Browsing by Author "Cúth, Marek"
Now showing items 1-5 of 5
-
Embeddability of ℓp and bases in Lipschitz free p-spaces for 0 < p ≤ 1
Albiac Alesanco, Fernando José; Ansorena, José L.; Cúth, Marek; Doucha, Michal (Elsevier, 2020) Artículo / Artikulua
Our goal in this paper is to continue the study initiated by the authors in of the geometry of the Lipschitz free p-spaces over quasimetric spaces for 0 < p ≤ 1, denoted Fp(M). Here we develop new techniques to show that, ... -
Lipschitz algebras and Lipschitz-Free spaces over unbounded metric spaces
Albiac Alesanco, Fernando José; Ansorena, José L.; Cúth, Marek; Doucha, Michal (Oxford University Press, 2021) Artículo / Artikulua
We investigate a way to turn an arbitrary (usually, unbounded) metric space M into a bounded metric space B in such a way that the corresponding Lipschitz-free spaces F(M) and F(B) are isomorphic. The construction we provide ... -
Lipschitz free p-spaces for 0 < p < 1
Albiac Alesanco, Fernando José; Ansorena, José L.; Cúth, Marek; Doucha, Michal (SpringerHebrew University Magnes Press, 2020) Artículo / Artikulua
This paper initiates the study of the structure of a new class of p-Banach spaces, 0 <p < 1, namely the Lipschitz free p-spaces (alternatively called Arens—Eells p-spaces) Fp(M) over p-metric spaces. We systematically ... -
Lipschitz free spaces isomorphic to their infinite sums and geometric applications
Albiac Alesanco, Fernando José; Ansorena, José L.; Cúth, Marek; Doucha, Michal (American Mathematical Society, 2021) Artículo / Artikulua
We find general conditions under which Lipschitz-free spaces over metric spaces are isomorphic to their infinite direct _1-sum and exhibit several applications. As examples of such applications we have that Lipschitz-free ... -
Structure of the Lipschitz free p-spaces Fp(Zd) and Fp(Rd) for 0 < p ≤ 1
Albiac Alesanco, Fernando José; Ansorena, José L.; Cúth, Marek; Doucha, Michal (Springer, 2021) Artículo / Artikulua
Our aim in this article is to contribute to the theory of Lipschitz free p-spaces for 0 < p ≤ 1 over the Euclidean spaces Rd and Zd. To that end, on one hand we show that Fp(Rd) admits a Schauder basis for every p ∈ 2 (0, ...