Show simple item record

dc.creatorCampo-Bescós, Migueles_ES
dc.creatorMuñoz Carpena, Rafaeles_ES
dc.creatorKaplan, David A.es_ES
dc.creatorSouthworth, Janees_ES
dc.creatorZhu, Likaies_ES
dc.creatorWaylen, Peteres_ES
dc.date.accessioned2018-09-06T12:20:20Z
dc.date.available2018-09-06T12:20:20Z
dc.date.issued2013
dc.identifier.issn1932-6203
dc.identifier.urihttps://hdl.handle.net/2454/30548
dc.description.abstractBackground: Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings: We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation,750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation.950 mm). Conclusions/Significance: We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing.en
dc.description.sponsorshipThis study was funded by National Aeronautics and Space Administration Land-Cover/Land-Use Change Program (NASA LCLUC) Project # NNX09AI25G, titled ‘‘The Role of Socioeconomic Institutions in Mitigating Impacts of Climate Variability and Climate Change in Southern Africa’’, and National Science Foundation Integrative Graduate Education and Research Traineeship (NSF-IGERT) 0504422 Adaptive Management of Water, Wetlands and Watershed.en
dc.format.mimetypeapplication/pdfen
dc.format.mimetypeapplication/zipen
dc.language.isoengen
dc.publisherPublic Library of Scienceen
dc.relation.ispartofPlos One, 8(8): e72348en
dc.rights© 2013 Campo-Bescos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subjectEnvironmental driversen
dc.subjectSavanna vegetationen
dc.subjectDinamic factor analysis (DFA)en
dc.subjectNDVIen
dc.titleBeyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on savanna vegetationen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentUniversidad Pública de Navarra. Departamento de Proyectos e Ingeniería Rurales_ES
dc.contributor.departmentNafarroako Unibertsitate Publikoa. Landa Ingeniaritza eta Proiektuak Sailaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.identifier.doi10.1371/journal.pone.0072348
dc.relation.publisherversionhttps://doi.org/10.1371/journal.pone.0072348
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.type.versionVersión publicada / Argitaratu den bertsioaes


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2013 Campo-Bescos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Except where otherwise noted, this item's license is described as © 2013 Campo-Bescos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.