Show simple item record

dc.creatorHigueras Sanz, Inmaculadaes_ES
dc.creatorHappenhofer, Nataliees_ES
dc.creatorKoch, Othmares_ES
dc.creatorKupka, Friedriches_ES
dc.date.accessioned2015-01-22T13:31:57Z
dc.date.available2015-01-22T13:31:57Z
dc.date.issued2014
dc.identifier.urihttps://hdl.handle.net/2454/15589
dc.descriptionEsta es la versión preprint del artículo: Inmaculada Higueras, Natalie Happenhofer, Othmar Koch, and Friedrich Kupka. 2014. Optimized strong stability preserving IMEX Runge-Kutta methods. J. Comput. Appl. Math. 272 (December 2014), 116-140, que fue publicado en su forma final con el DOI: http://dx.doi.org/10.1016/j.cam.2014.05.011es_ES
dc.description.abstractWe construct and analyze robust strong stability preserving IMplicit-EXplicit Runge-Kutta (IMEX RK) methods for models of flow with diffusion as they appear in astrophysics and in many other fields where equations with similar structure arise. It turns out that besides the optimization of the region of absolute monotonicity, some other properties of the methods are crucial for the success of such simulations. In particular, the models in our focus dictate to also take into account the step size limits associated with dissipativity, positivity and the stiff parabolic terms which represent transport by diffusion, the uniform convergence with respect to different stiffness properties of those same terms, etc. Furthermore, in the literature, some other properties, like the inclusion of a part of the imaginary axis in the stability region, have been argued to be relevant. In this paper, we construct several new IMEX RK methods which differ from each other by taking various or even all of these constraints simultaneously into account. It is demonstrated for some simple examples as well as for the problem of double-diffusive convection, that the newly constructed schemes provide a significant computational advantage over other methods from the literature. Due to their accumulation of different stability properties, the optimized IMEX RK methods obtained in this paper are robust schemes that may also be useful for general models which involve the solution of advection-diffusion equations, or other transport equations with similar stability requirements.en
dc.description.sponsorshipInmaculada Higueras was supported by the Ministerio de Ciencia e Innovación, project MTM2011-23203es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.subjectRunge-Kuttaen
dc.subjectImplicit-expliciten
dc.subjectStrong stability preservingen
dc.subjectTotal variation diminishingen
dc.subjectIMEXen
dc.subjectSSPen
dc.subjectTVDen
dc.subjectNumerical methodsen
dc.subjectHydrodynamicsen
dc.subjectDouble-diffusive convectionen
dc.subjectStellar convectionen
dc.subjectPulsationen
dc.titleOptimized strong stability preserving IMEX Runge-Kutta methodsen
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.contributor.affiliationUniversidad Pública de Navarra. Departamento de Ingeniería Matemática e Informáticaes_ES
dc.contributor.affiliationNafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Sailaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/6PN/MTM2011-23203en
dc.type.versionVersión enviada / Bidali den bertsioaes
dc.type.versioninfo:eu-repo/semantics/submittedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record