• Login
    View Item 
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ingeniería Matemática e Informática - Matematika eta Informatika Ingeniaritza Saila
    • Artículos de revista DIMI - MIIS Aldizkari artikuluak
    • View Item
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ingeniería Matemática e Informática - Matematika eta Informatika Ingeniaritza Saila
    • Artículos de revista DIMI - MIIS Aldizkari artikuluak
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Uniform representation of the incomplete beta function in terms of elementary functions

    Thumbnail
    View/Open
    16.pdf (589.4Kb)
    Date
    2018
    Author
    Ferreira González, Chelo Upna
    López García, José Luis Upna Orcid
    Pérez Sinusía, Ester Upna Orcid
    Version
    Acceso abierto / Sarbide irekia
    Type
    Artículo / Artikulua
    Version
    Versión aceptada / Onetsi den bertsioa
    Project Identifier
    AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/ 
    Impact
     
     
     
    10.1553/etna_vol48s450
     
     
     
    Show full item record
    Abstract
    We consider the incomplete beta function Bz(a, b) in the maximum domain of analyticity of its three variables: a, b, z ∈ C, −a /∈ N, z /∈ [1, ∞). For <b ≤ 1 we derive a convergent expansion of z−aBz(a, b) in terms of the function (1 − z) b and of rational functions of z that is uniformly valid for z in any compact set in C \ [1, ∞). When −b ∈ N ∪ {0}, the expansion also contains a logarithmic te ... [++]
    We consider the incomplete beta function Bz(a, b) in the maximum domain of analyticity of its three variables: a, b, z ∈ C, −a /∈ N, z /∈ [1, ∞). For <b ≤ 1 we derive a convergent expansion of z−aBz(a, b) in terms of the function (1 − z) b and of rational functions of z that is uniformly valid for z in any compact set in C \ [1, ∞). When −b ∈ N ∪ {0}, the expansion also contains a logarithmic term of the form log(1 − z). For <b ≥ 1 we derive a convergent expansion of z−a(1 − z) bBz(a, b) in terms of the function (1 − z) b and of rational functions of z that is uniformly valid for z in any compact set in the exterior of the circle |z − 1| = r for arbitrary r > 0. The expansions are accompanied by realistic error bounds. Some numerical experiments show the accuracy of the approximations. [--]
    Subject
    Incomplete beta function, Convergent expansions, Uniform expansions
     
    Publisher
    Kent State University
     
    Johann Radon Institute (RICAM)
     
    Published in
    Electronic Transactions on Numerical Analysis, Volume 48, pp. 450–461, 2018.
    Departament
    Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática / Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila / Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute for Advanced Materials and Mathematics - INAMAT2
     
    Publisher version
    http://doi.org/10.1553/etna_vol48s450
    URI
    https://hdl.handle.net/2454/31782
    Sponsorship
    This research was supported by Ministerio de Economía, Industria y Competitividad, Gobierno de España, project MTM2017-83490-P, Gobierno de Aragón and European Social Fund (group E24-17R).
    Appears in Collections
    • Artículos de revista DIMI - MIIS Aldizkari artikuluak [59]
    • Artículos de revista INAMAT2 - INAMAT2 aldizkari artikuluak [308]
    • Artículos de revista - Aldizkari artikuluak [4730]
    Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback
     

     

    Browse

    All of Academica-eCommunities & CollectionsAuthorsAuthors By Issue DateTitlesSubjectsBy DegreeThis CollectionAuthorsAuthors By Issue DateTitlesSubjectsBy Degree

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback