Influence of surface roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations

View/ Open
Date
2009Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Impact
|
10.3390/s90100463
Abstract
Radar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, ...
[++]
Radar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, which hinders the soil moisture inversion. This is especially true for single configuration observations where the solution to the surface backscattering problem is ill-posed. Over agricultural areas cultivated with winter cereal crops, roughness can be assumed to remain constant along the growing cycle allowing the use of simplified approaches that facilitate the estimation of the moisture content of soils. However, the field scale spatial variability and temporal variations of roughness can introduce errors in the estimation of soil moisture that are difficult to evaluate. The objective of this study is to assess the impact of roughness spatial variability and roughness temporal variations on the retrieval of soil moisture from radar observations. A series of laser profilometer measurements were performed over several fields in an experimental watershed from September 2004 to March 2005. The influence of the observed roughness variability and its temporal variations on the retrieval of soil moisture is studied using simulations performed with the Integral Equation Model, considering different sensor configurations. Results show that both field scale roughness spatial variability and its temporal variations are aspects that need to be taken into account, since they can introduce large errors on the retrieved soil moisture values. [--]
Subject
Synthetic aperture radar,
Soil moisture retrieval,
Surface roughness,
Remotely sensed data,
Bare soils,
C-band,
Backscattering model,
Neural networks,
Profile length,
Scattering,
Scale,
Water
Publisher
MDPI
Published in
Sensors, 2009, 9 (1). Págs. 463-489
Departament
Universidad Pública de Navarra. Departamento de Proyectos e Ingeniería Rural /
Nafarroako Unibertsitate Publikoa. Landa Ingeniaritza eta Proiektuak Saila
Publisher version
Sponsorship
Part of the research presented in this paper is funded by the Spanish Ministry for Science and
Innovation in the frame of CGL2007-63453/HID project.