Show simple item record

dc.creatorMontero Macarro, Manueles_ES
dc.creatorRahimpour, Mehdies_ES
dc.creatorViale, Alejandro M.es_ES
dc.creatorAlmagro Zabalza, Goizederes_ES
dc.creatorEydallin, Gustavoes_ES
dc.creatorSevilla, Ángeles_ES
dc.creatorCánovas, Manueles_ES
dc.creatorBernal, Cristinaes_ES
dc.creatorLozano, Ana Belénes_ES
dc.creatorMuñoz Pérez, Francisco Josées_ES
dc.creatorBaroja Fernández, Edurnees_ES
dc.creatorBahaji, Abdellatifes_ES
dc.creatorMori, Hirotadaes_ES
dc.creatorCodoñer, Francisco M.es_ES
dc.creatorPozueta Romero, Javieres_ES
dc.date.accessioned2018-09-06T12:20:24Z
dc.date.available2018-09-06T12:20:24Z
dc.date.issued2014
dc.identifier.issn1932-6203
dc.identifier.urihttps://hdl.handle.net/2454/30561
dc.description.abstractIn Escherichia coli, ppGpp is a major determinant of growth and glycogen accumulation. Levels of this signaling nucleotide are controlled by the balanced activities of the ppGpp RelA synthetase and the dual-function hydrolase/synthetase SpoT. Here we report the construction of spoT null (DspoT) mutants obtained by transducing a DspoT allele from DrelADspoT double mutants into relA+ cells. Iodine staining of randomly selected transductants cultured on a rich complex medium revealed differences in glycogen content among them. Sequence and biochemical analyses of 8 DspoT clones displaying glycogen-deficient phenotypes revealed different inactivating mutations in relA and no detectable ppGpp when cells were cultured on a rich complex medium. Remarkably, although the co-existence of DspoT with relA proficient alleles has generally been considered synthetically lethal, we found that 11 DspoT clones displaying high glycogen phenotypes possessed relA mutant alleles with non-inactivating mutations that encoded stable RelA proteins and ppGpp contents reaching 45–85% of those of wild type cells. None of the DspoT clones, however, could grow on M9-glucose minimal medium. Both Sanger sequencing of specific genes and high-throughput genome sequencing of the DspoT clones revealed that suppressor mutations were restricted to the relA locus. The overall results (a) defined in around 4 nmoles ppGpp/g dry weight the threshold cellular levels that suffice to trigger net glycogen accumulation, (b) showed that mutations in relA, but not necessarily inactivating mutations, can be selected to compensate total SpoT function(s) loss, and (c) provided useful tools for studies of the in vivo regulation of E. coli RelA ppGpp synthetase.en
dc.description.sponsorshipThis research was partially supported by the Comisión Interministerial de Ciencia y Tecnología and Fondo Europeo de Desarrollo Regional (Spain) [grant numbers BIO2010-18239 and BIO2011-29233-002-01], the Fundación Séneca [grant number 08660/P1/08] and JSPS (Japan Society for the Promotion of Science) KAKENHI Grant-in-Aid for Scientific Research (A) [grant number 22241050]. GA and GE acknowledge fellowships from the Public University of Navarra. MR acknowledges a pre-doctoral JAE fellowship from the Consejo Superior de Investigaciones Cientı´ficas. AMV is grateful to the funding of the Programa Campus Ibericus de Excelencia Internacional, Ministerio de Educación, Spain.en
dc.format.mimetypeapplication/pdfen
dc.format.mimetypeapplication/zipen
dc.language.isoengen
dc.publisherPublic Library of Scienceen
dc.relation.ispartofPlos One, 9(9):e106938en
dc.rights© 2014 Montero et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectEscherichia colien
dc.subjectrelA locusen
dc.subjectspoTen
dc.subjectGlycogenen
dc.titleSystematic production of inactivating and non-inactivating suppressor mutations at the relA locus that compensate the detrimental effects of complete spoT loss and affect glycogen content in Escherichia colien
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentUniversidad Pública de Navarra. Instituto de Agrobiotecnologíaes_ES
dc.contributor.departmentNafarroako Unibertsitate Publikoa. Agrobioteknologiako Institutuaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.identifier.doi10.1371/journal.pone.0106938
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/6PN/BIO2011-29233en
dc.relation.publisherversionhttps://doi.org/10.1371/journal.pone.0106938
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.type.versionVersión publicada / Argitaratu den bertsioaes
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2014 Montero et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Except where otherwise noted, this item's license is described as © 2014 Montero et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.