Now showing items 1-9 of 9

    • Averaging, reduction and reconstruction in the spatial three-body problem 

      Sayas Bordonaba, Flora Upna (2015)   Tesis doctoral / Doktoretza tesia  OpenAccess
      El objetivo de esta tesis es el estudio de la dinámica del problema espacial de tres cuerpos. En particular, se establece la existencia de toros KAM asociados a diferentes tipos de movimientos. El problema espacial de ...
    • Dynamics in the charged restricted circular three-body problem 

      Palacián Subiela, Jesús Francisco Upna; Vidal, Claudio; Vidarte, Jhon; Yanguas Sayas, Patricia Upna (Springer US, 2018)   Artículo / Artikulua  OpenAccess
      The existence and stability of periodic solutions for different types of perturbations associated to the Charged Restricted Circular Three Body Problem (shortly, CHRCTBP) is tackled using reduction and averaging theories ...
    • Dynamics of axially symmetric perturbed Hamiltonians in 1:1:1 resonance 

      Carrasco, Dante; Palacián Subiela, Jesús Francisco Upna; Vidal, Claudio; Vidarte, Jhon; Yanguas Sayas, Patricia Upna (Springer, 2018)   Artículo / Artikulua  OpenAccess
      We study the dynamics of a family of perturbed three-degree-of-freedom Hamiltonian systems which are in 1:1:1 resonance. The perturbation consists of axially symmetric cubic and quartic arbitrary polynomials. Our analysis ...
    • Effects of a soft-core coulomb potential on the dynamics of a hydrogen atom near a metal surface 

      Iñarrea, Manuel; Lanchares, Víctor; Palacián Subiela, Jesús Francisco Upna; Pascual, Ana Isabel; Salas, José Pablo; Yanguas Sayas, Patricia Upna (Elsevier, 2019)   Artículo / Artikulua
      The goal of this paper is to investigate the effects that the replacement of the Coulomb potential by a soft-core Coulomb potential produces in the classical dynamics of a perturbed Rydberg hydrogen atom. As example, we ...
    • Hill problem analytical theory to the order four: application to the computation of frozen orbits around planetary satellites 

      Lara, Martín; Palacián Subiela, Jesús Francisco Upna (Hindawi Publishing Corporation, 2009)   Artículo / Artikulua  OpenAccess
      Frozen orbits of the Hill problem are determined in the double-averaged problem, where short and long-period terms are removed by means of Lie transforms. Due to the perturbation method we use, the initial conditions ...
    • Normalization through invariants in n-dimensional Kepler problems 

      Meyer, Kenneth Ray; Palacián Subiela, Jesús Francisco Upna; Yanguas Sayas, Patricia Upna (Pleiades Publishing, 2018)   Artículo / Artikulua  OpenAccess
      We present a procedure for the normalization of perturbed Keplerian problems in n dimensions based on Moser regularization of the Kepler problem and the invariants associated to the reduction process. The approach allows ...
    • On co-orbital quasi-periodic motion in the three-body problem 

      Cors, Josep Maria; Palacián Subiela, Jesús Francisco Upna; Yanguas Sayas, Patricia Upna (Society for Industrial and Applied Mathematics (SIAM), 2019)   Artículo / Artikulua  OpenAccess
      Within the framework of the planar three-body problem we establish the existence of quasi-periodic motions and KAM 4-tori related to the co-orbital motion of two small moons about a large planet where the moons move in ...
    • Oscillatory motions in restricted N-body problems 

      Alvarez-Ramírez, Martha; Rodríguez García, Antonio Upna; Palacián Subiela, Jesús Francisco Upna; Yanguas Sayas, Patricia Upna (Elsevier, 2018)   Artículo / Artikulua
      We consider the planar restricted N-body problem where the N−1 primaries are assumed to be in a central configuration whereas the infinitesimal particle escapes to infinity in a parabolic orbit. We prove the existence of ...
    • Singular reduction of resonant Hamiltonians 

      Meyer, Kenneth Ray; Palacián Subiela, Jesús Francisco Upna; Yanguas Sayas, Patricia Upna (IOP PublishingLondon Mathematical Society, 2018)   Artículo / Artikulua
      We investigate the dynamics of resonant Hamiltonians with n degrees of freedom to which we attach a small perturbation. Our study is based on the geometric interpretation of singular reduction theory. The flow of the ...