Evaluation of surface microtopography engineered by direct laser interference for bacterial anti-biofouling

View/ Open
Date
2015Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión enviada / Bidali den bertsioa
Impact
|
nodoi-noplumx
|
Abstract
Biofilm formation by bacterial pathogens on the surface of medical and industrial settings is a 25 serious health problem. Modification of the biomaterial surface topography is a promising 26 strategy to prevent bacterial attachment and biofilm development. However, fabrication of 27 functional biomaterials at large scale with periodic network-topology is still problematic. In this 28 study, we u ...
[++]
Biofilm formation by bacterial pathogens on the surface of medical and industrial settings is a 25 serious health problem. Modification of the biomaterial surface topography is a promising 26 strategy to prevent bacterial attachment and biofilm development. However, fabrication of 27 functional biomaterials at large scale with periodic network-topology is still problematic. In this 28 study, we use direct laser interference (DLIP), an easily scalable process, to modify polystyrene 29 surface (PS) topography at sub-micrometer scale. The resulting structure surfaces were 30 interrogated for their capacity to prevent adhesion and biofilm formation of the major human 31 pathogen Staphylococcus aureus. The results revealed that three-dimensional micrometer 32 periodic structures on PS have a profound impact on bacterial adhesion capacity. Thus, line- 33 and pillar-like topographical patterns enhanced S. aureus adhesion, whereas complex lamella 34 microtopography reduced S. aureus adhesion both in static and continuous flow culture 35 conditions. Interestingly, lamella-like textured surfaces retained the capacity to inhibit S. aureus 36 adhesion both when the surface is coated with human serum proteins in vitro and when the 37 material is implanted subcutaneously in a foreign-body associated infection model. Our results 38 establish that the DLIP technology can be used to functionalize polymeric surfaces for the 39 inhibition of bacterial adhesion to surfaces. [--]
Subject
Bacterial adhesion,
Biofilms,
Staphylococcus aureus,
Direct laser interference
Description
Esta es la versión no revisada del artículo: Valle, J., Burgui, S.,
Langheinrich, D., Gil, C., Solano, C., Toledo-Arana, A., et al. (2015). Evaluation
of Surface Microtopography Engineered by Direct Laser Interference for Bacterial
Anti-Biofouling. Macromolecular Bioscience, 15(8), 1060–1069. Se puede consultar la versión publicada en http://doi.org/10.1002/mabi.201500107
Departament
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
Sponsorship
J. Valle was supported by Spanish Ministry of Science and Innovation “Ramón y Cajal” 369 contract. This research was supported by grants AGL2011-23954 and BIO2011-30503-C02-02 370 from the Spanish Ministry of Economy and Competitivity and IIQ14066.RI1 from Innovation 371 Department of the Government of Navarra.