Net thermoelectric power generation improvement through heat transfer optimization

View/ Open
Date
2017Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Impact
|
10.1016/j.applthermaleng.2017.04.022
Abstract
Thermoelectric generation contributes to obtain a more sustainable energetic system giving its potential to harvest waste heat and convert it into electric power. In the present study a computational optimal net generation of 108.05 MWh/year was produced out of the flue gases of a real tile furnace located in Spain (the equivalent to supply the energy to 31 Spanish dwellings). This maximum gene ...
[++]
Thermoelectric generation contributes to obtain a more sustainable energetic system giving its potential to harvest waste heat and convert it into electric power. In the present study a computational optimal net generation of 108.05 MWh/year was produced out of the flue gases of a real tile furnace located in Spain (the equivalent to supply the energy to 31 Spanish dwellings). This maximum generation has been obtained through the optimization of the hot and cold heat exchangers, the number of thermoelectric modules (TEMs) installed and the mass flows of the refrigerants, including the temperature loss of the flue gases and the influence of the heat power to dissipate over the heat dissipators.
The results are conclusive, the installation of more TEMs does not always imply higher thermoelectric generation, so the occupancy ratio (δ) has to be optimized. The optimal generation has been achieved covering the 42 % of the surface of the chimney of the tile furnace with TEMs and using heat pipes on the cold side, which present smaller thermal resistances than the finned dissipators for similar consumptions of their fans. Moreover, the high influence of the consumption of the auxiliary equipment shows the importance of considering it to obtain realistic usable electric energy from real applications. [--]
Subject
Thermoelectric optimization,
Computational model,
Heat dissipators,
Industrial application
Publisher
Elsevier
Published in
Applied Thermal Engineering 120 (2017) 496–505
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Mecánica, Energética y de Materiales /
Nafarroako Unibertsitate Publikoa. Mekanika, Energetika eta Materialen Ingeniaritza Saila
Publisher version
Sponsorship
The authors are indebted to the Spanish Ministry of Economy
and Competitiveness for the economic support to this work,
included in the DPI2014-53158-R research project.