Publication:
3D-printed 96 GHz bull’s-eye antenna with off-axis beaming

Consultable a partir de

Date

2017

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

MINECO//TEC2014-51902-C2-2-R/ES/

Abstract

Reducing the profile, footprint and weight of antennas embarked on aircrafts, drones or satellites has been a long pursued objective. Here we tackle this issue by developing a millimeter-wave 96 GHz elliptical Bull’s-Eye antenna with off-axis radiation at 16.5° that has been fabricated by low cost 3-D printing stereolithography, followed by metal coating. The theoretical basis for optimum off-axis operations is explained. Measurement results show an overall good agreement with simulations, displaying a gain of 17 dB and a 3.5° beamwidth (E-plane) at the operational frequency. The off-axis beaming enlarges the potential applicability of this technology with respect to the broadside beam solution.

Keywords

Leaky wave horn antenna, Off-axis beaming, Stereolitography, Bull’s-eye antenna, Corrugated surface, Millimeter-waves

Department

Ingeniería Eléctrica y Electrónica / Ingeniaritza Elektrikoa eta Elektronikoa

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This work was supported by the Spanish Government under contract TEC2014-51902-C2-2-R. M. N.-C. is supported by University of Birmingham [Birmingham Fellowship]. M.B. acknowledges support by the Spanish Government under contract RYC-2011-08221

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.