Comunicaciones y ponencias de congresos DEIM - EIMS Biltzarretako komunikazioak eta txostenak
Recent Submissions
-
Multi-temporal data augmentation for high frequency satellite imagery: a case study in Sentinel-1 and Sentinel-2 building and road segmentation
Semantic segmentation of remote sensing images has many practical applications such as urban planning or disaster assessment. Deep learning-based approaches have shown their usefulness in automatically segmenting large ... -
Analysing capacity challenges in the Multi-Airport System of Mexico City
The relentless growth in Mexico City’s aviation traffic has inevitably strained capacity development of its airport, raising the dilemma between the possible solutions. In the present study, Mexico’s Multi-Airport System ... -
Application of the Sugeno integral in fuzzy rule-based classification
(Springer, 2022) Contribución a congreso / Biltzarrerako ekarpenaFuzzy Rule-Based Classification System (FRBCS) is a well known technique to deal with classification problems. Recent studies have considered the usage of the Choquet integral and its generalizations to enhance the quality ... -
A preliminary study about gender gap perception in informatics studies in Spain
The gender gap in STEM is an issue that affects regions and countries worldwide. Furthermore, the percentage of women in these areas depends on a range of different factors. In particular, the gender gap is critical in ... -
Simheuristics: an introductory tutorial
Both manufacturing and service industries are subject to uncertainty. Probability techniques and simulation methods allow us to model and analyze complex systems in which stochastic uncertainty is present. When the goal ... -
Improving input parameter estimation in online pandemic simulation
Simulation models are suitable tools to represent the complexity and randomness of hospital systems. To be used as forecasting tools during pandemic waves, it is necessary an accurate estimation, by using real-time data, ... -
Grape stems as preservative in Tempranillo wine
SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine, such as, its toxicity and the unpleasant odor in case of excess [1]. These reasons ... -
Enhancing LSTM for sequential image classification by modifying data aggregation
Recurrent Neural Networks (RNN) model sequential information and are commonly used for the analysis of time series. The most usual operation to fuse information in RNNs is the sum. In this work, we use a RNN extended type, ... -
Using academic genealogy for recommending supervisors
Selecting an academic supervisor is a complicated task. Masters and Ph.D. candidates usually select the most prestigious universities in a given region, investigate the graduate programs in a research area of interest, and ... -
Exploring the relationships between data complexity and classification diversity in ensembles
Several classification techniques have been proposed in the last years. Each approach is best suited for a particular classification problem, i.e., a classification algorithm may not effectively or efficiently recognize ... -
CC-separation measure applied in business group decision making
In business, one of the most important management functions is decision making The Group Modular Choquet Random TOPSIS (GMC-RTOPSIS) is a Multi-Criteria Decision Making (MCDM) method that can work with multiple heterogeneous ... -
Combinations of affinity functions for different community detection algorithms in social networks
Social network analysis is a popular discipline among the social and behavioural sciences, in which the relationships between different social entities are modelled as a network. One of the most popular problems in social ... -
Sobre órdenes admisibles en el conjunto de números borrosos discretos y su aplicación en problemas de toma de decisiones
Este trabajo es un resumen del artículo [1] publicado en Mathematics para su presentación en la Multiconferencia CAEPIA’21 KeyWorks. -
Distance transformations based on ordered weighted averaging operators
Binary image comparison has been a study subject for a long time, often rendering in context-specific solutions that depend upon the type of visual contents in the binary images. Distance transformations have been a recurrent ... -
Uso de t-normas para el estudio de la convexidad en conjuntos difusos intervalo-valuados
En muchos problemas reales no se pueden tomar medidas de forma exacta. Así, los conjuntos difusos surgieron como una forma de intentar tratar con la incertidumbre de la forma más eficiente posible. Por otro lado, debe ... -
Analysis of inter-train wireless connectivity to enable context aware rail applications
Train systems are fundamental players within multi-modal transit systems, providing efficient transportation means for passengers and goods. In the framework of Smart Cities and Smart Regions, providing context aware ... -
Extensión multidimensional de la integral de Choquet discreta y su aplicación en redes neuronales recurrentes
En este trabajo presentamos una definición de la integral de Choquet discreta n-dimensional, para fusionar datos vectoriales. Como aplicación, utilizamos estas nuevas integrales de Choquet discretas multidimensionales en ... -
Optimizando desviaciones moderadas ponderadas para interfaces cerebro ordenador
Las interfaces cerebro-ordenador (BCI) basadas en el análisis de Electroencefalografía (EEG) están compuestas por varios elementos para procesar y clasificar las señales de entrada del cerebro. Una fase relevante de estos ... -
Operador de comparación de elementos multivaluados basado en funciones de equivalencia restringida
En este trabajo proponemos un nuevo enfoque del algoritmo de clustering gravitacional basado en lo que Einstein considero su 'mayor error': la constante cosmológica. De manera similar al algoritmo de clustering gravitacional, ... -
Clusterig cosmológico: un enfoque del clustering gravitacional clásico inspirado en la estructura y dinámica del cosmos a gran escala
En este trabajo proponemos un nuevo enfoque del algoritmo de clustering gravitacional basado en lo que Einstein considero su 'mayor error': la constante cosmológica. De manera similar al algoritmo de clustering gravitacional, ...