Impacts of enhanced nitrogen deposition and soil acidification on biomass production and nitrogen leaching in Chinese fir plantations
Date
2012Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Impact
|
10.1139/x2012-004
Abstract
Atmospheric pollution levels in China are increasing quickly. Experience from other polluted regions shows that tree growth could be affected, but long-term effects of N deposition and soil acidification on Chinese forests remain mostly unknown. Soil acidification and N deposition were simulated for Chinese fir plantations in Southeast China. A factorial experiment combined four levels of rain pH ...
[++]
Atmospheric pollution levels in China are increasing quickly. Experience from other polluted regions shows that tree growth could be affected, but long-term effects of N deposition and soil acidification on Chinese forests remain mostly unknown. Soil acidification and N deposition were simulated for Chinese fir plantations in Southeast China. A factorial experiment combined four levels of rain pHs (2.5, 4.0, 5.6 and 7.0), four N deposition rates (1, 7.5, 15 and 30 kg N ha-1 y-1) and two site qualities (poor and rich sites), managed for 3 consecutive 20-year rotations. Results indicate atmospheric pollution effects are not immediate, but after 1 to 2 rotations soil acidification effects could reduce ecosystem C pools significantly (-25% and -11% in poor and rich sites, respectively). N deposition rates above 15 kg N ha-1 y-1 could offset some of the negative effects of soil acidification and led to more ecosystem C (19 and 28 Mg C ha-1 more in poor and rich sites than in low N deposition). However, at high N deposition rates (>15 kg N ha-1 y-1), N leaching losses could greatly increase, reaching 75 kg N ha-1 y-1. Moderate N deposition could increase tree biomass production and soil organic mass, resulting in increased ecosystem C, but these gains could be associated to important N leaching. Atmospheric pollution could also result in the long-term in nutrient imbalances and additional ecological issues (i.e. biodiversity loss, eutrophication, etc.) not studied here. [--]
Subject
N deposition,
Cunninghamia lanceolata,
FORECAST model,
Sustainable forest management,
Atmospheric pollution,
C sequestration
Publisher
NRC Research Press
Published in
Canadian Journal of Forest Research, 2012, 42(3): 437-450
Description
Incluye material complementario
Departament
Universidad Pública de Navarra. Departamento de Ciencias del Medio Natural /
Nafarroako Unibertsitate Publikoa. Natura Ingurunearen Zientziak Saila