Show simple item record

dc.creatorValle Turrillas, Jaionees_ES
dc.creatorBurgui Erice, Saioaes_ES
dc.creatorLangheinrich, Denisees_ES
dc.creatorGil Puig, Carmenes_ES
dc.creatorSolano Goñi, Cristinaes_ES
dc.creatorToledo Arana, Alejandroes_ES
dc.creatorHelbig, Ralfes_ES
dc.creatorLasagni, Andréses_ES
dc.creatorLasa Uzcudun, Íñigoes_ES
dc.date.accessioned2016-11-04T15:00:15Z
dc.date.available2016-11-04T15:00:15Z
dc.date.issued2015
dc.identifier.urihttps://hdl.handle.net/2454/22611
dc.descriptionLa versión final de este artículo fue publicada en Macromolecular Bioscience, 15: 1060–1069. DOI:10.1002/mabi.201500107es_ES
dc.description.abstractBiofilm formation by bacterial pathogens on the surface of medical and industrial settings is a 25 serious health problem. Modification of the biomaterial surface topography is a promising 26 strategy to prevent bacterial attachment and biofilm development. However, fabrication of 27 functional biomaterials at large scale with periodic network-topology is still problematic. In this 28 study, we use direct laser interference (DLIP), an easily scalable process, to modify polystyrene 29 surface (PS) topography at sub-micrometer scale. The resulting structure surfaces were 30 interrogated for their capacity to prevent adhesion and biofilm formation of the major human 31 pathogen Staphylococcus aureus. The results revealed that three-dimensional micrometer 32 periodic structures on PS have a profound impact on bacterial adhesion capacity. Thus, line- 33 and pillar-like topographical patterns enhanced S. aureus adhesion, whereas complex lamella 34 microtopography reduced S. aureus adhesion both in static and continuous flow culture 35 conditions. Interestingly, lamella-like textured surfaces retained the capacity to inhibit S. aureus 36 adhesion both when the surface is coated with human serum proteins in vitro and when the 37 material is implanted subcutaneously in a foreign-body associated infection model. Our results 38 establish that the DLIP technology can be used to functionalize polymeric surfaces for the 39 inhibition of bacterial adhesion to surfaces.en
dc.description.sponsorshipJ. Valle was supported by Spanish Ministry of Science and Innovation “Ramón y Cajal” 369 contract. This research was supported by grants AGL2011-23954 and BIO2011-30503-C02-02 370 from the Spanish Ministry of Economy and Competitivity and IIQ14066.RI1 from Innovation 371 Department of the Government of Navarra.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.subjectBacterial adhesionen
dc.subjectBiofilmsen
dc.subjectStaphylococcus aureusen
dc.subjectDirect laser interferenceen
dc.titleEvaluation of surface microtopography engineered by direct laser interference for bacterial anti-biofoulingen
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.contributor.departmentIdAB - Instituto de Agrobiotecnología / Agrobioteknologiako Institutuaes
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/6PN/AGL2011-23954
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/6PN/BIO2011-30503
dc.type.versionVersión enviada / Bidali den bertsioaes
dc.type.versioninfo:eu-repo/semantics/submittedVersionen
dc.contributor.funderGobierno de Navarra / Nafarroako Gobernua: IIQ14066.RI1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record