Genetic and isotope ratio mass spectrometric evidence for the occurrence of starch degradation and cycling in illuminated Arabidopsis leaves
Date
2017Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Impact
|
10.1371/journal.pone.0171245
Abstract
Although there is a great wealth of data supporting the occurrence of simultaneous synthesis
and breakdown of storage carbohydrate in many organisms, previous 13CO2 pulse-chase
based studies indicated that starch degradation does not operate in illuminated Arabidopsis
leaves. Here we show that leaves of gwd, sex4, bam4, bam1/bam3 and amy3/isa3/lda starch
breakdown mutants accumulate higher le ...
[++]
Although there is a great wealth of data supporting the occurrence of simultaneous synthesis
and breakdown of storage carbohydrate in many organisms, previous 13CO2 pulse-chase
based studies indicated that starch degradation does not operate in illuminated Arabidopsis
leaves. Here we show that leaves of gwd, sex4, bam4, bam1/bam3 and amy3/isa3/lda starch
breakdown mutants accumulate higher levels of starch than wild type (WT) leaves when cultured
under continuous light (CL) conditions. We also show that leaves of CL grown dpe1
plants impaired in the plastidic disproportionating enzyme accumulate higher levels of maltotriose
than WT leaves, the overall data providing evidence for the occurrence of extensive
starch degradation in illuminated leaves. Moreover, we show that leaves of CL grown mex1/
pglct plants impaired in the chloroplastic maltose and glucose transporters display a severe
dwarf phenotype and accumulate high levels of maltose, strongly indicating that the MEX1
and pGlcT transporters are involved in the export of starch breakdown products to the cytosol
to support growth during illumination. To investigate whether starch breakdown products can
be recycled back to starch during illumination through a mechanism involving ADP-glucose
pyrophosphorylase (AGP) we conducted kinetic analyses of the stable isotope carbon composition
(δ13C) in starch of leaves of 13CO2 pulsed-chased WT and AGP lacking aps1 plants.
Notably, the rate of increase of δ13C in starch of aps1 leaves during the pulse was exceedingly
higher than that of WT leaves. Furthermore, δ13C decline in starch of aps1 leaves during
the chase was much faster than that of WT leaves, which provides strong evidence for the
occurrence of AGP-mediated cycling of starch breakdown products in illuminated Arabidopsis
leaves. [--]
Subject
Arabidopsis leaves,
Starch
Publisher
Public Library of Science
Published in
Plos One, 12(2): e0171245.
Departament
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
Publisher version
Sponsorship
Comisión Interministerial de Ciencia y Tecnología and Fondo Europeo de Desarrollo Regional (Spain) Grant numbers: BIO2010-18239 and BIO2013-49125-C2-1-P.
Appears in Collections
Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.
Except where otherwise noted, this item's license is described as © 2017 Baslam et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.