Experimental and computational study on thermoelectric generators using thermosyphons with phase change as heat exchangers

View/ Open
Date
2017Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Impact
|
10.1016/j.enconman.2017.01.046
Abstract
An important issue in thermoelectric generators is the thermal design of the heat exchangers since it can improve their performance by increasing the heat absorbed or dissipated by the thermoelectric modules. Due to its several advantages, compared to conventional dissipation systems, a thermosyphon heat exchanger with phase change is proposed to be placed on the cold side of thermoelectric gener ...
[++]
An important issue in thermoelectric generators is the thermal design of the heat exchangers since it can improve their performance by increasing the heat absorbed or dissipated by the thermoelectric modules. Due to its several advantages, compared to conventional dissipation systems, a thermosyphon heat exchanger with phase change is proposed to be placed on the cold side of thermoelectric generators. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary con- sumption (because fans or pumps are not required); and the fact that these systems are wickless. A com- putational model is developed to design and predict the behaviour of this heat exchangers. Furthermore, a prototype has been built and tested in order to demonstrate its performance and validate the compu- tational model. The model predicts the thermal resistance of the heat exchanger with a relative error in
the interval [?8.09;7.83] in the 95% of the cases. Finally, the use of thermosyphons with phase change in thermoelectric generators has been studied in a waste-heat recovery application, stating that including them on the cold side of the generators improves the net thermoelectric production by 36% compared to that obtained with finned dissipators under forced convection. [--]
Subject
Computational model,
Thermosyphon with phase change,
Thermoelectric generator,
Waste-heat recovery
Publisher
Elsevier
Published in
Energy Conversion and Management 137 (2017) 155–164
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Mecánica, Energética y de Materiales /
Nafarroako Unibertsitate Publikoa. Mekanika, Energetika eta Materialen Ingeniaritza Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute for Advanced Materials - INAMAT
Publisher version
Sponsorship
The authors are indebted to the Ministry of Economy, Industry
and Competitiveness-Government of Spain and FEDER Funds for
economic support of this work, included in the DPI2014-53158-R
Research Project.