Show simple item record

dc.creatorArlegi Pérez, Ricardoes_ES
dc.creatorBallester Oyarzun, Miguel Ángeles_ES
dc.creatorBesada, M.es_ES
dc.creatorMiguel Velasco, Juan Ramón dees_ES
dc.creatorNieto Vázquez, Jorgees_ES
dc.creatorVázquez, C.es_ES
dc.date.accessioned2016-05-10T07:40:43Z
dc.date.available2016-05-10T07:40:43Z
dc.date.issued2006
dc.identifier.urihttps://hdl.handle.net/2454/20656
dc.descriptionPreprint submitted to Elsevier Scienceen
dc.descriptionEste DT se publicó en su forma final en Mathematical Social Sciences 54 (2007) 238 – 243, http://dx.doi.org/10.1016/j.mathsocsci.2007.06.004en
dc.description.abstractUsing a common framework, we consider the two existing extensions of the leximax criterion to infinite environments (Arlegi et al. (2005) and Ballester and De Miguel (2003), and show that, though the respective definitions of the rules and their axiomatic characterizations appear to differ considerably, they actually propose the same extension of the leximax criterion to the infinite case.en
dc.format.extent8 p.
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.relation.ispartofseriesDocumentos de Trabajo DE - ES Lan Gaiakes
dc.relation.ispartofseries0609en
dc.rightsCC Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPreferencesen
dc.subjectUtilityen
dc.subjectLeximaxen
dc.titleOn the equivalence of the two existing extensions of the leximax criterion to the infinite caseen
dc.typeDocumento de trabajo / Lan gaiakes
dc.typeinfo:eu-repo/semantics/workingPaperen
dc.contributor.departmentUniversidad Pública de Navarra. Departamento de Economíaes_ES
dc.contributor.departmentNafarroako Unibertsitate Publikoa. Ekonomia Sailaeu
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Except where otherwise noted, this item's license is described as CC Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)