Show simple item record

dc.creatorLópez García, José Luises_ES
dc.description.abstractThe main difficulty in the practical use of the stationary phase method in asymptotic expansions of integrals is originated by a change of variables. The coefficients of the asymptotic expansion are the coefficients of the Taylor expansion of a certain function implicitly defined by that change of variables. In general, this function is not explicitly known, and then the computation of those coefficients is cumbersome. Using the factorization of the exponential factor used in previous works of [Tricomi, 1950], [Erdélyi and Wyman, 1963], and [Dingle, 1973], we obtain a variant of the method that avoids that change of variables and simplifies the computations. On the one hand, the calculation of the coefficients of the asymptotic expansion is remarkably simpler and explicit. On the other hand, the asymptotic sequence is as simple as in the standard stationary phase method: inverse powers of the asymptotic variable. New asymptotic expansions of the Anger and Weber functions Jλx(x) and Eλx(x) for large positive x and real parameter λ 6= 0 are given as an illustration.en
dc.description.sponsorshipThis research was supported by the Spanish Ministry of Economía y Competitividad, project MTM2014-52859-P. The Universidad Pública de Navarra is acknowledged by its financial support.en
dc.format.extent14 p.
dc.publisherKent State Universityen
dc.publisherJohann Radon Institute (RICAM)en
dc.relation.ispartofElectronic Transactions on Numerical Analysis, Volume 46, pp. 148–161, 2017en
dc.rights© 2017 Kent State Universityen
dc.subjectAsymptotic expansionsen
dc.subjectOscillatory integralsen
dc.subjectMethod of the stationary phaseen
dc.subjectAnger and Weber functionsen
dc.titleA simplification of the stationary phase method: application to the Anger and Weber functionsen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentMatematika eta Informatika Ingeniaritzaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.departmentIngeniería Matemática e Informáticaes_ES
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes

Files in this item


This item appears in the following Collection(s)

Show simple item record

El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt