Uniform representation of the incomplete beta function in terms of elementary functions

View/ Open
Date
2018Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/
Impact
|
10.1553/etna_vol48s450
Abstract
We consider the incomplete beta function Bz(a, b) in the maximum domain of analyticity of its three variables: a, b, z ∈ C, −a /∈ N, z /∈ [1, ∞). For <b ≤ 1 we derive a convergent expansion of z−aBz(a, b) in terms of the function (1 − z) b
and of rational functions of z that is uniformly valid for z in any compact set in C \ [1, ∞). When −b ∈ N ∪ {0}, the expansion also contains a logarithmic te ...
[++]
We consider the incomplete beta function Bz(a, b) in the maximum domain of analyticity of its three variables: a, b, z ∈ C, −a /∈ N, z /∈ [1, ∞). For <b ≤ 1 we derive a convergent expansion of z−aBz(a, b) in terms of the function (1 − z) b
and of rational functions of z that is uniformly valid for z in any compact set in C \ [1, ∞). When −b ∈ N ∪ {0}, the expansion also contains a logarithmic term of the form log(1 − z). For <b ≥ 1 we derive a convergent expansion of z−a(1 − z) bBz(a, b) in terms of the function (1 − z) b and of rational functions of z that is uniformly valid for z in any compact set in the exterior of the circle |z − 1| = r for arbitrary r > 0. The expansions are accompanied by realistic error bounds. Some numerical experiments show the accuracy of
the approximations. [--]
Subject
Incomplete beta function,
Convergent expansions,
Uniform expansions
Publisher
Kent State University Johann Radon Institute (RICAM)
Published in
Electronic Transactions on Numerical Analysis, Volume 48, pp. 450–461, 2018.
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Matemática e Informática /
Nafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute for Advanced Materials and Mathematics - INAMAT2
Publisher version
Sponsorship
This research was supported by Ministerio de Economía, Industria
y Competitividad, Gobierno de España, project MTM2017-83490-P, Gobierno de Aragón and
European Social Fund (group E24-17R).