Evaluation of surface roughness parameters in agricultural soils with different tillage conditions using a laser profile meter

View/ Open
Date
2016Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Impact
|
10.1016/j.still.2016.02.013
Abstract
Surface roughness crucially affects the hydrological and erosive behaviours of soils. In agricultural areas surface roughness is directly related to tillage, whose action strongly affects the key physical properties of soils and determines the occurrence and fate of several processes (e.g., surface storage, infiltration, etc.). The characterisation of surface roughness as a result of tillage oper ...
[++]
Surface roughness crucially affects the hydrological and erosive behaviours of soils. In agricultural areas surface roughness is directly related to tillage, whose action strongly affects the key physical properties of soils and determines the occurrence and fate of several processes (e.g., surface storage, infiltration, etc.). The characterisation of surface roughness as a result of tillage operations is not straightforward, and numerous parameters and indices have been proposed for quantifying it. In this article, a database of 164 profiles (each 5 m long), measured in 5 different roughness classes, was analysed. Four roughness classes corresponded to typical tillage operations (i.e., mouldboard, harrow, seedbed, etc.), and the fifth represented a seedbed soil that was subject to rainfall. The aim of the research was to evaluate and select the surface roughness parameters that best characterised and quantified the surface roughness caused by typical tillage operations. In total, 21 roughness parameters (divided into 4 categories) were assessed. The parameters that best separated and characterised the different roughness classes were the limiting elevation difference (LD) and the Mean Upslope Depression index (MUD); however, the parameters most sensitive to rainfall action on seedbed soils were limiting slope (LS) and the crossover lengths measured with the semivariogram method (lSMV) and the root mean square method (lRMS). Many parameters had high degrees of correlation with each other, and therefore gave almost identical information. The results of this study may contribute to the understanding of the surface roughness phenomenon and its parameterisation in agricultural soils. [--]
Subject
Surface roughness,
Roughness parameters,
Agricultural soils,
Tillage
Publisher
Elsevier
Published in
Soil & Tillage Research 161 (2016) 19–30
Departament
Universidad Pública de Navarra. Departamento de Proyectos e Ingeniería Rural /
Nafarroako Unibertsitate Publikoa. Landa Ingeniaritza eta Proiektuak Saila
Publisher version
Sponsorship
The authors are grateful to the Spanish Ministry of Economy and Competitiveness for partly funding this research through scholarship BES-2012-054521 and project CGL2011-24336.