characterize the yield and quality parameters of al-
falfa before harvest and may serve as a rapid and non-destructive 
method to implement management practices in real-time during the 
crop campaign. Additionally, this study established that the inclusion of 
environmental and phenological data as predictors can improve such 
predictions and the accuracy of the models. Nevertheless, we suggest the 

constant addition of new data from future harvests in the models, with 
the aim of enhancing the accuracy of parameter predictions. Incorpo-
ration of these remote sensing techniques opens the possibilities of 
monitoring crops at different phenological stages with the advantage of 
fast evaluation of quality under field conditions and inform efficient 
decisions in relation to time of harvest. 
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