Labyrinth metasurface absorber for ultra-high-sensitivity terahertz thin film sensing
Date
2018Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Impact
|
10.1002/pssr.201800375
Abstract
In this work, a labyrinth metasurface sensor operating at the low‐frequency edge of the THz band is presented. Its intricate shape leads to a high electric field confinement on the surface of the structure, resulting in ultrasensitive performance, able to detect samples of the order of tens of nanometers at a wavelength of the order of millimeters (i.e., five orders of magnitude larger). The sens ...
[++]
In this work, a labyrinth metasurface sensor operating at the low‐frequency edge of the THz band is presented. Its intricate shape leads to a high electric field confinement on the surface of the structure, resulting in ultrasensitive performance, able to detect samples of the order of tens of nanometers at a wavelength of the order of millimeters (i.e., five orders of magnitude larger). The sensing capabilities of the labyrinth metasurface are evaluated numerically and experimentally by covering the metallic face with tin dioxide (SnO2) thin films with thicknesses ranging from 24 to 345 nm. A redshift of the resonant frequency is observed as the analyte thickness increases, until reaching a thickness of 20 μm, where the response saturates. A maximum sensitivity of more than 800 and a figure of merit near 4500 nm−1 are achieved, allowing discriminating differences in the SnO2 thickness of less than 25 nm, and improving previous works by a factor of 35. This result can open a new paradigm of ultrasensitive devices based on intricate metageometries overcoming the limitations of classical metasurface sensor designs based on periodic metaatoms. [--]
Subject
Metasurfaces,
Sensing,
Terahertz,
Thin films
Publisher
Wiley
Published in
Physica Status Solidi - Rapid Research Letters, 2018, 1800375
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute of Smart Cities - ISC
Publisher version
Sponsorship
The authors acknowledge support from the Spanish Ministerio de Economía y Competitividad (MINECO) under Contract TEC2014-51902-C2-2-R, the NSU program 5-100 established by the Russian Ministry of Education and Science, and the State Assignment Program of the Rzhanov Institute of Semiconductor Physics SB RAS (Project No. 0306-2016-0020).